首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prediction of disordered regions in proteins based on the meta approach   总被引:1,自引:0,他引:1  
MOTIVATION: Intrinsically disordered regions in proteins have no unique stable structures without their partner molecules, thus these regions sometimes prevent high-quality structure determination. Furthermore, proteins with disordered regions are often involved in important biological processes, and the disordered regions are considered to play important roles in molecular interactions. Therefore, identifying disordered regions is important to obtain high-resolution structural information and to understand the functional aspects of these proteins. RESULTS: We developed a new prediction method for disordered regions in proteins based on the meta approach and implemented a web-server for this prediction method named 'metaPrDOS'. The method predicts the disorder tendency of each residue using support vector machines from the prediction results of the seven independent predictors. Evaluation of the meta approach was performed using the CASP7 prediction targets to avoid an overestimation due to the inclusion of proteins used in the training set of some component predictors. As a result, the meta approach achieved higher prediction accuracy than all methods participating in CASP7.  相似文献   

2.
Protein intrinsic disorder is becoming increasingly recognized in proteomics research. While lacking structure, many regions of disorder have been associated with biological function. There are many different experimental methods for characterizing intrinsically disordered proteins and regions; nevertheless, the prediction of intrinsic disorder from amino acid sequence remains a useful strategy especially for many large-scale proteomic investigations. Here we introduced a consensus artificial neural network (ANN) prediction method, which was developed by combining the outputs of several individual disorder predictors. By eight-fold cross-validation, this meta-predictor, called PONDR-FIT, was found to improve the prediction accuracy over a range of 3 to 20% with an average of 11% compared to the single predictors, depending on the datasets being used. Analysis of the errors shows that the worst accuracy still occurs for short disordered regions with less than ten residues, as well as for the residues close to order/disorder boundaries. Increased understanding of the underlying mechanism by which such meta-predictors give improved predictions will likely promote the further development of protein disorder predictors. Access to PONDR-FIT is available at www.disprot.org.  相似文献   

3.
Short and long disordered regions of proteins have different preference for different amino acid residues. Different methods often have to be trained to predict them separately. In this study, we developed a single neural-network-based technique called SPINE-D that makes a three-state prediction first (ordered residues and disordered residues in short and long disordered regions) and reduces it into a two-state prediction afterwards. SPINE-D was tested on various sets composed of different combinations of Disprot annotated proteins and proteins directly from the PDB annotated for disorder by missing coordinates in X-ray determined structures. While disorder annotations are different according to Disprot and X-ray approaches, SPINE-D's prediction accuracy and ability to predict disorder are relatively independent of how the method was trained and what type of annotation was employed but strongly depend on the balance in the relative populations of ordered and disordered residues in short and long disordered regions in the test set. With greater than 85% overall specificity for detecting residues in both short and long disordered regions, the residues in long disordered regions are easier to predict at 81% sensitivity in a balanced test dataset with 56.5% ordered residues but more challenging (at 65% sensitivity) in a test dataset with 90% ordered residues. Compared to eleven other methods, SPINE-D yields the highest area under the curve (AUC), the highest Mathews correlation coefficient for residue-based prediction, and the lowest mean square error in predicting disorder contents of proteins for an independent test set with 329 proteins. In particular, SPINE-D is comparable to a meta predictor in predicting disordered residues in long disordered regions and superior in short disordered regions. SPINE-D participated in CASP 9 blind prediction and is one of the top servers according to the official ranking. In addition, SPINE-D was examined for prediction of functional molecular recognition motifs in several case studies.  相似文献   

4.
Abstract

Short and long disordered regions of proteins have different preference for different amino acid residues. Different methods often have to be trained to predict them separately. In this study, we developed a single neural-network-based technique called SPINE-D that makes a three-state prediction first (ordered residues and disordered residues in short and long disordered regions) and reduces it into a two-state prediction afterwards. SPINE-D was tested on various sets composed of different combinations of Disprot annotated proteins and proteins directly from the PDB annotated for disorder by missing coordinates in X-ray determined structures. While disorder annotations are different according to Disprot and X-ray approaches, SPINE-D's prediction accuracy and ability to predict disorder are relatively independent of how the method was trained and what type of annotation was employed but strongly depend on the balance in the relative populations of ordered and disordered residues in short and long disordered regions in the test set. With greater than 85% overall specificity for detecting residues in both short and long disordered regions, the residues in long disordered regions are easier to predict at 81% sensitivity in a balanced test dataset with 56.5% ordered residues but more challenging (at 65% sensitivity) in a test dataset with 90% ordered residues. Compared to eleven other methods, SPINE-D yields the highest area under the curve (AUC), the highest Mathews correlation coefficient for residue-based prediction, and the lowest mean square error in predicting disorder contents of proteins for an independent test set with 329 proteins. In particular, SPINE-D is comparable to a meta predictor in predicting disordered residues in long disordered regions and superior in short disordered regions. SPINE-D participated in CASP 9 blind prediction and is one of the top servers according to the official ranking. In addition, SPINE-D was examined for prediction of functional molecular recognition motifs in several case studies. The server and databases are available at http://sparks.informatics.iupui.edu/.  相似文献   

5.
Many protein regions have been shown to be intrinsically disordered, lacking unique structure under physiological conditions. These intrinsically disordered regions are not only very common in proteomes, but also crucial to the function of many proteins, especially those involved in signaling, recognition, and regulation. The goal of this work was to identify the prevalence, characteristics, and functions of conserved disordered regions within protein domains and families. A database was created to store the amino acid sequences of nearly one million proteins and their domain matches from the InterPro database, a resource integrating eight different protein family and domain databases. Disorder prediction was performed on these protein sequences. Regions of sequence corresponding to domains were aligned using a multiple sequence alignment tool. From this initial information, regions of conserved predicted disorder were found within the domains. The methodology for this search consisted of finding regions of consecutive positions in the multiple sequence alignments in which a 90% or more of the sequences were predicted to be disordered. This procedure was constrained to find such regions of conserved disorder prediction that were at least 20 amino acids in length. The results of this work included 3,653 regions of conserved disorder prediction, found within 2,898 distinct InterPro entries. Most regions of conserved predicted disorder detected were short, with less than 10% of those found exceeding 30 residues in length.  相似文献   

6.
Natively unstructured regions are a common feature of eukaryotic proteomes. Between 30% and 60% of proteins are predicted to contain long stretches of disordered residues, and not only have many of these regions been confirmed experimentally, but they have also been found to be essential for protein function. In this study, we directly address the potential contribution of protein disorder in predicting protein function using standard Gene Ontology (GO) categories. Initially we analyse the occurrence of protein disorder in the human proteome and report ontology categories that are enriched in disordered proteins. Pattern analysis of the distributions of disordered regions in human sequences demonstrated that the functions of intrinsically disordered proteins are both length- and position-dependent. These dependencies were then encoded in feature vectors to quantify the contribution of disorder in human protein function prediction using Support Vector Machine classifiers. The prediction accuracies of 26 GO categories relating to signalling and molecular recognition are improved using the disorder features. The most significant improvements were observed for kinase, phosphorylation, growth factor, and helicase categories. Furthermore, we provide predicted GO term assignments using these classifiers for a set of unannotated and orphan human proteins. In this study, the importance of capturing protein disorder information and its value in function prediction is demonstrated. The GO category classifiers generated can be used to provide more reliable predictions and further insights into the behaviour of orphan and unannotated proteins.  相似文献   

7.
3D-Jury is a fully automated protein structure meta prediction system accessible via the Meta Server interface (http://BioInfo.PL/Meta). This is one of the meta predictors, which have made a dramatic, unprecedented impact on the last CASP-5 experiment. The 3D-Jury is comparable with other meta servers but it has the highest combined specificity and sensitivity. The presented method is also very simple and versatile and can be used to create meta predictions even from sets of models produced by humans. An additional and very important and novel feature of the system is the high correlation between the reported confidence score and the accuracy of the model. The number of correctly predicted residues can be estimated directly from the prediction score. The high reliability of the method enables any biologist to submit a target of interest to the Meta Server and screen with relatively high confidence, whether the target can be predicted by fold recognition methods while being unpredictable using standard approaches like PSI-Blast. This can point to interesting relationships which could have been missed in annotations of proteins or genomes and provide very valuable information for novel scientific discoveries.  相似文献   

8.
9.
Protein structure prediction methods such as Rosetta search for the lowest energy conformation of the polypeptide chain. However, the experimentally observed native state is at a minimum of the free energy, rather than the energy. The neglect of the missing configurational entropy contribution to the free energy can be partially justified by the assumption that the entropies of alternative folded states, while very much less than unfolded states, are not too different from one another, and hence can be to a first approximation neglected when searching for the lowest free energy state. The shortcomings of current structure prediction methods may be due in part to the breakdown of this assumption. Particularly problematic are proteins with significant disordered regions which do not populate single low energy conformations even in the native state. We describe two approaches within the Rosetta structure modeling methodology for treating such regions. The first does not require advance knowledge of the regions likely to be disordered; instead these are identified by minimizing a simple free energy function used previously to model protein folding landscapes and transition states. In this model, residues can be either completely ordered or completely disordered; they are considered disordered if the gain in entropy outweighs the loss of favorable energetic interactions with the rest of the protein chain. The second approach requires identification in advance of the disordered regions either from sequence alone using for example the DISOPRED server or from experimental data such as NMR chemical shifts. During Rosetta structure prediction calculations the disordered regions make only unfavorable repulsive contributions to the total energy. We find that the second approach has greater practical utility and illustrate this with examples from de novo structure prediction, NMR structure calculation, and comparative modeling.  相似文献   

10.
Over the past decade there has been a growing acknowledgement that a large proportion of proteins within most proteomes contain disordered regions. Disordered regions are segments of the protein chain which do not adopt a stable structure. Recognition of disordered regions in a protein is of great importance for protein structure prediction, protein structure determination and function annotation as these regions have a close relationship with protein expression and functionality. As a result, a great many protein disorder prediction methods have been developed so far. Here, we present an overview of current protein disorder prediction methods including an analysis of their advantages and shortcomings. In order to help users to select alternative tools under different circumstances, we also evaluate 23 disorder predictors on the benchmark data of the most recent round of the Critical Assessment of protein Structure Prediction (CASP) and assess their accuracy using several complementary measures.  相似文献   

11.
Intrinsically unstructured proteins, which exist without a well-defined 3D structure, carry out essential functions and occur with high frequency, as predicted for genomes. The generality of this phenomenon, however, is questioned by the uncertainty of what fraction of genomes actually encodes for expressed proteins. Here, we used two independent bioinformatic predictors, PONDR VSL1, and IUPred, to demonstrate that disorder prevails in the recently characterized proteomes and essential proteins of E. coli and S. cerevisiae, at levels exceeding that estimated from the genomes. The S. cerevisiae proteome contains three times as much disorder as that of E. coli, with 50-60% of proteins containing at least one long (>30 residues) disordered segment. This evolutionary advance can be explained by the observation that disorder is much higher in Gene Ontology categories related to regulatory, as opposed to metabolic, functions, and also in categories unique to yeast. Thus, protein disorder is a widespread and functionally important phenomenon, which needs to be characterized in full detail for understanding complex organisms at the molecular level.  相似文献   

12.
Flavors of protein disorder   总被引:1,自引:0,他引:1  
Intrinsically disordered proteins are characterized by long regions lacking 3-D structure in their native states, yet they have been so far associated with 28 distinguishable functions. Previous studies showed that protein predictors trained on disorder from one type of protein often achieve poor accuracy on disorder of proteins of a different type, thus indicating significant differences in sequence properties among disordered proteins. Important biological problems are identifying different types, or flavors, of disorder and examining their relationships with protein function. Innovative use of computational methods is needed in addressing these problems due to relative scarcity of experimental data and background knowledge related to protein disorder. We developed an algorithm that partitions protein disorder into flavors based on competition among increasing numbers of predictors, with prediction accuracy determining both the number of distinct predictors and the partitioning of the individual proteins. Using 145 variously characterized proteins with long (>30 amino acids) disordered regions, 3 flavors, called V, C, and S, were identified by this approach, with the V subset containing 52 segments and 7743 residues, C containing 39 segments and 3402 residues, and S containing 54 segments and 5752 residues. The V, C, and S flavors were distinguishable by amino acid compositions, sequence locations, and biological function. For the sequences in SwissProt and 28 genomes, their protein functions exhibit correlations with the commonness and usage of different disorder flavors, suggesting different flavor-function sets across these protein groups. Overall, the results herein support the flavor-function approach as a useful complement to structural genomics as a means for automatically assigning possible functions to sequences.  相似文献   

13.
More than 60 prediction methods for intrinsically disordered proteins (IDPs) have been developed over the years, many of which are accessible on the World Wide Web. Nearly, all of these predictors give balanced accuracies in the ~65%–~80% range. Since predictors are not perfect, further studies are required to uncover the role of amino acid residues in native IDP as compared to predicted IDP regions. In the present work, we make use of sequences of 100% predicted IDP regions, false positive disorder predictions, and experimentally determined IDP regions to distinguish the characteristics of native versus predicted IDP regions. A higher occurrence of asparagine is observed in sequences of native IDP regions but not in sequences of false positive predictions of IDP regions. The occurrences of certain combinations of amino acids at the pentapeptide level provide a distinguishing feature in the IDPs with respect to globular proteins. The distinguishing features presented in this paper provide insights into the sequence fingerprints of amino acid residues in experimentally determined as compared to predicted IDP regions. These observations and additional work along these lines should enable the development of improvements in the accuracy of disorder prediction algorithm.  相似文献   

14.
Length-dependent prediction of protein intrinsic disorder   总被引:2,自引:0,他引:2  

Background  

Due to the functional importance of intrinsically disordered proteins or protein regions, prediction of intrinsic protein disorder from amino acid sequence has become an area of active research as witnessed in the 6th experiment on Critical Assessment of Techniques for Protein Structure Prediction (CASP6). Since the initial work by Romero et al. (Identifying disordered regions in proteins from amino acid sequences, IEEE Int. Conf. Neural Netw., 1997), our group has developed several predictors optimized for long disordered regions (>30 residues) with prediction accuracy exceeding 85%. However, these predictors are less successful on short disordered regions (≤30 residues). A probable cause is a length-dependent amino acid compositions and sequence properties of disordered regions.  相似文献   

15.
A bioinformatics analysis of disorder content of proteins from the DisProt database has been performed with respect to position of disordered residues.Each protein chain was divided into three parts:N-and C-terminal parts with each containing 30 amino acid(AA) residues and the middle region containing the remaining AA residues.The results show that in terminal parts,the percentage of disordered AA residues is higher than that of all AA residues(17% of disordered AA residues and 11% of all).We analyzed the percentage of disorder for each of 20 AA residues in the three parts of proteins with respect to their hydropathy and molecular weight.For each AA,the percentage of disorder in the middle part is lower than that in terminal parts which is comparable at the two termini.A new scale of AAs has been introduced according to their disorder content in the middle part of proteins:CIFWMLYHRNVTAGQDSKEP.All big hydrophobic AAs are less frequently disordered,while almost all small hydrophilic AAs are more frequently disordered.The results obtained may be useful for construction and improving predictors for protein disorder.  相似文献   

16.
《Biophysical journal》2021,120(20):4312-4319
Intrinsically disordered proteins and protein regions make up a substantial fraction of many proteomes in which they play a wide variety of essential roles. A critical first step in understanding the role of disordered protein regions in biological function is to identify those disordered regions correctly. Computational methods for disorder prediction have emerged as a core set of tools to guide experiments, interpret results, and develop hypotheses. Given the multiple different predictors available, consensus scores have emerged as a popular approach to mitigate biases or limitations of any single method. Consensus scores integrate the outcome of multiple independent disorder predictors and provide a per-residue value that reflects the number of tools that predict a residue to be disordered. Although consensus scores help mitigate the inherent problems of using any single disorder predictor, they are computationally expensive to generate. They also necessitate the installation of multiple different software tools, which can be prohibitively difficult. To address this challenge, we developed a deep-learning-based predictor of consensus disorder scores. Our predictor, metapredict, utilizes a bidirectional recurrent neural network trained on the consensus disorder scores from 12 proteomes. By benchmarking metapredict using two orthogonal approaches, we found that metapredict is among the most accurate disorder predictors currently available. Metapredict is also remarkably fast, enabling proteome-scale disorder prediction in minutes. Importantly, metapredict is a fully open source and is distributed as a Python package, a collection of command-line tools, and a web server, maximizing the potential practical utility of the predictor. We believe metapredict offers a convenient, accessible, accurate, and high-performance predictor for single-proteins and proteomes alike.  相似文献   

17.
Hoffman RM  Sykes BD 《Proteins》2008,73(2):338-350
Various intrinsic disorder (ID) prediction algorithms were applied to the three tissue isoforms of troponin I (TnI). The results were interpreted in terms of the known structure and dynamics of troponin. In line with previous results, all isoforms of TnI were predicted to have large stretches of ID. The predictions show that the C-termini of all isoforms are extensively disordered as is the N-terminal extension of the cardiac isoform. Cardiac TnI likely belongs to the group of intrinsically disordered signalling hub proteins. For a given portion of the protein sequence, most ID prediction approaches indicate isoform-dependent variations in the probability of disorder. Comparison of machine learning and physically based approaches suggests the ID variations are only partially attributable to local variations in the ratio of charged to hydrophobic residues. The VSL2B algorithm predicts the largest variations in ID across the isoforms, with the cardiac isoform having the highest probability of structured regions, and the fast-skeletal isoform having no intrinsic structure. The region corresponding to residues 57-95 of the fast-skeletal isoform, known to form a coiled coil substructure with troponin T, was highly variable between isoforms. The isoform-specific ID variations may have mechanistic significance, modulating the extent to which conformational fluctuations in tropomyosin are communicated to the troponin complex. We discuss structural mechanisms for this communication. Overall, the results motivate the development of predictors designed to address relative levels of disorder between highly similar proteins.  相似文献   

18.
Several algorithms have been developed that use amino acid sequences to predict whether or not a protein or a region of a protein is disordered. These algorithms make accurate predictions for disordered regions that are 30 amino acids or longer, but it is unclear whether the predictions can be directly related to the backbone dynamics of individual amino acid residues. The nuclear Overhauser effect between the amide nitrogen and hydrogen (NHNOE) provides an unambiguous measure of backbone dynamics at single residue resolution and is an excellent tool for characterizing the dynamic behavior of disordered proteins. In this report, we show that the NHNOE values for several members of a family of disordered proteins are highly correlated with the output from three popular algorithms used to predict disordered regions from amino acid sequence. This is the first test between an experimental measure of residue specific backbone dynamics and disorder predictions. The results suggest that some disorder predictors can accurately estimate the backbone dynamics of individual amino acids in a long disordered region.  相似文献   

19.
A protein secondary structure prediction method from multiply aligned homologous sequences is presented with an overall per residue three-state accuracy of 70.1%. There are two aims: to obtain high accuracy by identification of a set of concepts important for prediction followed by use of linear statistics; and to provide insight into the folding process. The important concepts in secondary structure prediction are identified as: residue conformational propensities, sequence edge effects, moments of hydrophobicity, position of insertions and deletions in aligned homologous sequence, moments of conservation, auto-correlation, residue ratios, secondary structure feedback effects, and filtering. Explicit use of edge effects, moments of conservation, and auto-correlation are new to this paper. The relative importance of the concepts used in prediction was analyzed by stepwise addition of information and examination of weights in the discrimination function. The simple and explicit structure of the prediction allows the method to be reimplemented easily. The accuracy of a prediction is predictable a priori. This permits evaluation of the utility of the prediction: 10% of the chains predicted were identified correctly as having a mean accuracy of > 80%. Existing high-accuracy prediction methods are "black-box" predictors based on complex nonlinear statistics (e.g., neural networks in PHD: Rost & Sander, 1993a). For medium- to short-length chains (> or = 90 residues and < 170 residues), the prediction method is significantly more accurate (P < 0.01) than the PHD algorithm (probably the most commonly used algorithm). In combination with the PHD, an algorithm is formed that is significantly more accurate than either method, with an estimated overall three-state accuracy of 72.4%, the highest accuracy reported for any prediction method.  相似文献   

20.
Intrinsic disorder in the Protein Data Bank   总被引:2,自引:0,他引:2  
The Protein Data Bank (PDB) is the preeminent source of protein structural information. PDB contains over 32,500 experimentally determined 3-D structures solved using X-ray crystallography or nuclear magnetic resonance spectroscopy. Intrinsically disordered regions fail to form a fixed 3-D structure under physiological conditions. In this study, we compare the amino-acid sequences of proteins whose structures are determined by X-ray crystallography with the corresponding sequences from the Swiss-Prot database. The analyzed dataset includes 16,370 structures, which represent 18,101 PDB chains and 5,434 different proteins from 910 different organisms (2,793 eukaryotic, 2,109 bacterial, 288 viral, and 244 archaeal). In this dataset, on average, each Swiss-Prot protein is represented by 7 PDB chains with 76% of the crystallized regions being represented by more than one structure. Intriguingly, the complete sequences of only approximately 7% of proteins are observed in the corresponding PDB structures, and only approximately 25% of the total dataset have >95% of their lengths observed in the corresponding PDB structures. This suggests that the vast majority of PDB proteins is shorter than their corresponding Swiss-Prot sequences and/or contain numerous residues, which are not observed in maps of electron density. To determine the prevalence of disordered regions in PDB, the residues in the Swiss-Prot sequences were grouped into four general categories, "Observed" (which correspond to structured regions), "Not observed" (regions with missing electron density, potentially disordered), "Uncharacterized," and "Ambiguous," depending on their appearance in the corresponding PDB entries. This non-redundant set of residues can be viewed as a 'fragment' or empirical domain database that contains a set of experimentally determined structured regions or domains and a set of experimentally verified disordered regions or domains. We studied the propensities and properties of residues in these four categories and analyzed their relations to the predictions of disorder using several algorithms. "Non-observed," "Ambiguous," and "Uncharacterized" regions were shown to possess the amino acid compositional biases typical of intrinsically disordered proteins. The application of four different disorder predictors (PONDR(R) VL-XT, VL3-BA, VSL1P, and IUPred) revealed that the vast majority of residues in the "Observed" dataset are ordered, and that the "Not observed" regions are mostly disordered. The "Uncharacterized" regions possess some tendency toward order, whereas the predictions for the short "Ambiguous" regions are really ambiguous. Long "Ambiguous" regions (>70 amino acid residues) are mostly predicted to be ordered, suggesting that they are likely to be "wobbly" domains. Overall, we showed that completely ordered proteins are not highly abundant in PDB and many PDB sequences have disordered regions. In fact, in the analyzed dataset approximately 10% of the PDB proteins contain regions of consecutive missing or ambiguous residues longer than 30 amino-acids and approximately 40% of the proteins possess short regions (> or =10 and < 30 amino-acid long) of missing and ambiguous residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号