首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
4.
5.
The restriction enzyme TaqI digests 0.2% of the genomic DNA from the grasshopper Caledia captiva to a family of sequences 168 bp in length (length of consensus sequence). The sequence variation of this "Taq family" of repeat units was examined among four races from C. captiva to assay the pattern of evolution within this highly repeated DNA. The Taq-family repeats are located in C-banded heterochromatin on at least one member of each homologous pair of chromosomes; the locations range from centromeric to telomeric. Thirty-nine cloned repeats isolated from two population 1A individuals along with 11 clones from seven populations taken from three of the races demonstrated sequence variation at 72 positions. Pairwise comparisons of the cloned repeats, both within an individual and between different races, indicate that levels of intraspecific divergence, as measured by reproductive incompatibility, do not correlate with sequence divergence among the 168-bp repeats. A number of subsequences within the repeat remain unchanged among all 50 clones; the longest of these is 18 bp. That the same 18-bp subsequence is present in all clones examined is a finding that departs significantly (P less than 0.01) from what would be expected to occur at random. Two other cloned repeats, from a reproductively isolated race of C. captiva, have sequences that show 56% identity with this 18-bp conserved region. An analysis showed that the frequency of occurrence of an RsaI recognition site within the 168- bp repeat in the entire Taq family agreed with that found in the cloned sequences. These data, along with a partial sequence for the entire Taq family obtained by sequencing uncloned repeats, suggest that the consensus sequence from the cloned copies is representative of this highly repeated family and is not a biased sample resulting from the cloning procedure. The 18-bp conserved sequence is part of a 42-bp sequence that possesses dyad symmetry typical of protein-binding sites. We speculate that this may be significant in the evolution of the Taq family of sequences.   相似文献   

6.
The 6.8-kb rDNA intergenic spacer region of F. excelsior was isolated from a CsCl/actinomycin-D gradient and cloned into pUC18 for further characterization. We observed the presence of subrepeats delimited by HaeIII enzyme sites. These subrepeats were sub-cloned and 11 clones were sequenced. These corresponded to subrepeated elements of either 32 bp or 41 bp that shared a 23-bp common sequence in the 5 end. Within each family of subrepeats, the percentage of common nucleotides was 84.4% for the 5 32-bp subrepeats and 67.4% for the 640-bp subrepeats. Non-repeated HaeIII fragments of 450 bp and 650 bp were also sub-cloned. To compare homology at the IGS region between the rDNA spacers of F. excelsior and the three related species (F. oxyphylla, F. americana, F. ornus), we conducted Southern hybridization analyses using each member of the 32-bp and 40-bp subrepeat families and the unique 450-bp and 650-bp fragments as probes. These analyses indicated that (1) the American ash is more genetically distant from the other three species that the latter are from each other and (2) F. oxyphylla and F. excelsior are more closely related to each other than to F. ornus.  相似文献   

7.
M D Cave  H Benes  C Liarakos 《Gene》1987,51(2-3):287-289
The 5S rRNA genes of the house cricket, Acheta domesticus, are contained within two basic repeating units measuring 3.0 and 2.1 kb, that have been cloned. Nucleotide sequence analysis was done on a 528-bp and a 541-bp EcoRI-HinfI DNA fragment from each cloned repeating unit which contains the 5S rRNA coding region. The nucleotide sequences of the 5S rRNA coding region from the two repeating units are identical.  相似文献   

8.
9.
10.
Characterization of the oriC region of Mycobacterium smegmatis.   总被引:2,自引:0,他引:2       下载免费PDF全文
A 3.5-kb DNA fragment containing the dnaA region of Mycobacterium smegmatis has been hypothesized to be the chromosomal origin of replication or oriC (M. Rajagopalan et al., J. Bacteriol. 177:6527-6535, 1995). This region included the rpmH gene, the dnaA gene, and a major portion of the dnaN gene as well as the rpmH-dnaA and dnaA-dnaN intergenic regions. Deletion analyses of this region revealed that a 531-bp DNA fragment from the dnaA-dnaN intergenic region was sufficient to exhibit oriC activity, while a 495-bp fragment from the same region failed to exhibit oriC activity. The oriC activities of plasmids containing the 531-bp sequence was less than the activities of those containing the entire dnaA region, suggesting that the regions flanking the 531-bp sequence stimulated oriC activity. The 531-bp region contained several putative nine-nucleotide DnaA-protein recognition sequences [TT(G/C)TCCACA] and a single 11-nucleotide AT-rich cluster. Replacement of adenine with guanine at position 9 in five of the putative DnaA boxes decreased oriC activity. Mutations at other positions in two of the DnaA boxes also decreased oriC activity. Deletion of the 11-nucleotide AT-rich cluster completely abolished oriC activity. These data indicate that the designated DnaA boxes and the AT-rich cluster of the M. smegmatis dnaA-dnaN intergenic region are essential for oriC activity. We suggest that M. smegmatis oriC replication could involve interactions of the DnaA protein with the putative DnaA boxes as well as with the AT-rich cluster.  相似文献   

11.
12.
The termini of rRNA processing intermediates and of mature rRNA species encoded by the 3' terminal region of 23S rDNA, by 4.5S rDNA, by the 5' terminal region of 5S rDNA and by the 23S/4.5S/5S intergenic regions from Zea mays chloroplast DNA were determined by using total RNA isolated from maize chloroplasts and 32P-labelled rDNA restriction fragments of these regions for nuclease S1 and primer extension mapping. Several processing sites detectable by both 3' and 5' terminally labelled probes could be identified and correlated to the secondary structure for the 23S/4.5S intergenic region. The complete 4.5S/5S intergenic region can be reverse transcribed and a common processing site for maturation of 4.5S and 5S rRNA close to the 3' end of 4.5S rRNA was detected. It is therefore concluded that 23S, 4.5S and 5S rRNA are cotranscribed.  相似文献   

13.
14.
The length variability of the nontranscribed spacer (NTS) of the 5S rDNA repeats was analyzed in species of the genus Lens by means of PCR amplification. The NTS ranged from approximately 227 to approximately 952 bp. The polymorphism detected was higher than previous NTS polymorphisms described in this genus. Three NTS length variants from Lens culinaris subsp. culinaris and 2 from Lens culinaris subsp. orientalis were sequenced. The culinaris NTS fragment lengths were 239, 371, and 838 bp, whereas the orientalis ones were 472 bp and 506 bp, respectively. As a result of sequence similarities, 2 families of sequences were distinguished, 1 including the sequences of 838 and 506 bp, and others with the sequences of 239, 371, and 472 bp. The 1st family was characterized by the presence of a repeated sequence designated A, whereas the 2nd family showed a single A sequence and other repeated sequences designated B, C, and D. The presence of an (AT)n microsatellite was also observed in the 2nd family of sequences. The fragments, which included the 239-bp and 838-bp NTS sequences, as well as the intergenic spacer (IGS) of the 18S-5.8S-26S ribosomal DNA also from L. culinaris subsp. culinaris, were used to localize the nucleolar organizer region (NOR) and the 5S rDNA loci in the chromosomes of several species of the genus Lens by means of fluorescence in situ hybridization (FISH). The selective hybridization of the 2 NTS probes allowed us to distinguish between different 5S rDNA chromosomal loci.  相似文献   

15.
The excretion of sterols from the liver and intestine is regulated by the ABCG5 and ABCG8 transporters. To identify potential regulatory elements, 152 kb of the human ABCG5-ABCG8 gene cluster was sequenced and comparative genome analysis was performed. The two genes are oriented in a head-to-head configuration and are separated by a 374-bp intergenic region, which is highly conserved among several species. Using a reporter construct, the intergenic region was found to act as a bidirectional promoter. A conserved GATA site in the intergenic region was shown by site-directed mutagenesis to act as a repressor for the ABCG5 promoter. The intergenic region was also shown to be partially responsive to treatment by LXR agonists. In summary, several potential regulatory elements were found for the ABCG5 and ABCG8 genes, and the intergenic region was found to act as a bidirectional promoter.  相似文献   

16.
We have determined the full sequence of the ribosomal DNA intergenic spacer (IGS) of the swimming crab, Charybdis japonica, by long PCR for the first time in crustacean decapods. The IGS is 5376 bp long and contains two nonrepetitive regions separated by one long repetitive region, which is composed mainly of four subrepeats (subrepeats I, II, III, and IV). Subrepeat I contains nine copies of a 60-bp repeat unit, in which two similar repeat types (60 bp-a and 60 bp-b) occur alternatively. Subrepeat II consists of nine successive repeat units with a consensus sequence length of 142 bp. Subrepeat III consists of seven copies of another 60-bp repeat unit (60 bp-c) whose sequence is complementary to that of subrepeat I. Immediately downstream of subrepeat III is subrepeat IV, consisting of three copies of a 391-bp repeat unit. Based on comparative analysis among the subrepeats and repeat units, a possible evolutionary process responsible for the formation of the repetitive region is inferred, which involves the duplication of a 60-bp subrepeat unit (60 bp-c) as a prototype. Received: 13 April 1999 / Accepted: 2 August 1999  相似文献   

17.
Data on molecular analysis of the insertion sites of nine random copies of burdock retrotransposon are presented. The 12-bp consensus sequence of the insertion sites, YNNUTUTUYAYA (Y-pyrimidine; U-purine), was determined. Homology between the burdock sequence and ribosomal genes was revealed. Three copies of this element were located within the region of ribosomal repeats: one copy in the 18S RNA gene, and two copies in the same intergenic spacer region, in the so-called Alu-repeats of Drosophila, in different copies of ribosomal genes.  相似文献   

18.
We have characterized the nature of structural alleles of the transforming growth factor-alpha (TGF alpha) locus by restriction-enzyme digestion with BamHI, RsaI, and TaqI. The BamHI polymorphic site is located within exon VI, which codes for the 3' untranslated region. The two BamHI alleles differ by a single point mutation at the restriction site. The RsaI and TaqI polymorphic sites are located within intron V. The two alleles differ at the restriction site, either by a point mutation (RsaI) or by a 4-bp deletion (TaqI). This analysis permits us to devise a PCR method coupled with restriction digestions to directly identify the TGF alpha polymorphisms. Analysis of 99 Caucasian controls has revealed a highly significant (P < .001) association between the RsaI and the BamHI genotype. The frequency of the rare BamHI allele was significantly higher (P < .001) in transformed cell lines (.30) than in controls (.076).  相似文献   

19.
Nicotiana tabacum (tobacco, Solanaceae) has two 5S ribosomal DNA (rDNA) families, one of unit length approximately 646 bp and the other -430 bp, that differ in the length of the 5S rDNA non-transcribed spacer (NTS). The long 5S rDNA family, found on the T genome of tobacco and in Nicotiana tomentosiformis, contains a GC-rich subregion that is absent in the short family. We designed primers for this subregion and generated a probe that we used against a range of Nicotiana and related Solanaceous species. We demonstrated the presence of the GC-rich subregion in a range of Nicotiana species, but it was absent in Nicotiana sylvestris, Nicotiana longiflora, and two closely related genera, Petunia and Solanum. These data suggest that this subregion of the NTS is likely to have evolved with the genus Nicotiana. The absence of the subregion in N. sylvestris and N. longiflora is likely to have arisen by a deletion event in the evolution of section alatae. We demonstrate patterns of evolution in the 5S rDNA unit cluster in relation to a phylogenetic reconstruction of species relationships in section tomentosae. Nicotiana glutinosa diverged early from the section and contains a 5S rDNA family based on a 550-bp unit. After this divergence, 430- and 650-bp rDNA unit families evolved. The 650-bp family is found in all species of tomentosae (except N. glutinosa) and in tobacco. The 430-bp family within tomentosae includes the GC-rich subregion and is thus unrelated to the 430-bp family in N. sylvestris. Nicotiana setchellii is unusual in that it has three 5S rDNA loci, including one locus that is exceptionally large. This species, unique to tomentosae, has a very abundant 900-bp unit family. It is possible that this 900-bp family occurs on this one large locus. In N. tomentosa and N. kawakamii, the 650-bp family is predominant, whereas N. tomentosiformis and N. otophora have only the 650-bp family. There is no clear relationship between the number of 5S families and the number of 5S rDNA loci. Certainly the replacement of 5S rDNA units, perhaps by gene conversion, has occurred repeatedly in the evolution of genus Nicotiana.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号