首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
在极端干旱区(敦煌)以泡泡刺群落为研究对象,测定了生长季内增雨对泡泡刺群落灌丛和裸地土壤呼吸温度敏感性(Q_(10))的影响。结果表明:增雨明显增加了裸地的Q_(10),但未能显著改变灌丛的Q_(10)与对照相比,增雨16 mm使裸地Q_(10)显著增加28%,达1.83±0.30;在整个生长季,裸地和灌丛的Q_(10)季节波动与土壤含水量的变化存在极显著相关关系,且裸地的Q_(10)对土壤水分的敏感性(1.94)高于灌丛(1.57)。  相似文献   

2.
定量分析植被冠层对降雨再分配过程的影响,是认识陆地生态系统水文循环的重要环节。然而,由于干旱区天然植被分布稀疏、形态结构特殊,其降雨再分配过程的测算较为困难,相关研究较少,特别是关于荒漠低矮灌丛的降雨再分配研究鲜有报道。本文以河西走廊中段临泽绿洲—荒漠过渡带的天然建群种泡泡刺灌丛(Nitraria sphaerocarpa)为研究对象,基于3年逐个单次降雨事件的观测数据分析了生长季泡泡刺灌丛的降雨再分配特征及主要影响因素,量化了泡泡刺灌丛覆盖下实际进入土壤的有效降雨量及其空间分布特征。结果表明:(1)生长季泡泡刺灌丛的平均穿透率、树干茎流率和冠层截留损失率分别为87.89%、1.61%和10.50%;(2)降雨量是影响泡泡刺灌丛降雨再分配特征的关键气象因素,其与穿透雨量、树干茎流量、冠层截留损失量之间具有显著的统计关系(P<0.001);(3)与干旱区其他稀疏植被相比,泡泡刺灌丛的穿透率和集流率较高,冠层截留损失率较低,与其特殊的植被形态特征有关,相关分析的结果表明,泡泡刺灌丛的穿透雨量与植被面积指数和株高呈显著的负相关关系(P<0.001),树干茎流量与树干倾角呈显著的正...  相似文献   

3.
降雨是荒漠生态系统过程和功能的最重要限制因子,荒漠植物幼苗对生长季降雨的变化极端敏感。为探讨荒漠植物对未来降雨格局变化的响应,选取乌兰布和沙漠两种典型荒漠植物幼苗(白刺和油蒿)为研究对象,根据生长季内(6—9月)每次降雨量,进行不同梯度的人工模拟增雨试验(CK:自然降雨、A:增雨25%、B:增雨50%、C:增雨75%、D:增雨100%),研究两种植物幼苗生长和根系形态特征对降雨量变化的响应。结果表明:(1)不同增雨处理对白刺和油蒿幼苗的地上部生长有显著影响(P0.05),增雨处理的白刺和油蒿幼苗的株高、平均冠幅和基径显著高于CK,并随着增雨量的增大而增大(白刺基径除外);(2)增雨处理之间、白刺和油蒿之间在总根长、总表面积、平均直径、总体积、根尖数和分叉数均有显著差异(P0.05)。对白刺幼苗而言,B处理和C处理的根系参数均显著大于CK、A和D处理,且B和C处理之间没有显著差异(平均直径除外);对油蒿幼苗而言,随着增雨量的增加,油蒿总根长、总表面积、总体积、根尖数和分叉数呈现逐渐增加的趋势,而平均直径呈现先增加后降低的趋势,且在B处理下达到最大值。(3)增雨处理显著降低了白刺幼苗的根冠比,而对油蒿幼苗的根冠比没有显著影响,并且白刺幼苗根冠比显著大于油蒿幼苗。(4)白刺和油蒿幼苗的根系主要分布在0—0.5 mm和0.5—1 mm内,2 mm的细根比例分别在B和D处理下达到最大值。这表明白刺和油蒿幼苗能够通过调整地上部生长和根系形态来适应降雨的变化。  相似文献   

4.
祁连山典型灌丛降雨截留特征   总被引:7,自引:3,他引:4  
基于2010年6月至10月的野外试验数据,研究了祁连山金露梅、高山柳、沙棘和鬼箭锦鸡儿灌丛降雨截留特征,分析了降雨量和雨强对灌丛降雨截留过程的影响。结果表明:试验期间共降雨298.6 mm,在降雨量<2.1 mm时,降雨被全部截留,实际发生穿透和茎流的降雨为283.1 mm;金露梅灌丛穿透雨量、茎流量和截留量分别为175.8 mm(62.0%)、9.5 mm(3.4%)和62.0 mm(34.6%),高山柳为179.8 mm(63.5%)、9.1 mm(3.2%)和63.5 mm(33.3%),沙棘分别为148.1mm(52.3%)、22.5mm(8.0%)和52.3 mm(39.7%),鬼箭锦鸡儿分别为170.4 mm(60.2%)、11.8 mm(4.2%)和60.2 mm(35.6%);灌丛穿透雨量、茎流量和截留量均与降雨量呈显著线性正相关(P<0.001);穿透率、茎流率和截留率与降雨量呈指数函数关系(P<0.05);平均雨强与截留率关系以指数函数拟合最好(P<0.05)。在降雨性质相同的情况下,植被形态特征是影响灌丛降雨截留的重要因素。  相似文献   

5.
天然固定沙地不同微生境下土壤种子库差异   总被引:2,自引:1,他引:1  
研究了腾格里沙漠东南缘天然固定沙地不同微生境下土壤种子库的种类组成和种子密度。结果表明:(1)灌丛下土壤种子库的物种丰富度大于灌丛边缘和灌丛间裸地。(2)不同微生境中土壤种子密度因物种而异。就距灌丛中心的距离来说,雾冰藜、刺蓬、地锦、虎尾草、虱子草和冷蒿灌丛下土壤中种子多于裸地,无芒隐子草和狗尾草种子裸地多于灌丛下,小画眉草在距灌丛各距离间土壤种子密度差异不显著。(3)就灌丛的不同方向来说,雾冰藜和刺蓬土壤中种子在东南方向最多,地锦和无芒隐子草土壤中种子密度在西南和西北均大于东南,狗尾草的土壤种子密度东北大于西北,虱子草的土壤种子密度在西南方向最大,冷蒿的土壤种子密度在西南方向最小,小画眉草和虎尾草在各方向间种子密度差异不显著。(4)不同微生境中物种的结籽量对土壤种子分布格局的影响力十分有限。种子离开母株后所经历的传播、消耗等过程在很大程度上打乱了植物结籽量的空间样式。  相似文献   

6.
从2013年12月至2014年11月,通过野外原位试验,对华西雨屏区常绿阔叶林进行了模拟氮沉降和降雨试验,采用LI-8100土壤碳通量分析系统(LI-COR Inc.,USA)测定了对照(CK)、氮沉降(N)、减雨(R)、增雨(W)、氮沉降+减雨(NR)、氮沉降+增雨(NW)6个处理水平的土壤呼吸速率,并通过回归方程分析了温度和湿度与土壤呼吸速率间的关系。结果表明:(1)氮沉降和增雨抑制了常绿阔叶林土壤呼吸速率,减雨促进了常绿阔叶林土壤呼吸速率。(2)减雨使华西雨屏区常绿阔叶林土壤呼吸年通量增加了258 g/m~2,而模拟氮沉降和增雨使华西雨屏区常绿阔叶林土壤呼吸年通量分别减少了321g/m~2和406g/m~2。(3)减雨增加了土壤呼吸的温度敏感性,模拟氮沉降和增雨降低了土壤呼吸的温度敏感性。(4)模拟温度和湿度与土壤呼吸速率间回归方程分析表明,土壤水分对土壤呼吸速率的影响较小。(5)模拟氮沉降和增雨处理减少土壤微生物生物量碳、氮的含量,减雨处理增加了土壤微生物生物量碳、氮的含量。(6)模拟氮沉降和降雨对华西雨屏区土壤CO_2释放的影响未表现出明显的交互作用。  相似文献   

7.
李小军  高永平 《生态学报》2012,32(24):7828-7835
以腾格里沙漠东南缘沙质草地和灌丛生境为研究对象,采用人工模拟降雨实验对草地样方、灌丛间裸地样方及含灌丛斑块样方的产流及氮流失过程进行观测,揭示了地表径流及其引起的氮流失对沙质草地灌丛化的响应.结果表明:(1)草地样方出现表面积水和地表径流的时间及开始产流需要的降雨量均大于含灌丛斑块样方和灌丛间裸地样方,裸地样方最小;灌丛生境径流系数为34.46%,显著小于裸地样方,大于含灌丛样方,产流量是沙质草地生境的2.26倍;表明灌木入侵造成的植被盖度下降引起了土壤水分入渗率的减小和地表产流的增加.(2)含灌丛样方单位体积径流含氮量瞬时值大于裸地样方,小于草地样方,三类样方瞬时值与单位时间径流量均呈线性负相关;草地样方单位时间氮流失量略小于含灌丛样方,两者均显著小于灌丛间裸地样方;灌丛生境氮流失总量为0.23 g/m2,是草地生境的2.09倍,灌丛和草地生境单位体积径流含氮量总体平均值分别为0.011 g/L、0.012 g/L;表明沙质草地灌丛化引起了养分流失的显著增加.  相似文献   

8.
毛乌素沙地南缘沙柳灌丛土壤水分及水量平衡   总被引:3,自引:0,他引:3  
An H  An Y 《应用生态学报》2011,22(9):2247-2252
以毛乌素沙地南缘沙柳人工固沙灌丛为研究对象,对不同栽植密度(0.2、0.6和0.8株·m-2)沙柳灌丛生长季土壤水分动态和蒸散量变化进行研究.结果表明:不同栽植密度沙柳灌丛区土壤水分动态和蒸散量存在明显差异,土壤含水量随着栽植密度增加呈单峰型曲线;生长季内沙柳灌丛土壤含水量变化呈“S”形曲线,并与降雨存在密切的关系.蒸散量以栽植密度0.8株·m-2的沙柳灌丛最高(114.5 mm),占同期降雨量的90.8%;以0.6株·m-2的沙柳灌丛最低(109.7 mm).根据生长季土壤水分动态和水分平衡特征,毛乌素沙地南缘沙柳灌丛适种密度为0.6株·m-2.  相似文献   

9.
用根钻法和细根分级的方法研究了毛乌素沙地臭柏群落、臭柏灌丛、油蒿群落的细根(D≤2 mm, D为根直径)垂直分布,并用渐近线方程Y=1-βd[Y为从地表到一定深度的根量百分比累积值(0~1),d表示土层深度(cm),β为根系削弱系数]描述根系分布与土壤深度的关系.对不同径级臭柏、油蒿细根的β值、根长密度及根面积指数进行计算,结果表明:以15 cm为取样深度级,臭柏和油蒿群落活细根(D≤2 mm)的各月生物量平均值,在0~15 cm 范围内最大,并且随土壤深度增加而减少.臭柏群落、臭柏灌丛、油蒿群落细根生物量垂直分布的β值差异不显著(P>0.5),但相应层次上的月平均细根生物量,臭柏群落是油蒿群落的6.7~14.6倍(P<0.05),臭柏灌丛是油蒿群落的14.0~19.2倍(P<0.05).D≤1 mm与1 mm<D≤2 mm的细根重量百分比与土壤深度都呈对数关系,但D≤1 mm的细根与土壤深度的相关程度更高.根长密度与根面积指数在各土层的分布有极大的相似性.在臭柏群落、臭柏灌丛、油蒿群落中,D≤2 mm的细根根长密度和根面积指数随土壤深度的增加而减小.月平均值中, D≤2 mm、D≤1 mm、1 mm<D≤2 mm的细根在0~90 cm的根面积指数总和的大小都是:臭柏灌丛>臭柏群落>油蒿群落.  相似文献   

10.
宁夏东部荒漠草原灌丛引入对土壤水分动态及亏缺的影响   总被引:4,自引:0,他引:4  
全球气候变化背景下,荒漠草原人工灌丛引入加速其灌丛化进程,对草原土壤水分产生重要影响。为了解宁夏东部荒漠草原灌丛引入过程中土壤水分动态及亏缺现状,选取了封育草地、放牧草地、不同年限(3a、12a、22a)和间距(40 m、6 m、2 m)灌丛柠条(Caragana korshinskii)地进行土壤水分测定,并利用土壤水分相对亏缺指数(compared soil water deficit index,CSWDI)、样地土壤水分相对亏缺指数(plot compared soil water deficit index,PCSWDI)对土壤水分亏缺进行定量分析。结果表明:灌丛引入过程中不同年限、间距灌丛地0—200 cm土层土壤含水量均显著低于封育草地与放牧地(P0.05);各样地季节动态均表现为春季返潮、夏季消耗、秋季蓄积的季节规律,但不同年限、间距灌丛地表现为春季返潮微弱,土壤含水量仅为7.80%—10.90%,显著低于封育草地和放牧地(11.90%—16.09%);灌丛引入过程中各灌丛地0—100 cm有效储水量(-16.98—18.69 mm)均低于封育草地(34.67 mm),虽在种植22a灌丛地和2 m间距灌丛地略有升高,仍不足20.00 mm。土壤水分相对亏缺量(除封育草地外)为6.69—97.16mm;灌丛引入过程中各样地不同土层CSWDI值呈波动变化,除封育草地各土层无显著的亏缺外,其他样地均存在亏缺,亏缺值为0.03—12.10,PCSWDI值均随着灌丛引入年限和密度的增加呈增大趋势。荒漠草原灌丛引入过程产生土壤水分过度利用,使得土壤水分亏缺,并加剧其深层土壤水分的消耗。  相似文献   

11.
The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r 2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change.  相似文献   

12.
Y Zhou  Z Pei  J Su  J Zhang  Y Zheng  J Ni  C Xiao  R Wang 《PloS one》2012,7(8):e42927

Background

Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited.

Methodology/Principal Findings

A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr−1 for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m−2) than in the shrubs (1.12 Kg C m−2) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter.

Conclusions/Significance

Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.  相似文献   

13.
In arid and semiarid shrubland ecosystems of the Mediterranean basin, soil moisture is a key factor controlling biogeochemical cycles and the release of CO2 via soil respiration. This is influenced by increasing temperatures. We manipulated the microclimate in a Mediterranean shrubland to increase the soil and air night-time temperatures and to reduce water input from precipitation. The objective was to analyze the extent to which higher temperatures and a drier climate influence soil CO2 emissions in the short term and on an annual basis. The microclimate was manipulated in field plots (about 25 m2) by covering the vegetation during the night (Warming treatment) and during rain events (Drought treatment). Soil CO2 effluxes were monitored in the treatments and compared to a control over a 3-year period. Along with soil respiration measurements, we recorded soil temperature at 5 cm depth by a soil temperature probe. The seasonal pattern of soil CO2 efflux was characterized by higher rates during the wet vegetative season and lower rates during the dry non-vegetative season (summer). The Warming treatment did not change SR fluxes at any sampling date. The Drought treatment decreased soil CO2 emissions on only three of 10 occasions during 2004. The variation of soil respiration with temperature and soil water content did not differ significantly among the treatments, but was affected by the season. The annual CO2 emissions were not significantly affected by the treatments. In the semi-arid Mediterranean shrubland, an increase of soil CO2 efflux in response to a moderate increase of daily minimum temperature is unlikely, whereas less precipitation can strongly affect the soil processes mainly limited by water availability.  相似文献   

14.
Evaluation of Restoration Techniques for the Succulent Karoo, South Africa   总被引:1,自引:0,他引:1  
Abstract Possible constraints on the passive recovery of bare areas in the Karoo, a semiarid region in South Africa, include inadequate supply of seed, availability of suitable microsites for plant establishment, altered soil properties, and the truncation of key soil biotic processes. Here we investigate the possibility of initiating the restoration of bare areas by soil surface treatments with gypsum (CaSO4) and/or organic mulch. We also apply an exogenous seed source to test the hypothesis that seed availability limits autogenic recovery. Both gypsum and mulch improved rain water infiltration, gypsum more so than mulch, and both treatments resulted in significantly higher numbers of reseeded seedlings compared with controls. Gypsum also improved the survival of the cohorts of seedlings of the larger seeded Tripteris sinuata. Tripteris showed the highest number of seedlings (maximum count of 150 seedlings/1,000 viable seeds sown) and surviving plants of the three reseeded species, which included two small‐seeded species, Ruschia spinosa and Chaetobromus dregeanus. Throughout the study period significantly higher plant volumes of naturally seeded annuals and perennials were recorded in the gypsum and/or mulch treatments compared with the controls. Germination and emergence of reseeded and naturally seeded plants appears to be determined by the availability of cool season (autumn to spring ) soil moisture, whereas follow‐up rainfall during this time is important for plant survival. Mulching of bare areas in the Succulent Karoo has the potential to re‐create vegetated areas that will further capture and conserve water, soil, and nutrients. Gypsum also showed positive results but might not be a cost‐effective option because of transport costs to these remote arid areas.  相似文献   

15.
The CO2 dynamics were measured in an organic soil in eastern Finland during the growing season and wintertime, and the annual CO2 balance was calculated for plots where barley or grass was grown. During the summer, the CO2 dynamics were measured by transparent and opaque chambers using a portable infrared gas analyser for the CO2 analyses. During the winter, the CO2 release was measured by opaque chambers analysing the samples in the laboratory with a gas chromatograph. Statistical response functions for CO2 dynamics were constructed to evaluate the annual CO2 exchange from the climatic data. The net CO2 exchange was calculated for every hour in the snow‐free season. The carbon balance varied extensively depending on the weather conditions, and type and phenology of vegetation. During the growing season, the grassland was a net source while the barley field was a net sink for CO2. However, both soils were net sources for CO2 when autumn, winter and spring were included also. The annual CO2 emissions from the grassland and barley soil were 750 g CO2‐C m?2 and 400 g CO2‐C m?2, respectively. The carbon accumulated in root and shoot biomass during the growing season was 330 g m?2 for grass and 520 g m?2 for barley. The C in the aboveground plant biomass ranged from 43 to 47% of the carbon fixed in photosynthesis (PG) and the proportion of C in the root biomass was 10% of the carbon fixed in photosynthesis. The bare soils had 10–60% higher net CO2 emission than the vegetated soils. These results indicate that the carbon balance of organic soils is affected by the characteristics of the prevailing plant cover. The dry summer of 1997 may have limited the growth of grass in the late summer thus reducing photosynthesis, which could be one reason for the high CO2 release from this grass field.  相似文献   

16.
Climate models suggest that extreme rainfall events will become more common with increased atmospheric warming. Consequently, changes in the size and frequency of rainfall will influence biophysical drivers that regulate the strength and timing of soil CO2 efflux – a major source of terrestrial carbon flux. We used a rainfall manipulation experiment during the summer monsoon season (July–September) to vary both the size and frequency of precipitation in an arid grassland 2 years before and 2 years after a lightning‐caused wildfire. Soil CO2 efflux rates were always higher under increased rainfall event size than under increased rainfall event frequency, or ambient precipitation. Although fire reduced soil CO2 efflux rates by nearly 70%, the overall responses to rainfall variability were consistent before and after the fire. The overall sensitivity of soil CO2 efflux to temperature (Q10) converged to 1.4, but this value differed somewhat among treatments especially before the fire. Changes in rainfall patterns resulted in differences in the periodicity of soil CO2 efflux with strong signals at 1, 8, and 30 days. Increased rainfall event size enhanced the synchrony between photosynthetically active radiation and soil CO2 efflux over the growing season before and after fire, suggesting a change in the temporal availability of substrate pools that regulate the temporal dynamics and magnitude of soil CO2 efflux. We conclude that arid grasslands are capable of rapidly increasing and maintaining high soil CO2 efflux rates in response to increased rainfall event size more than increased rainfall event frequency both before and after a fire. Therefore, the amount and pattern of multiple rain pulses over the growing season are crucial for understanding CO2 dynamics in burned and unburned water‐limited ecosystems.  相似文献   

17.
Knowledge on soil microbial respiration (SMR) rates and thus soil-related CO2 losses from Arctic soils is vital because of the crucial importance of this ecosystem within the global carbon (C) cycle and climate system. Here, we measured SMR from various habitats during the growing season in Russian subarctic tundra by applying two different approaches: 14C partitioning approach and root trenching. The variable habitats encompassed peat and mineral soils, bare and vegetated surfaces and included both dry and moist ones. The field experiment was complemented by laboratory studies to measure bioavailability of soil carbon and identify sources of CO2. Differences in bioavailability of soils, measured in the laboratory as basal soil respiration rates, were generally greater than inter-site differences in SMR rates measured in situ, suggesting secondary constraints at field conditions, such as soil C content. There was a tendency towards lower SMR in vegetated peat plateaus compared to upland mineral tundra (on average 137 vs. 185 g CO2 m?2 growing season?1, respectively), but no significant differences were found. Surprisingly, the bare surfaces (peat circles) with 3500-year-old C at the surface exhibited about the largest SMR among all sites as shown by both methods. This was related to the general development of peat plateaus in the region, and uplifting of deeper peat with high C content to the surface during the genesis of peat circles. This observation is particularly relevant for decomposition of deeper peat in vegetated peat plateaus, where soil material similar to the bare surfaces can be found. The data indicate that the large stocks of C stored in permafrost peatlands are principally available for decomposition despite old age.  相似文献   

18.
2013年5月至2014年6月,对干旱河谷区云南松(Pinus yunnanensis)人工林进行增加降水试验,试验设置对照(CK,0 mm m~(-2)a~(-1))、增水10%(A1,80 mm m~(-2)a~(-1))、增水20%(A2,160 mm m~(-2)a~(-1))和增水30%(A3,240 mm m~(-2)a~(-1))4个处理水平。采用LI-8100开路式土壤碳通量测量系统测定每月土壤呼吸速率。结果表明,4个处理云南松人工林土壤呼吸速率均呈明显的季节变化,7月最高,2月最低。与CK相比,A1年均土壤呼吸速率无显著性差异(P0.05),A2显著增加了12.88%(P0.05),而A3明显减少了17.71%(P0.05)。3个增水处理均提高了土壤呼吸的温度敏感性,减弱了土壤呼吸与土壤湿度的关系。与土壤温度相比,土壤湿度对土壤呼吸的影响相对较小。增水增加了湿季土壤微生物碳、氮含量,干季对微生物碳含量无影响,但明显降低了微生物氮含量。这说明,降水增加对干旱河谷区云南松人工林土壤呼吸的影响是不尽相同的,适当的增水会促进土壤呼吸,而过量的增水会抑制土壤呼吸。  相似文献   

19.
20.
Intact cores from the upper soil profile and surface litter were collected at the peak of the dry season and during the rainy period in the tropical deciduous forest of the Chamela region, Jalisco, México, to (1) analyze upper soil phosphorus (P) movement and retention, (2) compare soil P dynamic pools (soluble, bicarbonate, and microbial) in dry and rainy seasons, and (3) determine the response of these P pools to wetting. Unperturbed litter-soil cores were treated in the laboratory with either 10 mm or 30 mm of simulated rain with carrier-free 32P and compared to a control (no water addition) to determine the fate and retention of added P. 31P concentrations and pools in most litter and soil fractions were higher in the dry than in the rainy season. Soluble P was 0.306 g/m2 and microbial P was 0.923 g/m2 in the dry season (litter plus soil) versus 0.041 (soluble) and 0.526 (microbial) g P/m2 in the rainy season. After water addition, rainy-season cores retained 99.9 and 94% of 32P in the 10- and 30-mm treatments, respectively. Dry-season samples retained 98.9 and 80% of inputs in the same treatments. Retention after wetting occurred mostly in soil (bicarbonate and microbial fractions). Simulated rainfall on rainy-season soils increased P immobilization. On the other hand, simulated rainfall on dry-season soils released P through mineralization. The P release represents between 46 and 99% of the annual litterfall return. Our results suggest that both soluble and microbial P constitute important sources for initiation of plant growth at the onset of the rainy season in tropical dry forest. Received: 23 September 1997 / Accepted: 2 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号