首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes.

Abstract

A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar ‘Emir’. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar ‘Emir’ to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.
  相似文献   

2.
Lodging is the process where crop plants fall over and lie on the ground due to strong winds and heavy precipitation. This problem reduces yield and increases the risk of fungal infections and pre-harvest germination. In order to avoid lodging, plant breeders utilize short-culm mutants, which often have a robust culm that can support the weight of a heavy spike. In barley (Hordeum vulgare L.), thousands of short-culm mutants have been isolated in breeding programs around the world. Our long-term goal is to reveal the genetic network underlying culm length, with the objective to provide an enlarged repertoire of genes and alleles suitable for future breeding of lodging resistant barley. In the present work we studied a group of allelic brh2 and ari-l mutants, which have a relatively strong semi-dwarf phenotype and are phenotypically similar to previously identified mutants deficient in brassinosteroid signalling or metabolism. The Brh2 gene is located in the centromeric region of chromosome 4H and we applied a candidate gene approach to identify the gene. Brh2 is orthologous to TUD1 in rice (Orysa sativa L.), which encodes a U-box E3 ubiquitin ligase. We identified one missense mutation, one nonsense mutation and four deletions of the complete Brh2 gene. The mutants could respond to exogenously applied brassinolide, which suggests that the apparent brassinosteroid deficient phenotype of barley brh2 and ari-l mutants is related to brassinosteroid metabolism rather than signalling.  相似文献   

3.
Traditionally viewed as an Andean grain crop,Chenopodium quinoa Willd. includes domesticated populations that are not Andean, and Andean populations that are not domesticated. Comparative analysis of leaf morphology and allozyme frequencies have demonstrated that Andean populations, both domesticated(quinua) and free-living(ajara), represent an exceptionally homogeneous unit that is well differentiated from allied domesticates of coastal Chile(quingua) and freeliving populations of the Argentine lowlands(C. hircinum). This pattern of relationships indicates that Andean populations represent a monophyletic crop/weed system that has possibly developed through cyclic differentiation (natural vs. human selection) and introgressive hybridization. Relative levels of variation suggest that this complex originated in the southern Andes, possibly from wild types allied withC. hircinum, with subsequent dispersal north to Colombia and south to the Chilean coast. Coastal populations were apparently isolated from post-dispersal differentiation and homogenization that occurred in the Andes. Other data point toward a center of origin in the northern Andes with secondary centers of genetic diversity subsequently developing in the southern Andes and the plains of Argentina. Comparative linkage of South American taxa, all tetraploid, with North American tetraploids of the subsection will eventually clarify this problem. While the possibility of a direct phyletic connection betweenC. quinoa and the Mexican domesticate(C. berlandieri subsp. nuttalliae,) cannot be excluded, available evidence indicates that the latter represents an autonomous lineage that is associated with the basal tetraploid, C. b. subsp.berlandieri, through var.sinuatum, whereas South American taxa show possible affinities to either var. zschackei or var.berlandieri. An extinct domesticate of eastern North America,C. b. subsp.jonesianum, represents either another instance of independent domestication, possibly from subsp. b. var.zschackei, or a northeastern outlier of subsp.nuttalliae.  相似文献   

4.

Key message

We identified, fine mapped, and physically anchored a dominant spot blotch susceptibility gene Scs6 to a 125 kb genomic region containing the Mla locus on barley chromosome 1H.

Abstract

Spot blotch caused by Cochliobolus sativus is an important disease of barley, but the molecular mechanisms underlying resistance and susceptibility to the disease are not well understood. In this study, we identified and mapped a gene conferring susceptibility to spot blotch caused by the pathotype 2 isolate (ND90Pr) of C. sativus in barley cultivar Bowman. Genetic analysis of F1 and F2 progeny as well as F3 families from a cross between Bowman and ND 5883 indicated that a single dominant gene (designated as Scs6) conferred spot blotch susceptibility in Bowman. Using a doubled haploid (DH) population derived from a cross between Calicuchima-sib (resistant) and Bowman-BC (susceptible), we confirmed that Scs6, contributed by Bowman-BC, was localized at the same locus as the previously identified spot blotch resistance allele Rcs6, which was contributed by Calicuchima-sib and mapped on the short arm of chromosome 1H. Using a genome-wide putative linear gene index of barley (Genome Zipper), 13 cleaved amplified polymorphism markers were developed from 11 flcDNA and two EST sequences and mapped to the Scs6/Rcs6 region on a linkage map constructed with the DH population. Further fine mapping with markers developed from barley genome sequences and F2 recombinants derived from Bowman?×?ND 5883 and Bowman?×?ND B112 crosses delimited Scs6 in a 125 kb genomic interval harboring the Mla locus on the reference genome of barley cv. Morex. This study provides a foundational step for further cloning of Scs6 using a map-based approach.
  相似文献   

5.
Changing climatic conditions with warming winters and shifts in the frequencies of drought, intense rainfall and cold spells together with associated changes in the geographical distribution of arable crops increase the challenges for selecting new varieties. In this context, we aim to contribute to a better understanding of the determinants of barley (Hordeum vulgare) frost tolerance (FRT) and consequent improvements to marker-assisted selection (MAS). Freezing injury in a diversity panel of 121 barley genotypes with different growth habits and origins was assessed using phenotyping based on chlorophyll fluorescence (Fv/Fm) measurements to screen genetic diversity in plants at an early growth stage. The haplotypes of vernalisation and photoperiod genes were determined with PCR, and correlation analyses were done using data from 12 laboratory and field-laboratory FRT tests. Previous results of allelic combinations of VRN-H1/VRN-H2 for FRT were confirmed with these experiments using a larger set of genotypes. The predictive power of polymorphisms in VRN-H1 intron 1 region for FRT was significantly higher than that of the VRN-H1 promoter polymorphism. The vrn-H1/vrn-H2 facultative genotypes had similar or higher FRT than vrn-H1/Vrn-H2 winter genotypes under suboptimal hardening conditions. Genes regulating long-day and short-day photoperiodic responses were significantly correlated with FRT. The most parsimonious model for prediction of FRT was based on polymorphisms in the VRN-H1 intron 1 region, VRN-H2 and PPD-H2 and explained 69% of the variation in FRT.  相似文献   

6.
Using bioinformatics analysis, the homologs of genes Sr33 and Sr35 were identified in the genomes of Triticum aestivum, Hordeum vulgare, and Triticum urartu. It is known that these genes confer resistance to highly virulent wheat stem rust races (Ug99). To identify amino acid sites important for this resistance, the found homologs were compared with the Sr33 and Sr35 protein sequences. It was found that sequences S5DMA6 and E9P785 are the closest homologs of protein RGAle, a Sr33 gene product, and sequences M7YFA9 (CNL-C) and F2E9R2 are homologs of protein CNL9, a Sr35 gene product. It is assumed that the homologs of genes Sr33 and Sr35, which were obtained from the wild relatives of wheat and barley, can confer resistance to various forms of stem rust and can be used in the future breeding programs aimed at improvement of national wheat varieties.  相似文献   

7.
8.
Allelopathy is very important for the scientific disposition of garden plants. To understand the allelopathic potential of Koelreuteria bipinnata Franch. var. integrifoliola, the germination of Agrostis tenuis Sibth., Festuca arundinacea Schreb. and Lolium perenne L. were determined under laboratory conditions. The results showed that root, stem and leaf aqueous extracts of K. bipinnata var. integrifoliola had allelopathic effects on all three turf grasses, and the allelopathic activity varied according to extract concentrations, test species, and extract sources. Lower extract concentrations did not affect or promoted the germination and initial seedling growth of turf grasses, but the highest concentrations almost had inhibitory effect. The order of allelopathic potentials of the three organs on germination of these receptors was root < stem < leaf. And at the highest concentration of leaf extract, the most strongly inhibition was found in A. tenuis, followed by F. arundinaces and then L. perenne. In addition, according to gas chromatography–mass spectrometry (GC–MS) analysis, the allelopathic potential compounds and their abundance in root, stem and leaf were obviously different. Therefore, the allelopathic compounds may responsible for allelopathy of K. bipinnata var. integrifoliola. These findings suggested that more attention should be paid to the leaf of K. bipinnata var. integrifoliola for the relative higher allelopathic effects.  相似文献   

9.
A complex study on the adaptation of cn and vn mutants and the allozymes of alcoholdehydrogenase (ADH) was carried out in initially pure lines, and their panmixia populations during exchange of the mutant genotype with that of wild-type flies (C-S) and D) through saturating crossings. The relative adaptation of the genotypes was estimated by their effect on reproductive efficiency in the experimentally obtained population. Fecundity, lifespan, and the resistance of the studied genotypes to hyperthermia were investigated individually. It was shown that the high level of adaptation of the cn mutants and the low level of adaptation of the vg mutants was correlated with the presence of different ADH allozymes. In the studied population, the F-allozyme of ADH accompanied the vg mutation, while the S-allozyme of the enzyme was detected in cn mutants. Saturating crossings of C-S(Adh Svg(Adh F) and D(Adh F) × cn(Adh S), along with the parallel determination of the allele composition of the Adh locus, demonstrated that the complete substitution of the F-allozyme of ADH in the vg mutants by the S-allozyme in D flies, as well as the substitution of the S-allozyme of ADH in the cn mutants by the F-allozyme in D flies was realized only after the 15th–20th backcrosses. These results favor the coadaptation of cn and vg marker genes with alleles of the Adh locus and indicate the important role of the latter in the adaptation of genotypes. In the studied population, selection acted primarily against the vg mutants, which were inferior to the cn mutants, and heterozygote genotypes in indices of the main adaptation components.  相似文献   

10.
11.
Cabbage (Brassica oleracea var. capitata L.) is one of the most popular cultivated vegetables worldwide. Cabbage has rich phenotypic diversity, including plant height, head shape, head color, leaf shape and leaf color. Leaf color plays an important role in cabbage growth and development. At present, there are few reports on fine mapping of leaf color mutants in B. oleracea. In this study, a naturally occurring yellow-green leaf cabbage mutant (YL-1), derived from the self-pollinated progenies of the hybrid ‘Hosom’, was used for inheritance analysis and gene mapping. Segregation populations including F2 and BC1 were generated from the cross of two inbred lines, YL-1 and 01–20. Genetic analysis with the F2 and BC1 populations demonstrated that the yellow-green leaf color was controlled by a single recessive nuclear gene, ygl-1. Insertion–deletion (InDel) markers, designed based on the parental re-sequencing data, were used for the preliminary mapping with BSA (bulked segregant analysis) method. A genetic map constructed with 15 InDels indicated that ygl-1 was located on chromosome C01. The ygl-1 gene is flanked by InDel markers ID2 and M8, with genetic distances of 0.4 cM and 0.35 cM, respectively. The interval distance between two markers is 167 kb. Thus, it enables us to locate the ygl-1 gene for the first time in B. oleracea. This study lays the foundation for candidate gene prediction and ygl-1gene cloning.  相似文献   

12.
13.

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP? markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n?=?2x?=?DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n?=?6x?=?AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ?=?2.0, P value?=?0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value?<?0.01). KASP? assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.
  相似文献   

14.
Pulse amplitude modulation fluorimetry was used to assess chlorophyll fluorescence parameters in Chlamydomonas reinhardtii cells during sulfur deprivation. A significant (fourfold) increase in the chlorophyll fluorescence yield (parameters F 0 and F m) normalized to the chlorophyll concentration was shown for deprived cells. The chlorophyll content did not change during the deprivation experiments. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in photosystem II (PSII) of sulfur-deprived cells. For example, starved cells exhibited a less pronounced pH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in the reaction centers of PSII. It was also shown that the photosynthetic apparatus of starved cells is primarily in state 2 and that back transition to state 1 is suppressed. However, these changes cannot cause the discovered elevation of chlorophyll fluorescence intensity (F 0 and F m) in the cells under sulfur limitation. The observed increase in the chlorophyll fluorescence intensity under sulfur deprivation may be due to partial dissociation of peripheral light-harvesting complexes from the reaction centers of PSII or a malfunction of the dissipative cycle in PSII, involving cytochrome b 559.  相似文献   

15.
A Gram-stain-positive, polar flagella-containing, rod-shaped, obligate aerobic, endospore-forming bacterium, strain TK1655T, was isolated from the traditional Korean food gochujang. The 16S rRNA sequence of strain TK1655T was a member of the genus Oceanobacillus similar to that of the type strain of Oceanobacillus oncorhynchi subsp. incaldanensis DSM 16557T (97.2%), O. oncorhynchi subsp. oncorhynchi JCM 12661T (97.1%), O. locisalsi KCTC 13253T (97.0%), and O. sojae JCM 15792T (96.9%). Strain TK1655T was oxidase and catalase positive. Colonies were circular, smooth, low convex, cream in colour, and measured about 0.5–1.0 mm in diameter. The range for growth was 20–40°C (optimal, 30°C), pH 6.0–10.0 (optimal, 7.0), and 2–16% (w/v) NaCl (optimal, 2%). Additionally, the cells contained meso-DAP, and the predominant isoprenoid quinone was MK-7. The complex polar lipids were consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major cellular fatty acid components were iso-C15:0, anteiso-C15:0, iso-C16:0, and anteiso-C17:0, and the DNA G+C content was 40.5%. DNA-DNA relatedness of our novel strain and reference strain O. locisalsi KCTC 13253T, O. oncorhynchi subsp. incaldanensis DSM 16557T, O. oncorhynchi subsp. oncorhynchi JCM 12661T was 45.7, 43.8, and 41.9%. From the results of phenotypic, chemotaxonomic, and phylogenetic analyses of strain TK1655T, we propose the novel species Oceanobacillus gochujangensis sp. nov. The type strain is TK1655T (=KCCM 101304T =KCTC 33014T =CIP 110582T =NBRC 109637T).  相似文献   

16.
Chromosome numbers for 98 plants ofF. pallens, 19 ofF. psammophila, F. belensis andF. vaginata, and 44 ofF. ovina (originating from Austria, the Czech Republic, Germany, Slovakia and Latvia) are given. In addition to theF. ovina andF. pallens groups, chromosome counts for the following taxa are also reported:F. alpestris (2n=14) reported for the first time in this work,F. amethystina subsp.amethystina (2n=28),F. brevipila (2n=42),F. cinerea (2n=28),F. rupicola subsp.rupicola (2n=42) andF. versicolor subsp.versicolor (2n=14).InF. pallens, two ploidy levels (2n=2x=14+0-1B, 2n=4x=28+0-1B) as well as two natural triploid plants (2n=21+0-1B), were found. In addition to the fourF. pallens types that have been distinguished in Austria, one new tetraploid type (F. pallens “scabrifolia”) from the Czech Republic and Germany is reported and its taxonomy is discussed. The distributions of the Oberösterreich-Niederösterreich and Pannonisches-HügellandF. pallens types outside of Austria are documented.Only the diploid chromosome number (2n=14) was found inF. psammophila andF. vaginata. Chromosome numbers forF. psammophila subsp.muellerstollii andF. belensis (both 2n=14) were determined here for the first time. Two ploidy levels, 2n=14+0-5B corresponding toF. ovina subsp.ovina and 2n=28 corresponding toF. ovina subsp.guestphalica andF. cf.duernsteinensis were confirmed inF. ovina. Differences in chromosome structure (simple and multiple secondary constrictions) betweenF. pallens as opposed toF. psammophila andF. vaginata are discussed. A complete survey of published chromosome counts for Central European species from theF. ovina andF. pallens groups is included.  相似文献   

17.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

18.
The present study is aimed to identify genetic variability between two species of Amaranthus viz., A. caudatus and A. hybridus subsp. cruentus, two economically important species, cultivated mainly for grain production. Karyomorphological studies in Amaranthus are scarce, probably due to higher number of small sized chromosomes. Karyomorphological studies were conducted using mitotic squash preparation of young healthy root tips. Karyological parameters and karyotypic formula were established using various software programs and tabulated the karyomorphometric and asymmetry indices viz., Disparity index, Variation coefficient, Total forma percentage, Karyotype asymmetry index, Syi index, Rec index, Interchromosomal and Intrachromosomal asymmetry index and Degree of asymmetry of karyotypes. The mitotic chromosome number observed for A. caudatus was 2n = 32 with a gametic number n = 16 and A. hybridus subsp. cruentus was 2n = 34 with a gametic number n = 17. In A. caudatus the chromosome length during somatic metaphase ranged from 0.8698 to 1.7722 μm with a total length of 39.1412 μm. In A. hybridus subsp. cruentus the length of chromosome ranged from 0.7756 to 1.9421 μm with a total length of 44.9922 μm. Various karyomorphometry and asymmetry indices analyzed revealed the extend of interspecific variation and their evolutionary status.  相似文献   

19.
Radish, belonging to the family Brassicaceae, has a self-incompatibility which is controlled by multiple alleles on the S locus. To employ the self-incompatibility in an F1 breeding system, identification of S haplotypes is necessary. Since collection of S haplotypes and determination of nucleotide sequences of SLG, SRK, and SCR alleles in cultivated radish have been conducted by different groups independently, the same or similar sequences with different S haplotype names and different sequences with the same S haplotype names have been registered in public databases, resulting in confusion of S haplotype names for researchers and breeders. In the present study, we developed S homozygous lines from radish F1 hybrid cultivars in Japan and determined the nucleotide sequences of SCR, the S domain and the kinase domain of SRK, and the SLG of a large number of S haplotypes. Comparing these sequences with our previously published sequences, the haplotypes were ordered into 23 different S haplotypes. The sequences of the 23 S haplotypes were compared with S haplotype sequences registered by different groups, and we suggested a unification of these S haplotypes. Furthermore, dot-blot hybridization using SRK allele-specific probes was examined for developing a standard method for S haplotype identification.  相似文献   

20.
The amino acid sequence of APX4 is similar to other ascorbate peroxidases (APXs), a group of proteins that protect plants from oxidative damage by transferring electrons from ascorbate to detoxify peroxides. In this study, we characterized two apx4 mutant alleles. Translational fusions with GFP indicated APX4 localizes to chloroplasts. Both apx4 mutant alleles formed chlorotic cotyledons with significantly reduced chlorophyll a, chlorophyll b and lutein. Given the homology of APX to ROS-scavenging proteins, this result is consistent with APX4 protecting seedling photosystems from oxidation. The growth of apx4 seedlings was stunted early in seedling development. In addition, APX4 altered seed quality by affecting seed coat formation. While apx4 seed development appeared normal, the seed coat was darker and more permeable than the wild type. In addition, accelerated aging tests showed that apx4 seeds were more sensitive to environmental stress than the wild-type seeds. If APX4 affects seed pigment biosynthesis or reduction, the seed coat color and permeability phenotypes are explained. apx4 mutants had cotyledon chlorosis, increased H2O2 accumulation, and reduced soluble APX activity in seedlings. These results indicate that APX4 is involved in the ROS-scavenging process in chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号