首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An investigation was undertaken to understand the mechanism(s) by which chitosan exerts its antifungal effects against the wood-degrading fungi Sphaeropsis sapinea and Trichoderma harzianum. Exposure to increasing concentrations of chitosan caused an increase in the amount of hydrogen peroxide accumulation in cultures of S. sapinea, which was accompanied by a decrease in superoxide formation. The same effect was not observed in T. harzianum. Potassium ion leakage was an early event for both test fungi, leakage being more pronounced for S. sapinea than T. harzianum for the first 5 min, particularly at higher concentrations of chitosan treatment. Fluorescence microscopy provided evidence that the effect of chitosan on fungal hyphae was mediated through alterations in the plasma membrane properties. Chitosan also severely affected fungal morphology. Increasing concentrations of chitosan induced excessive branching, vacuolation, and a reduction in hyphal diameter. Transmission electron microscopy, which showed more severe ultrastructural changes in S. sapinea hyphae from chitosan treatment as compared to T. harzianum, provided valuable complementary information. The data suggest that the plasma membrane may be the primary target of chitosan action, and that the two fungi differ in the extent to which they are affected.  相似文献   

2.
Summary In this study flake chitin, crab shell chitin, mushroom stalk, fungal cell wall, wheat bran and rice bran were used as substrate for chitinase production by Enterobacter sp. NRG4 under submerged and solid state fermentation (SSF) conditions. Enterobacter sp. NRG4 produced 72 and 49.7 U/ml of chitinase in presence of cell walls of Candida albicans and Fusarium moniliforme in submerged fermentation. Under SSF, maximum chitinase production was 965 U/g solid substrate with flake chitin and wheat bran (1:3 ratio) at 75% moisture level after 144 h. The purified chitinase inhibited hyphal extension of Fusarium moniliforme, Aspergillus niger, Mucor rouxi and Rhizopus nigricans. The chitinase was effective in release of protoplasts from Trichoderma ressei, Pleurotus florida, Agaricus bisporus and Aspergillus niger. Protoplasts yield was maximum with 60 mg of 24 h old fungal mycelium incubated with 60 U of chitinase and 60 U of cellulase.  相似文献   

3.
The free and N-acetyl glucosamine contents, serving as a measure of the amounts of chitosan and chitin respectively, were determined in the chitinase hydrolysates of the cell wall of a wild strain ofNeurospora crassa. Chitinase, obtained from cultures ofSerratia marcescens, could hydrolyse the cell wall completely apart from being capable of hydrolysing preparations of chitin and chitosan. The free and N-acetyl glucosamines, released by chitinase hydrolysis, were determined by a modified Morgan-Elson reaction carried out in the presence and absence of acetic anhydride. The method is capable of estimating chitin and chitosan contents in as little as 100 μg of cell wall material.  相似文献   

4.
In vitro assays were undertaken to evaluate the control of two sapstain fungi, Leptographium procerum and Sphaeropsis sapinea by a combination of chitosan or chitosan oligomer and an albino strain of Trichoderma harzianum. Spore germination and hyphal growth of the test fungi were assessed on media amended with chitosan or chitosan oligomer with and without T. harzianum using either simultaneous inoculation with test fungus or inoculation 1, 2, or 3 days after pre-infection with test fungus.There was no mycelial growth of the test fungi regardless of chitosan concentrations used when either L. procerum or S. sapinea was simultaneously inoculated with T. harzianum. However, the dose–response of chitosan or chitosan oligomer on the test fungi was apparent when T. harzianum was not simultaneously inoculated with test fungus but introduced later. There was a greater growth reduction at higher concentrations (0.075–0.1% v/v) of chitosan, and overall chitosan oligomer was more effective than chitosan aqueous solution.Chitosan alone was able to restrict or delay the germination of spores but the combination of chitosan and T. harzianum inhibited spore germination and hence colony formation of test fungi regardless of time delay.  相似文献   

5.
Chitin deacetylase (CDA) is an enzyme that catalyzes the hydrolysis of acetamine groups of N-acetyl-d-glucosamine in chitin, converting it to chitosan in fungal cell walls. In the present study, the activity in batch culture of CDA from six Mucoralean strains, two of them wild type, isolated from dung of herbivores of Northeast Brazil, was screened. Among the strains tested, Cunninghamella bertholletiae IFM 46114 showed a high intracellular enzyme activity of 0.075 U/mg protein after 5 days of culture, and a wild-type strain of Mucor circinelloides showed a high intracellular enzyme activity of 0.060 U/mg protein, with only 2 days of culture, using N-acetylchitopentaose as substrate. This enzyme showed optimal activity at pH 4.5 in 25 mM glutamate-sodium buffer at 50°C, and was stable over 1 h preincubation at the same temperature. The kinetic parameters of CDA did not follow Michaelis-Menten kinetics, but rather Hill affinity distribution, showing probable allosteric behavior. The apparent KHILL and Vmax of CDA were 288±34 nmol/l and 0.08±0.01 U mg protein–1 min–1, respectively, using N-acetylchitopentaose as substrate at pH 4.5 at 50°C.  相似文献   

6.
The capacity of chitin (from crab shells) and of fungal cell walls from Trichoderma harzianum to accumulate zinc, cadmium and mercury was studied as well as the effects of adsorbed metals on the enzymatic hydrolysis by Novozym 234 of the two substrates. The total adsorbing capacity with respect to these metals was estimated to be at least 10 mmol kg–1 chitin (dry weight) and 50 mmol kg–1 fungal cell walls (dry weight), respectively, at pH 6.1. Enzymatic digestion of fungal cell walls preloaded with mercury and cadmium was significantly reduced, while zinc did not cause any significant inhibition. The effect of metal complexation by chitin on the enzymatic digestion was not as pronounced as for fungal cell walls. This could reflect the fact that chitin sorbed a lower total amount of metals. The inhibitory effect of metals on the enzymatic hydrolysis was caused by the association of the metals with the two substrates and not by the presence of free metals in solution.  相似文献   

7.
Strains of selected bacteria and Trichoderma harzianum isolated from sugarcane rhizosphere and endosphere regions were tested for the production of chitinolytic enzymes and their involvement in the suppression of Colletotrichum falcatum, red rot pathogen of sugarcane. Among several strains tested for chitinolytic activity, 12 strains showed a clearing zone on chitin-amended agar medium. Among these, bacterial strains AFG2, AFG 4, AFG 10, FP7 and VPT4 and all the tested T. harzianum strains produced clearing zones of a size larger than 10 mm. The antifungal activity of these strains increased when chitin was incorporated into the medium. Trichoderma harzianum strain T5 showed increased levels of activity of N-acetylglucosaminidase and -1,3-glucanase when grown on minimal medium containing chitin or cell wall of the pathogen. Lytic enzymes of bacterial strains AFG2, AFG4, VPT4 and FP7 and T. harzianum T5 inhibited conidial germination and mycelial growth of the pathogen. Enzymes from T. harzianum T5 were found to be the most effective in inhibiting the fungus. When mycelial discs of the pathogen were treated with the enzymes, electrolytes were released from fungal mycelia. The results indicated that antagonistic T. harzianum T5 caused a higher level of lysis of the pathogen mycelium, and the inhibitory effect was more pronounced when the lytic enzymes were produced using chitin or cell wall of the pathogen as carbon source.  相似文献   

8.
Accumulation of reactive oxygen species in arbuscular mycorrhizal roots   总被引:1,自引:0,他引:1  
Fester T  Hause G 《Mycorrhiza》2005,15(5):373-379
We investigated the accumulation of reactive oxygen species (ROS) in arbuscular mycorrhizal (AM) roots from Medicago truncatula, Zea mays and Nicotiana tabacum using three independent staining techniques. Colonized root cortical cells and the symbiotic fungal partner were observed to be involved in the production of ROS. Extraradical hyphae and spores from Glomus intraradices accumulated small levels of ROS within their cell wall and produced ROS within the cytoplasm in response to stress. Within AM roots, we observed a certain correlation of arbuscular senescence and H2O2 accumulation after staining by diaminobenzidine (DAB) and a more general accumulation of ROS close to fungal structures when using dihydrorhodamine 123 (DHR 123) for staining. According to electron microscopical analysis of AM roots from Z. mays after staining by CeCl3, intracellular accumulation of H2O2 was observed in the plant cytoplasm close to intact and collapsing fungal structures, whereas intercellular H2O2 was located on the surface of fungal hyphae. These characteristics of ROS accumulation in AM roots suggest similarities to ROS accumulation during the senescence of legume root nodules.  相似文献   

9.
Chitosan (CHT), a deacetylated chitin derivative, and benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a non toxic synthetic functional analogue of salicylic acid, were applied as foliar spray to barley plants (Hordeum vulgare L.), to compare their effectiveness in inducing resistance against Blumeria graminis f. sp. hordei and to investigate the underlying defence response. After an induction phase of 3 days (IP, time elapsed between treatment and fungal inoculation) both compounds reduced significantly the infection on the primary leaf, namely of 55.5% for CHT and of 68.9% for BTH, showing the induction of a good level of local resistance (LAR). A 5-day IP further reduced the infected areas in BTH treated plants (−77.2%) but not in CHT treated ones (−47.1%). Furthermore, both CHT and BTH also induced SAR, being the infection in the second non treated leaves reduced of 57% and 76.2%, respectively, as evaluated at 10-day IP. Both BTH and CHT induced oxidative burst and phenolic compound deposition in treated leaves, creating an hostile environment that slowed down the fungal spreading by impairing haustorium development. However, the greater efficacy of BTH was possibly due to: i) a greater reinforcement of papilla; ii) a higher level and the more homogeneous diffusion of H2O2 in the treated leaf tissues and iii) an induced hypersensitive-like response in many penetrated cells.  相似文献   

10.
We report here the first analysis of chitinase regulation in Moniliophthora perniciosa, the causal agent of the witches' broom disease of cacao. A multivariate statistical approach was employed to evaluate the effect of several variables, including carbon and nitrogen sources and cultivation time, on M. perniciosa non-secreted (detected in mycelium, i.e. in symplasm and cell wall) and secreted (detected in the culture medium) chitinase activities. Non-secreted chitinase activity was enhanced by peptone and chitin and repressed by glucose. Chitinase secretion was increased by yeast extract alone or in combination with other nitrogen sources, and by N-acetylglucosamine, and repressed in presence of chitin. The best cultivation times for non-secreted and secreted chitinase activities were 30 and 20 d, respectively. However, chitinase activity was always higher in the mycelium than in the culture medium, suggesting a relatively poor chitinase secretion activity. Conversely, higher mycelial growth was observed when the activity of the non-secreted chitinase was at its lowest, i.e. when the fungus was grown on glucose and yeast extract as sources of carbon and nitrogen, respectively. Conversely, the induction of non-secreted chitinase activity by chitin decreased the mycelium growth. These results suggest that the culture medium, by the induction or repression of chitinases, affected the hyphal growth. Thus, as an essential component of M. perniciosa growth, chitinases may be a potential target for strategies to control disease.  相似文献   

11.
A novel compound CF66I produced by Burkholeria cepacia was investigated for its antifungal effects against Fusarium solani by three different fluorescent dyes. Dual staining with propidium iodide (PI) and fluorescein diacetate (FDA) demonstrated high doses of CF66I (120.0 μg ml−1) killed the fungi by acting primarily on the cell membrane. However, at fungistatic concentration (20.0 μg ml−1) of this compound, microscopic observations revealed swelling hyphae with abnormal chitin deposition, as determined by Calcofluor white (CFW) staining, which was indicative of the alterations in cell wall structure. In addition, inhibition of intracellular esterases activity was observed. These results led us to conclude that low doses of CF66I probably inhibited the fungal growth by interfering with the cell metabolic pathways.  相似文献   

12.
Luchi N  Ma R  Capretti P  Bonello P 《Planta》2005,221(1):75-84
The potential role of the resin system in the response of Austrian pine (Pinus nigra Arn.) seedlings to mechanical injury and fungal infection was studied in greenhouse experiments. Anatomical observations were performed on 2-year-old plants wounded at collar level and inoculated with Sphaeropsis sapinea (Fr.: Fr.) Dyko & Sutton in Sutton or Diplodia scrobiculata (J. de Wet, B. Slippers & M. J. Wingfield, sp. nov.; sensu de Wet et al. 2003), two fungal pathogens that cause shoot blight and canker on conifers, and that are characterized by different levels of aggressiveness. Histological examination of host tissue taken from the stem at 0, 8, and 12 cm above the treatment site revealed significant treatment- and time-dependent effects on the course of locally and systemically induced traumatic resin duct (TRD) development. Occurrence of TRDs was observed after 4 days only in seedlings inoculated with D. scrobiculata. At 12 days, TRDs were present also in mock-inoculated controls. No TRDs appeared in seedlings inoculated with S. sapinea. However, S. sapinea caused loss of vacuolar phenolics, severe disruption of cambial tissue and invaded the host xylem quickly and apparently unimpeded, whereas D. scrobiculata was never detected in the host xylem. Five-year-old Austrian pines subjected to the same stem base treatments were used to determine the resin mass flowing from the stem 30 cm above the treatment sites. Wounding and/or inoculation induced a significant, 8.3-fold average increase in systemic resin flow over the untreated trees 3 weeks after basal treatment, suggesting that wounding is the sole prerequisite for systemic induction of resin flow. The results are discussed in the context of current disease resistance models.  相似文献   

13.
The hyphal walls of three mycobionts, isolated from the lichens Xanthoria parietina, Tornabenia intricata and Sarcogyne sp. were investigated by two techniques: microautoradiography of fungal colonies exposed to radioactive carbohydrate precursors; and binding, in vivo, of fluorescein conjugated lectins to hyphal walls of such colonies.N-[3H] acetylglucosamine was readily incorporated into tips, young hyphal walls and septa of the three mycobionts and the free-living fungus Trichoderma viride, but not into Phytophthora citrophthora, indicating that chitin is a major component of the mycobionts' hyphal walls. All three mycobionts, but neither of the free-living fungi, incorporated [3H] mannose and [3H] mannitol into their hyphal walls.Fluorescein-conjugated wheat germ agglutinin was bound to the hyphal walls of the three mycobionts and T. viride, but not to the walls of P. citrophthora; the binding pattern was similar to the grain pattern obtained in autoradiographs after short N-[3H] acetylglucosamine labelling. As wheat germ agglutinin binds specifically to chitin oligomers, the lectin binding tests further confirmed that chitin is a mycobiont hyphal wall component.Binding characteristics of several fluorescein-conjugated lectins to the three mycobionts indicated that this technique can yield useful information concerning the chemical composition of hyphal wall surfaces.List of abbreviations FITC fluorescein isothiocyanate - WGA wheat germ agglutinin - TCA trichloroacetic acid - PNA peanut agglutinin - LA lotus agglutinin - Glc NAc N-acetylglucosamine - ConA concanavalin A - SBA soybean agglutinin - WBA waxbean agglutinin Part of an M.Sc. thesis submitted by A. Braun to the Department of Botany, Tel Aviv University.  相似文献   

14.
Summary Nikkomycin Z (NZ) is a competitive inhibitor of chitin synthase III in the yeast Saccharomyces cerevisiae. Myosin type II-deficient yeast strains (myo1) display a dramatic reduction in growth when chitin synthase III activity is inhibited by NZ, supporting the contention that actomyosin motility plays an important role in maintaining cell wall integrity. A proposed inhibitor of cortical actin polymerization in vitro, 2,3-butanedione monoxime (BDM), also inhibits growth of wild-type yeast strains at a concentration of 20 mM. In this study, we assayed for potential in vivo interplay between BDM-sensitive cell functions and cell wall chitin synthesis by testing for increased sensitivity to NZ during co-treatment with BDM at sub-inhibitory concentrations. Our results show that BDM can increase the sensitivity of yeast cells to Nikkomycin Z.  相似文献   

15.
The advantage of usingStreptomyces griseus HUT 6037 in the production of chitinase or chitosanase is that the organism is capable of hydrolyzing amorphous or crystal-line chitin and chitosan according to the type of the substrate used. We investigated the effects of the enzyme induction time and chitin sources, CM-chitosan and deacetylated chitosan (degree of deacetylation 75–99%), on production of chitosanase. We found that this strain accumulated chitosanase when cells were grown in the culture medium containing chitosanaceous substrates instead of chitinaceous substrates. The highest chitosanase activity was obtained at 4 days of cultivation with 99% deacetylated chitosan. Soluble chitosan (53% deacetylated chitosan) was found to induce chitinase as well as chitosanase. The specific activities of chitinase and chitosanase were 0.91 and 1.33 U/mg protein at 3 and 5 days, respectively. From the study of the enzymatic digestibility of various degrees of deacetylated chitosan, it was found that (GlcN)3, (GlcN)4 and (GlcN)5 were produced during the enzymatic hydrolysis reaction. The results of this study suggested that the sugar composition of (GlcN)3 was homogeneous and those of (GlcN)4 and (GlcN)5 were heterogeneous.  相似文献   

16.
【背景】由茄链格孢(Alternaria solani)引起的马铃薯早疫病被普遍认为是马铃薯生产上的第二大叶部病害,在马铃薯各产区普遍发生,给马铃薯生产造成了巨大的经济损失。【目的】明确AsSlt2基因对茄链格孢细胞壁完整性的影响。【方法】在含有刚果红、细胞壁降解酶和十二烷基硫酸钠(sodiumdodecylsulfate,SDS)等细胞壁胁迫的培养基上观察ΔAsSlt2缺失突变株的生长情况,计算相对生长抑制率;通过实时荧光定量PCR (RT-qPCR)方法检测ΔAsSlt2菌株中细胞壁合成相关基因的表达情况;进一步检测ΔAsSlt2细胞壁中几丁质的含量及胞外酶活性。【结果】ΔAsSlt2缺失突变株对SDS、刚果红、细胞壁降解酶等细胞壁胁迫的敏感性增强,在加入细胞壁降解酶后突变株原生质体释放量显著增多;ΔAsSlt2对外源氧胁迫更敏感,突变株胞外过氧化物酶和漆酶活性均显著降低;进一步研究发现,ΔAsSlt2细胞壁中几丁质含量减少,几丁质合成相关基因与漆酶合成相关基因的表达量均明显降低。【结论】AsSlt2基因在茄链格孢细胞壁的完整性及抵御外界胁迫方面发挥重要作用。  相似文献   

17.
Summary This study was undertaken to assess the distribution and localization of chitin synthetase in a fungal cell and to evaluate the sedimentation behavior of chitosomes (microvesicular containers of chitin synthetase). Chitosomes were isolated from cell-free extracts of yeast cells ofMucor rouxii by rate-zonal and isopycnic sedimentation in sucrose density gradients. Because of their small size and low density, chitosomes were effectively separated from other subcellular particles. Rate-zonal sedimentation was a suitable final step for isolating chitosomes as long as ribosomes had been eliminated by enzymic digestion. By isopycnic centrifugation, chitosomes could be separated directly from a crude cell-free extract; they cosedimented with a sharp symmetrical peak of chitin synthetase at a buoyant density of d=1.14–1.15g/cm3; the only significant contaminants were particles of fatty acid synthetase complex. From such sedimentations, we estimated that 80–85% of the chitin synthetase activity in the cell-free extract was associated with chitosomes; the rest was found in two smaller peaks sedimenting at d=1.19–1.20 and d=1.21–1.22 (5–10%), and in the cell wall fraction (5–10%). By consecutive rate-zonal and isopycnic sedimentations, chitosome preparations with relatively few contaminating particles were obtained. Potassium/sodium phosphate buffer (pH 6.5)+MgCl2 was the most effective isolation medium for chitosomes. Other buffers such as TRIS-MES+MgCl2 led to massive aggregation of chitosomes and a change in sedimentation properties. This tendency of chitosomes to aggregate could explain why most of the chitin synthetase activity of a fungus is sometimes found associated with other subcellular structures,e.g., plasma membrane.  相似文献   

18.
Khan  W.M.  Prithiviraj  B.  Smith  D.L. 《Photosynthetica》2002,40(4):621-624
On the first day after foliar application, chitosan pentamer (CH5) and chitin pentamer (CHIT5) decreased net photosynthetic rate (P N) of soybean and maize, however, on subsequent days there was an increase in P N in some treatments. CH5 caused an increase in maize P N on day 3 at 10–5 and 10–7 M; the increases were 18 and 10 % over the control plants. This increase was correlated with increases in stomatal conductance (g s) and transpiration rate (E), while the intercellular CO2 concentration (C i) was not different from the control plants. P N of soybean plants did not differ from the control plants except for treatment CH5 (10–7 M) which caused an 8 % increase on day 2, along with increased g s, E, and C i. On days 5 and 6 the CHIT5 treatment caused a 6–8 % increase in P N of maize, which was accompanied by increases in g s, E, and C i. However, there was no such increase for soybean plants treated with CHIT5. In general, foliar application of high molecular mass chitin (CHH) resulted in decreased P N, particularly for 0.010 % treated plants, both in maize and soybean. Foliar applications of chitosan and chitin oligomers did not affect (p > 0.05) maize or soybean height, root length, leaf area, shoot or root or total dry mass.  相似文献   

19.
Summary Geosiphon pyriforme represents a photoautotrophic endosymbiosis of aGlomus-like fungus with the cyanobacteriumNostoc punctiforme. The fungus forms unicellular bladders of up to 2 mm in length and 0.5 mm in diameter growing on the soil surface and harboring the endosymbioticNostoc filaments. The cyanobacteria are located in a compartment (the symbiosome) bordered by a host membrane. The space between this symbiosome membrane (SM) and theNostoc cell wall is filled with an about 30–40 nm thick layer of amorphous material, which is present also in the regions of the symbiosome where noNostoc filaments are located. At these sites the amorphous material consists of a 20–30 nm thick layer separating the SM. The region between the SM and the cyanobacterium is defined as symbiosome space (SS). Fungal bladders, hyphae and free livingNostoc were analyzed by affinity techniques as well as the material occurring in the SS. FITC-coupled lectins with sugar specificity to -D-mannosyl/-D-glucosyl (Con A), N-acetyl--D-glucosamine oligomers (WGA), -L-fucosyl (UEA-I), -D-galactosyl (RCA-120), -D-galactosyl (BS-I-B4), N-acetyl--D-galactosamine (HPA), and sialic acid (EBL) residues were tested. WGA binding and calcofluor white staining demonstrated that the bladder wall as well as the SS contain fibrillar chitin. Of the other lectins only Con A clearly labeled the symbiosome. On the contrary, the lectin binding properties of the slime produced by free livingNostoc-colonies indicate the presence of mannose, fucose, GalNAc, sialic acid, and galactose, while chitin or GlucNAc-oligomers could not be detected. The symbiosome was also investigated electron microscopically. WGA-gold binding confirmed the presence of chitin, while a slight PATAg reaction indicated some polysaccharidic molecules within the SS. Our results show that the amorphous material within the SS contains molecules typical of the fungal cell wall and suggest that the SM is related to the fungal plasma membrane. The applied lectins all bind to the hyphal surface, indicating a high molecular complexity. Mannosyl, -galactosyl, and sialic acid residues are strongly exposed at the outer cell wall layer, whereas GlucNAc, GalNAc, and -galactosyl residues seem to be present in smaller amounts. The symbiotic interface established between the fungus andNostoc inGeosiphon shows many similarities to that occurring between fungi and root cells in arbuscular mycorrhizas.Abbreviations AM arbuscular mycorrhiza - BS-I-B4 Bandeiraea simplicifolia lectin I isolectin B4 - CLSM confocal laser scanning microscopy - Con A Concanavalin A - EBL elderberry bark lectin I - FITC fluorescein isothiocyanate - HPA Helix pomatia agglutinin - PATAg periodic acid-thiocarbohydrazide-Ag proteinate - SM symbiosome membrane - SS symbiosome space - RCA-120 Ricinus communis agglutinin 120 - UEA-I Ulex europaeus agglutinin I - WGA wheat germ agglutinin Dedicated to Professor Dr. Peter Sitte at the occasion of his 65th birthday  相似文献   

20.
It is shown that the deletion of BGL2 gene leads to increase in chitin content in the cell wall of Saccharomyces cerevisiae. A part of the additional chitin can be removed from the bgl2Δ cell wall by alkali or trypsin treatment. Chitin synthase 1 (Chs1) activity was increased by 60 % in bgl2Δ mutant. No increase in chitin synthase 3 (Chs3) activity in bgl2Δ cells was observed, while they became more sensitive to Nikkomycin Z. The chitin level in the cell walls of a strain lacking both BGL2 and CHS3 genes was higher than that in chs3Δ and lower than that in bgl2Δ strains. Together these data indicate that the deletion of BGL2 results in the accumulation and abnormal incorporation of chitin into the cell wall of S. cerevisiae, and both Chs1 and Chs3 take part in a response to BGL2 deletion in S. cerevisiae cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号