首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human casein micelles were reconstituted from isolated κ- and β-caseins and calcium ions. Micelle formation was recognized in the presence of calcium chloride even at the low concentration of 5mM. At pH levels ranging from 5.5 to 8.0, the re-formed micelles were quite stable so that precipitation of β-casein was not observed. The large micelles were constituted by a higher ratio of β-casein to κ-casein (16:1 by weight) than the small micelles (3: 1). The κ-casein in the small micelles contained carbohydrates to about 43% (w/w) in the molecule, whereas that in the large micelles was only about 25%. When the casein micelles were re-formed from κ-easein and fractionated β-casein components, the extent of phosphorylation of the β-casein component was found to influence the micelle formation; i.e., the β-casein component with no phosphate (the 0-P form) was disadvantageous to form micelles, but the component with 5 phosphates (the 5-P form) formed micelles most easily.  相似文献   

2.
The catalytic subunit of rabbit muscle cyclic AMP-dependent protein kinase (EC 2.7.1.37; ATP:protein transferase) has been tested on a variety of caseins. The B variant of β-casein was phosphorylated at a much greater rate than other β-caseins, αs1-caseins, and κ-caseins. Whole casein homozygous for β-casein B was phosphorylated at 2.5 times the rate of commercial whole casein. Gel electrophoresis experiments indicate that β-casein is the predominant component phosphorylated in commerical casein. It is therefore suggested that phosphorylation of whole casein depends on its content of the specific genetic variant, β-casein B.  相似文献   

3.
It was indicated from ultraviolet difference spectra and ultracentrifugal experiments that associations occurred between two casein components (αs- and κ-caseins, β- and κ-caseins and αs- and β-caseins) at lower CaCl2 concentrations (2~3 mm) and that aromatic amino acid residues participated in the associations. Chemical modification studies with 2-hydroxy-5-nitrobenzylbromide indicated that tryptophane residues of each casein component were not essential for these associations. It was also demonstrated by nitration of tyrosine residues with tetranitromethane that tyrosine residues of κ-casein were essential for αs·κ-association and for β·κ-association and that tyrosine residues of αs-casein were important to αs·β-association.

Interactions between casein components were also studied at higher CaCl2 concentration (10 mm) which is enough for micelle formation. It was found that tyrosine residues of κ- casein played an important role for the stabilization of αs- and β-caseins. Properties of the nitrated-β-casein were almost the same as that of the native β-casein except the absorption spectrum. αs·β-Interaction in the presence of 10 mm CaCl2 was investigated by use of the nitrated-β-casein instead of the native β-casein. It was proved that αs-casein was stabilized by the nitrated-β-casein and that precipitation of the nitrated-β-casein increased in the presence of αs-casein.

The mechanism of interactions between casein components at higher CaCl2 concentration (10 mm) are discussed in connection with the associations at lower CaCl2 concentrations (2~3 mm).  相似文献   

4.
κ-Caseins were prepared by the calciurn-ethanol method, the Sephadex method and the urea-sulfuric acid method. Some important properties of κ-caseins were investigated using isoelectric focusing, starch gel electrophoresis, ultracentrifugation, chemical analysis, stabilization test of αs-casein, and rennin treatment. Isoelectric focusing established that κ-casein had its isoelectric point near pH 6.0 in 6 m urea, usually accompanied by a second peak around pH 5.6. Ultracentrifugation, however, showed a single peak having a s20,w value of 2.6 ~ 3.8 in the presence of 6 m urea and of 14.4 in the absence of such dispersing reagents. Normal contents of hexose, sialic acid, phosphorus, and nitrogen were about 1.5, 0.8, 0.2, and 14%, respectively. Relative patterns of amino acid composition were similar in all of the κ-caseins. In addition, amino acid composition in intact κ-casein and in the further purified κ-casein which formed the second peak in DEAE cellulose chromatography were almost identical, indicating that the κ-casein of the first peak is not an impurity but is one of the components which formed the original κ-casein complexes. The ability of κ-caseins to stabilize αs-casein in the presence of calcium increased when purified by DEAE cellulose chromatography.  相似文献   

5.
To study whether the phosphoserine residue is associated with the antigenicity of bovine αs1- casein, we examined the antigenic reactivity of dephosphorylated αs1-casein, peptide 1~25 from bovine β-casein and three chemical reagents with IgG antibody specific to native αs1-casein by an enzyme-linked immunosorbent assay.

The reaction between native αs1-casein and its IgG antibody was inhibited more strongly by native αs1-casein than by dephosphorylated αs1-casein. Peptide 1~25, having a phosphoserine residue-concentrated region from bovine β-casein, noticeably inhibited the reaction between native αs1 -casein and its antibody. Furthermore, the O-phospho-l-serine residue inhibited the reaction of peptide 61~123 with anti-native αs1-casein antibody, although l-serine and sodium phosphate showed no measurable inhibition.

These results suggest that the phosphoserine residue associated with part of an antigenic site in bovine αsl-casein.  相似文献   

6.
κ-casein A was fractionated into 9 subcomponents, all of which were identified as κ-casein from immunological analyses. The microheterogeneity of the subcomponents was explained by stepwise increase of their carbohydrate contents (0~4mol/mol of GalNAc, and 0~8mol/mol of NANA). The micelle-stabilizing ability of κ-casein subcomponents increased with the increase of their carbohydrate contents: the carbohydrate rich subcomponent 7 possessed twice the stabilizing ability of the carbohydrate free subcomponent 1. The sensitivity of synthetic casein micelle composed of κ-casein subcomponents and αsl-casein to the wheat germ lectin-induced aggregation also increased with the increase of their NANA contents.  相似文献   

7.
It was indicated from fluorescence spectra and fluorescence titration that a hydrophobic probe, 1-anilino-8-naphthalenesulfonate (ANS), binds to casein components (αs-, β- and κ-caseins). Fluorescence intensity and affinity of ANS-κ-casein complex were larger than that of ANS-αs- and ANS-β-casein complexes. Enhancements of fluorescence intensity of complexes of casein components were observed by the addition of KCI or CaCl2. Reason for the enhancement was postulated to be the increase of the quantum yield of the ANS fluorescence caused by the environmental change of ANS binding region of the casein components.

Marked increase of sedimentation coefficient of β-casein in the presence of KCl or CaCl2 at 10°C was caused by the addition of ANS. This may be responsible for the stimulation of the Ca-dependent precipitation of β-casein by the addition of ANS.

It was found that αs · κ-association was prevented by ANS and that hydrophobic interaction have an important role for αs · κ-association.  相似文献   

8.
κ-Casein and αs1-κ-casein complex with a weight ratio of unity were dissolved in 50mm cacodylate-HCl-70 mm KC1 buffer containing 0.02% of sodium azide (pH 7.1), and their size and shape in the absence and/or presence of calcium ions were observed with the electron microscope. In the absence of calcium ions, both κ-casein and αs1-κ-casein complex were spherical particles. However, the mean length of αs1-κ-casein complex (12 nm) was smaller than that of κ-casein (17 nm), which suggested that complex formation led to dissociation of the κ-casein polymer. The addition of calcium ions to the complex led to the formation of bent chains, though micelle-like aggregates were not observed even at 20 nm calcium. Comparison of the frequency distributions of αs1-κ-casein complex at 0, 5, 10, 15 and 20 mm of calcium with the calculated probability distributions suggested that most αs1-κ-casein complexes had two binding sites above 10 mm of calcium, which seemed to be essential for the stability of casein micelle.  相似文献   

9.
Elevated homocysteine levels are resulting in N-homocysteinylation of lysyl residues in proteins and they correlate with a number of human pathologies. However, the role of homocysteinylation of lysyl residues is still poorly known. In order to study the features of homocysteinylation of intrinsically unstructured proteins (IUP) bovine caseins were used as a model. α(S1)-, β- and κ-caseins, showing different aggregations and micelle formation, were modified with homocysteine-thiolactone and their physico-chemical properties were studied. Efficiency of homocysteine incorporation was estimated to be about 1.5, 2.1 and 1.3 homocysteyl residues per one β-, α(S1)-, and κ-casein molecule, respectively. Use of intrinsic and extrinsic fluorescent markers such as Trp, thioflavin T and ANS, reveal structural changes of casein structures after homocysteinylation reflected by an increase in beta-sheet content, which in some cases may be characteristic of amyloid-like transformations. CD spectra also show an increase in beta-sheet content of homocysteinylated caseins. Casein homocysteinylation leads in all cases to aggregation. The sizes of aggregates and aggregation rates were dependent on homocysteine thiolactone concentration and temperature. DLS and microscopic studies have revealed the formation of large aggregates of about 1-3μm. Homocysteinylation of α(S1)- and β-caseins results in formation of regular spheres. Homocysteinylated κ-casein forms thin unbranched fibrils about 400-800nm long. In case of κ-casein amyloidogenic effect of homocysteinylation was confirmed by Congo red spectra. Taken together, data indicate that N-homocysteinylation provokes significant changes in properties of native caseins. A comparison of amyloidogenic transformation of 3 different casein types, belonging to the IUP protein family, shows that the efficiency of amyloidogenic transformation upon homocysteinylation depends on micellization capacity, additional disulphide bonds and other structural features.  相似文献   

10.
Whole casein, αs-casein and k-casein were dephosphorylated with a phosphoprotein phosphatase prepared from beef spleen and their calcium-binding capacities were compared with those of respective native caseins by a ultracentrifugal method.

The bindings of the calcium to 94% dephosphorylated whole casein and to 97 % dephosphorylated αs-casein at neutral pH were approximately one third of those to respective native caseins. The decrease of calcium-binding capacity of k-casein due to dephosphorylation was also significant.

The effect of pH on the state and the calcium-binding capacity of dephosphorylated caseins was also examined and the role of organic phosphate groups of casein as calcium-binding sites was discussed.  相似文献   

11.
The following properties of food proteins polymerized by guinea pig liver transglutaminase were investigated: (1) solubility, (2) emulsifying activity and emulsion stability, and (3) unfrozen water content by pulsed NMR. Several food proteins (αsl- and k-caseins, and soybean 7S and 11S globulins) were polymerized by this enzyme. Solubility and emulsifying activity of polymerized αsl-casein were higher than those of the native protein in the range of pH 4~6. Unfrozen water contents of polymerized soybean globulins were much higher than those of the native proteins. These results suggest that transglutaminase treatment may be used for the production of new food protein material with higher hydration ability.  相似文献   

12.
Bovine κ-casein, a phosphoglycoprotein, has mucin-type carbohydrate chains. Subcellular distribution of enzymes that take part in the post-translational modification of κ-casein was examined. In lactating mammary glands from rats and cows, N-acetyl-galactosaminyl transferase, galactosyl transferase, sialyl transferase, and casein kinase were localized specifically in the Golgi apparatus.

The substrate specificities indicate that these enzymes are actually responsible for the processing of κ-casein.

The presence of a phosphate group attached to κ-casein did not affect the rate of glycosylation by N-acetyl-galactosaminyl transferase, while the presence of carbohydrate chains attached to κ- casein strongly reduced the rate of phosphorylation by casein kinase. These results suggest that in the Golgi apparatus, phosphorylation of κ-casein precedes glycosylation.  相似文献   

13.
αsl-Casein can be made either soluble or insoluble by adjusting the concentration of coexisting calcium ions. In this study, we tried to make a soluble-insoluble interconvertible enzyme through the formation of a conjugate of an enzyme and αsl-casein using a heterobifunctional crosslinking reagent, N-succinimidyl 3-(2-pyridyldithio)propionate. The conjugate of phosphoglyceromutase and native αs1-casein did not exhibit sufficient calcium-dependent precipitation. However, conjugates of enzymes (phosphoglyceromutase, enolase or peroxidase) and αsl-casein polymerized by transglutaminase precipitated almost completely in the presence of more than 50 mM CaCl2. Most of the enzyme conjugates precipitated as calcium caseinates could be solubilized reversibly with EDTA, without a significant loss of activity. A mixture of the enzyme ? polymerized αs1-casein conjugates prepared with phosphoglyceromutase, enolase and pyruvate kinase could catalyze sequential reactions which convert d-3-phosphoglycerate into pyruvate with the same efficiency as a mixture of free enzymes. These results indicate that conjugates of enzymes and polymerized αs1-casein can be useful as soluble-insoluble interconvertible enzymes.  相似文献   

14.
UDP-N-acetyl-d-galactosamine: κ-casein polypeptide N-acetylgalactosaminyltransferase was purified from a crude Golgi apparatus of lactating bovine mammary gland after solubilization with Triton X-100. Through chromatography on DEAE-Sephadex A-50, apomucin-Sepharose 4B, FPLC mono S, and Sephacryl S-200, and then electrofocusing, the enzyme was purified up to 7500-fold from the homogenate.

The molecular weight of the enzyme was estimated at 200,000 from gel filtration. The pI value of the enzyme was 6.4 on electrofocusing. The purified enzyme transferred GalNAc from UDP-GalNAc, not to the carbohydrate chains but to the polypeptide chains of the substrates, κ-casein and mucin. The enzyme required Mn2+, DTT, and Triton X-100 for maximal activity. The Km value for UDP-GalNAc was 16.2μm. Km values for K-subcomponents 1 and 7, and apomucin were 1.15, 5.10, and 0.192mg/ml, and Vmax values were 254, 259, and 581 nmol/hr/mg, respectively. Thermal stability and the effects of pH, milk components, lectins, and nucleotides were examined.

αs1-Casein strongly inhibited GalNAc transfer to κ-casein. The inhibitory effect of αs1-casein was canceled by the addition of Ca2+, which causes casein micelle formation. This means that the glycosylation of κ-casein occurs after casein micelle formation triggered by the accumulation of Ca2+ in vivo.  相似文献   

15.
The heterogeneity and chemical composition were investigated in κ-casein from colostrum. The acid casein was obtained from four different Holstein cow colostra. The yield of acid casein from colostrum was higher than that from normal milk. κ-Casein from colostrum was prepared by the gel filtration method of Yaguchi et al. The gel filtration profiles differed among the four colostrum acid caseins.

Colostrum κ-casein was fractionated on a DEAE-cellulose column into one nonadsorbed and six adsorbed fractions with increasing salt concentration. Six adsorbed fractions had the same molecular weight and stabilizing ability for αs1-casein in the presence of calcium ion. The amino acid composition and the phosphorus content of the adsorbed fractions were identical, but fractions eluted with high salt concentrations had more carbohydrates (galactose, sialic acid, glucosamine, galactosamine). Colostrum κ-casein was characterized by a higher content of carbohydrate moiety in comparison with normal κ-casein. Also glucosamine which has not been found in normal κ-casein was detected in colostrum κ-casein. The κ-casein component from colostrum contained at least one molecule of carbohydrate, though the carbo hydrate-free component was detected in normal κ-casein.  相似文献   

16.
Caseins constitute the main protein components in mammalian milk and have critical functions in calcium transport and prevention of protein aggregation. Fibrillation and aggregation of κ-casein, a phenomenon which has only recently been detected, might be associated with malfunctions of milk secretion and amyloidosis phenomena in the mammary glands. This study employs a newly-designed chromatic biomimetic vesicle assay to investigate the occurrence and the parameters affecting membrane interactions of casein aggregates and the contribution of individual casein members to membrane binding. We show that physiological casein colloids exhibit membrane activity, as well as early globular aggregates of κ-casein, a prominent casein isoform. Furthermore, inhibition of κ-casein fibrillation through complexation with αS-casein and β-casein, respectively, was found to go hand in hand with induction of enhanced membrane binding; these data are important in the context of casein biology since in secreted milk κ-casein is found only in assemblies containing also αS-casein and β-casein. The chromatic experiments, complemented by transmission electron microscopy analysis and fluorescence quenching assays, also revealed significantly higher affinity early spherical aggregates of k-casein to anionic phosphatidylglycerol-lipids, as compared to zwitterionic phospholipids. Overall, this study suggests that lipid interactions play important roles in maintaining the essential physiological functions of caseins in mammalian milk.  相似文献   

17.
κ-Casein components having various carbohydrate contents were prepared by diethylaminoethyl-cellulose chromatography and the interactions of each κ-casein component both with αs1-casein and with β-casein were examined by Sepharose 4B gel chromatography, ultra-centrifugal experiments and viscosity measurements. Each κ-casein component could form complex with αs1- and β-casein in the absence and presence of CaCl2. Molecular weight of complexes of unfractionated κ-casein both with αs1-casein and with κ-casein were about 70 × 104 at 37°C in the absence of CaCl2, while those of complexes of each κ-casein component with αs1 and β-casein were about 50 × 104. Stokes radii of complexes increased with increasing calcium ion. While sedimentation coefficient at 37°C of complex with β-casein had almost the same value, those of complexes with αs1-casein decreased with increase of carbohydrate content of κ-casein components. Intrinsic viscosity of complex of κ-casein component having much carbohydrate was almost the same among tested temperatures. It is suggested that heterogeneity of κ-casein is necessary to form large complex and that the carbohydrate moiety of κ-casein contributes the stability of casein complex.  相似文献   

18.
S-carboxymethylated (SCM) κ-casein forms in vitro fibrils that display several characteristics of amyloid fibrils, although the protein is unrelated to amyloid diseases. In order to get insight into the processes that prevent the formation of amyloid fibrils made of κ-caseins in milk, we have characterized in detail the reaction and the roles of its possible effectors: glycosylation and other caseins. Given that native κ-casein occurs as a heterogeneous mixture of carbohydrate-free and carbohydrate-containing chains, kinetics of fibril formation were performed on purified glycosylated and unglycosylated SCM κ-caseins using the fluorescent dye thioflavin T in conjunction with transmission electron microscopy and Fourier transform infrared spectroscopy for morphological and structural analyses. Both unglycosylated and glycosylated SCM κ-caseins have the ability to fibrillate. Kinetic data indicate that the fibril formation rate increases with SCM κ-casein concentration but reaches a plateau at high concentrations, for both the unglycosylated and glycosylated forms. Therefore, a conformational rearrangement is the rate-limiting step in fibril growth of SCM κ-casein. Transmission electron microscopy images indicate the presence of 10- to 12-nm spherical particles prior to the appearance of amyloid structure. Fourier transform infrared spectroscopy spectra reveal a conformational change within these micellar aggregates during the fibrillation. Fibrils are helical ribbons with a pitch of about 120-130 nm and a width of 10-12 nm. Taken together, these findings suggest a model of aggregation during which the SCM κ-casein monomer is in rapid equilibrium with a micellar aggregate that subsequently undergoes a conformational rearrangement into a more organized species. These micelles assemble and this leads to the growing of amyloid fibrils. Addition of αs1-and β-caseins decreases the growth rate of fibrils. Their main effect was on the elongation rate, which became close to that of the limiting conformation change, leading to the appearance of a lag phase at the beginning of the kinetics.  相似文献   

19.
The stabilizing action of carboxymethyl cellulose (CMC-1 and CMC-2) on caseins was studied in the acidic pH region. CMC-1 stabilized 1% whole, α-, αS- and β-casein at pH 4.6 and 5.0, and at 5°C. But CMC-2 could not completely stabilize these caseins at pH 5.0. Interaction between κ-casein and CMC-1 commenced when pH was adjusted to 6.3, but CMC-2 interacted with κ-casein below pH 5.6. An αS- and κ-casein mixture (4 : 1) with CMC-2 was destabilized by the addition of 0.02 m NaCl or NaH2PO4 at pH 5.0. The αS/κ ratio of the precipitated casein was about 10. But the same system with CMC-1 was not destabilized by the salts.  相似文献   

20.
Patrice Martin 《Biochimie》1984,66(5):371-384
Proteolytic and clotting activities of bovine pepsin A with respect to its degree of phosphorylation were studied on various substrates. The occurence of phosphate group(s) on bovine pepsin A more or less strongly affects its enzymic properties according to the substrate and its environment. This is particularly obvious as far as κ-casein is concerned. The specific flocculating activity of unphosphorylated (fA0) as well as dephosphorylated (treated with potato) acid phosphatase) bovine pepsin A, determined on a 0.2% κ-casein solution, is significantly higher than that observed with phosphorylated pepsins, especially after κ-casein was treated with α-d.N-acetyl galactosaminyl oligosaccharidase, while specific milk clotting activity remains unchanged regardless to the level of phosphorylation of bovine pepsin A is.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号