首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Wang Y  Ballar P  Zhong Y  Zhang X  Liu C  Zhang YJ  Monteiro MJ  Li J  Fang S 《PloS one》2011,6(8):e24478
The small p97/VCP-interacting protein (SVIP) functions as an inhibitor of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Here we show that overexpression of SVIP in HeLa cells leads to localization of p97/VCP at the plasma membrane, intracellular foci and juxtanuclear vacuoles. The p97/VCP-positive vacuolar structures colocalized or associated with LC3 and lamp1, suggesting that SVIP may regulate autophagy. In support of this possibility, knockdown of SVIP diminished, whereas overexpression of SVIP enhanced LC3 lipidation. Surprisingly, knockdown of SVIP reduced the levels of p62 protein at least partially through downregulation of its mRNA, which was accompanied by a decrease in starvation-induced formation of p62 bodies. Overexpression of SVIP, on the other hand, increased the levels of p62 protein and enhanced starvation-activated autophagy as well as promoted sequestration of polyubiquitinated proteins and p62 in autophagosomes. These results suggest that SVIP plays a regulatory role in p97 subcellular localization and is a novel regulator of autophagy.  相似文献   

2.
Mutations in valosin-containing protein (VCP) cause inclusion body myopathy (IBM), Paget''s disease of the bone, and frontotemporal dementia (IBMPFD). Patient muscle has degenerating fibers, rimmed vacuoles (RVs), and sarcoplasmic inclusions containing ubiquitin and TDP-43 (TARDNA-binding protein 43). In this study, we find that IBMPFD muscle also accumulates autophagosome-associated proteins, Map1-LC3 (LC3), and p62/sequestosome, which localize to RVs. To test whether VCP participates in autophagy, we silenced VCP or expressed adenosine triphosphatase–inactive VCP. Under basal conditions, loss of VCP activity results in autophagosome accumulation. After autophagic induction, these autophagosomes fail to mature into autolysosomes and degrade LC3. Similarly, IBMPFD mutant VCP expression in cells and animals leads to the accumulation of nondegradative autophagosomes that coalesce at RVs and fail to degrade aggregated proteins. Interestingly, TDP-43 accumulates in the cytosol upon autophagic inhibition, similar to that seen after IBMPFD mutant expression. These data implicate VCP in autophagy and suggest that impaired autophagy explains the pathology seen in IBMPFD muscle, including TDP-43 accumulation.  相似文献   

3.
《Autophagy》2013,9(2):283-285
A feature of aged onset degenerative disease is ubiquitinated protein inclusions. Similar inclusions are found in different tissues ranging from the central nervous, cardiovascular, musculoskeletal and gastrointestinal systems; whether, the same pathomechanism is responsible for the similar pathology in these disparate tissues is not known. To address this question, we explored the pathogenesis of a multi-system degenerative disorder, IBMPFD or inclusion body myopathy (IBM), paget's disease of the bone (PDB) and fronto-temporal dementia (FTD) of which ubiquitinated inclusions are a key pathological feature in muscle, brain and bone tissue. IBMPFD is caused by mutations in the ubiquitin proteasome system (UPS) chaperone p97/VCP. Previous reports suggest dysfunctional UPS in IBMPFD, however, we find that autophagic protein degradation and autophagosome maturation are diminished in IBMPFD mutant-expressing mice, patients and cell models. Moreover, a loss of p97/VCP function recapitulates the same effects, suggesting that p97/VCP is essential for autophagy. Thus, the degenerative phenotype in IBMPFD and its phenotypic components (IBM, PDB and FTD) may be disorders of impaired autophagy. p97/VCP is likely important in regulating both UPS- and autophagy-mediated protein degradation. This places p97/VCP in a key regulatory position at the intersection of these two proteolytic pathways.  相似文献   

4.
VCP/p97 is involved in a variety of cellular processes, including membrane fusion and ubiquitin-dependent protein degradation. It has been suggested that adaptor proteins such as p47 and Ufd1p confer functional versatility to VCP/p97. To identify novel adaptors, we searched for proteins that interact specifically with VCP/p97 by using the yeast two-hybrid system, and discovered a novel VCP/p97-interacting protein named small VCP/p97-interacting protein (SVIP). Rat SVIP is a 76-amino acid protein that contains two putative coiled-coil regions, and potential myristoylation and palmitoylation sites at the N terminus. Binding experiments revealed that the N-terminal coiled-coil region of SVIP, and the N-terminal and subsequent ATP-binding regions (ND1 domain) of VCP/p97, interact with each other. SVIP and previously identified adaptors p47 and ufd1p interact with VCP/p97 in a mutually exclusive manner. Overexpression of full-length SVIP or a truncated mutant did not markedly affect the structure of the Golgi apparatus, but caused extensive cell vacuolation reminiscent of that seen upon the expression of VCP/p97 mutants or polyglutamine proteins in neuronal cells. The vacuoles seemed to be derived from endoplasmic reticulum membranes. These results together suggest that SVIP is a novel VCP/p97 adaptor whose function is related to the integrity of the endoplasmic reticulum.  相似文献   

5.
We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.  相似文献   

6.
Alimogullari  Ebru  Akcan  Gülben  Ari  Oguz  Cayli  Sevil 《Molecular biology reports》2022,49(10):9159-9170
Background

In recent studies, it was shown that Endoplasmic reticulum-associated degradation (ERAD) is regulated by androgens and small VCP-interacting protein (SVIP) is an ERAD inhibitor. There is no data available about the interactions of ERAD proteins with proteins involved in steroidogenesis. The aim of the study was to investigate the expressions of SVIP, p97/VCP, StAR, CYP17A1 and 3β-HSD in human and mouse.

Methods and results

HLC, TM3 and MA-10 Leydig cell lines were used to determine roles of ERAD proteins in steroidogenesis based on immunofluorescence, Western blot, qRT-PCR, ELISA. Findings showed that StAR, CYP17A1 and 3β-HSD were colocalized with SVIP and p97/VCP in Leydig cells. A decrease in CYP17A1, 3β-HSD and StAR expressions was observed as a result of suppression of SVIP siRNAs and p97/VCP siRNAs expressions in MA10, TM3 and HLC. When siSVIP transfected cells were compared with siSVIP transfected with hCG-exposed cells, SVIP protein expression was significantly increased as compared to the SVIP transfected group in human Leydig cells.

Conclusion

We suggest that the suppression of protein expressions by p97/VCP and SVIP siRNAs in Leydig cells, the effects of proteins involved in steroidogenesis (StAR, CYP17A1 and 3β-HSD) have proven to be originating from p97/VCP and SVIP which were playing a role in the steroidogenesis process. Additionally, it was demonstrated that testosterone levels decreased after transfection with p97/VCP siRNA and SVIP siRNA, p97/VCP and SVIP created an effect on testosterone synthesis while taking place in the steps of testosterone synthesis. Further, it was determined in the study that the SVIP was affected by hCG stimulations.

  相似文献   

7.
Dietary restriction (DR) has been shown to increase longevity, delay onset of aging, reduce DNA damage and oxidative stress and prevent age-related decline of neuronal activity. We previously reported the role of altered ubiquitin proteasome system (UPS) in the neuronal cell death in a spontaneous obese rat model (WNIN/Ob rat). In this study, we investigated the effect of DR on obesity-induced neuronal cell death in a rat model. Two groups of 40-day-old WNIN/Ob rats were either fed ad libitum (Ob) or pair-fed with lean. The lean phenotype of WNIN/Ob rats served as ad libitum control. These animals were maintained for 6.5 months on their respective diet regime. At the end of the study, cerebral cortex was collected and markers of UPS, endoplasmic reticulum (ER) stress and autophagy were analyzed by quantitative real-time polymerase chain reaction, immunoblotting and immunohistochemistry. Chymotrypsin-like activity of proteasome was assayed by the fluorimetric method. Apoptotic cells were analyzed by TUNEL assay. DR improved metabolic abnormalities in obese rats. Alterations in UPS (up-regulation of UCHL1, down-regulation of UCHL5, declined proteasomal activity), increased ER stress, declined autophagy and increased expression of α-synuclein, p53 and BAX were observed in obese rats and DR alleviated these changes in obese rats. Further, DR decreased TUNEL-positive cells. In conclusion, DR in obese rats could not only restore the metabolic abnormalities but also preserved neuronal health in the cerebral cortex by preventing alterations in the UPS.  相似文献   

8.
SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes.  相似文献   

9.
Misfolded proteins in the endoplasmic reticulum (ER) are eliminated by a process known as ER-associated degradation (ERAD), which starts with misfolded protein recognition, followed by ubiquitination, retrotranslocation to the cytosol, deglycosylation, and targeting to the proteasome for degradation. Actions of multisubunit protein machineries in the ER membrane integrate these steps. We hypothesized that regulation of the multisubunit machinery assembly is a mechanism by which ERAD activity is regulated. To test this hypothesis, we investigated the potential regulatory role of the small p97/VCP-interacting protein (SVIP) on the formation of the ERAD machinery that includes ubiquitin ligase gp78, AAA ATPase p97/VCP, and the putative channel Derlin1. We found that SVIP is anchored to microsomal membrane via myristoylation and co-fractionated with gp78, Derlin1, p97/VCP, and calnexin to the ER. Like gp78, SVIP also physically interacts with p97/VCP and Derlin1. Overexpression of SVIP blocks unassembled CD3delta from association with gp78 and p97/VCP, which is accompanied by decreases in CD3delta ubiquitination and degradation. Silencing SVIP expression markedly enhances the formation of gp78-p97/VCP-Derlin1 complex, which correlates with increased degradation of CD3delta and misfolded Z variant of alpha-1-antitrypsin, established substrates of gp78. These results suggest that SVIP is an endogenous inhibitor of ERAD that acts through regulating the assembly of the gp78-p97/VCP-Derlin1 complex.  相似文献   

10.
In this study, we aimed to investigate the distribution pattern of ubiquitin and p97/VCP in the rat retina during postnatal development. Eyeballs from 1-, 4-, 10-, 36- and 72-week-old rats were examined by immunohistochemistry, and protein colocalization was determined by immunofluorescence microscopy. In the 1-week-old rat retina, p97/VCP was strongly expressed in the neuroblast layer, however no ubiquitin immunoreactivity was observed. p97/VCP immunoreactivity was present in the ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), inner segment (IS) of the photoreceptor layer, and retinal pigment epithelium in the 4- and 10-week-old rat retinas. p97/VCP immunoreactivity increased significantly in the 10-week-old rat retinas. Ubiquitin was barely seen in the 4-week-old rat retinas, and ubiquitin expression was weak in the GCL and the IPL of the 10-week-old rat retinas. In the 36- and 72-week-old rats, the presence of ubiquitin was remarkable in the IS, INL, IPL and GCL, however, p97/VCP immunoreactivity was significantly decreased. Colocalization of ubiquitin and p97/VCP was also observed in the INL, IS, GCL and ONL of 36- and 72-week-old rat retinas. Our results indicate that p97/VCP immunoreactivity in the retina significantly decreases after rats reach 10 weeks of age, whereas ubiquitin immunoreactivity increases with aging. These results suggest that an altered expression pattern of p97/VCP and ubiquitin in the developing rat retina may associate with age-related retinal degeneration.  相似文献   

11.
Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5′-dimethylpyrazole, DMP, 12 mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis.  相似文献   

12.
Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion body myopathy (hIBM) associated with Paget disease of bone (PDB), frontotemporal dementia (FTD), more recently termed multisystem proteinopathy (MSP). Affected individuals exhibit scapular winging and die from progressive muscle weakness, and cardiac and respiratory failure, typically in their 40s to 50s. Histologically, patients show the presence of rimmed vacuoles and TAR DNA-binding protein 43 (TDP-43)-positive large ubiquitinated inclusion bodies in the muscles. We have generated a VCPR155H/+ mouse model which recapitulates the disease phenotype and impaired autophagy typically observed in patients with VCP disease. Autophagy-modifying agents, such as rapamycin and chloroquine, at pharmacological doses have previously shown to alter the autophagic flux. Herein, we report results of administration of rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, and chloroquine, a lysosomal inhibitor which reverses autophagy by accumulating in lysosomes, responsible for blocking autophagy in 20-month old VCPR155H/+ mice. Rapamycin-treated mice demonstrated significant improvement in muscle performance, quadriceps histological analysis, and rescue of ubiquitin, and TDP-43 pathology and defective autophagy as indicated by decreased protein expression levels of LC3-I/II, p62/SQSTM1, optineurin and inhibiting the mTORC1 substrates. Conversely, chloroquine-treated VCPR155H/+ mice revealed progressive muscle weakness, cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-I/II, p62/SQSTM1, and optineurin expression levels. Our in vitro patient myoblasts studies treated with rapamycin demonstrated an overall improvement in the autophagy markers. Targeting the mTOR pathway ameliorates an increasing list of disorders, and these findings suggest that VCP disease and related neurodegenerative multisystem proteinopathies can now be included as disorders that can potentially be ameliorated by rapalogs.  相似文献   

13.
The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G2/M cell cycle arrest which was associated with the formation of LC3+ autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.  相似文献   

14.
《Autophagy》2013,9(9):1091-1092
Specific p97 inhibitors are valuable research tools to carry out mechanistic and cellular investigations of p97 biology. p97 is an abundant, ubiquitin-selective chaperone that has multiple functions and is essential for life. Therefore, genetic methods that require long incubations like siRNA or expression of dominant-negative p97 mutants are likely to generate complicated outcomes due to secondary consequences that arise upon slow depletion of p97 activity. We recently identified a small molecule p97 inhibitor, N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), and documented its effects on blocking autophagic degradation of LC3-II and proteasomal degradation of a p97-dependent ubiquitin-proteasome system (UPS) substrate. What distinguishes DBeQ from conventional proteasome inhibitors is that DBeQ affects both the UPS and autophagic protein degradation pathways and rapidly activates cell death. Whether DBeQ activates autophagic and/or apoptotic cell death will require further work to evaluate its detailed mechanism of action. An exciting goal for the future will be to generate p97 inhibitors that affect one or the other pathway. We propose that generation of ‘separation of function’ inhibitors will be a challenging adventure for chemical biologists but will yield extremely powerful tools to study p97 and enable evaluation of the therapeutic potential of targeting distinct p97 complexes.  相似文献   

15.
Protein aggregate formation may be the result of an impairment of the protein quality control system, e.g., the ubiquitin proteasome system (UPS) and the lysosomal autophagic pathway. For proteasomal degradation, proteins need to be covalently modified by ubiquitin and deubiquitinated before the substrates are proteolytically degraded. Deubiquitination is performed by a large family of proteases, the deubiquitinating enzymes (DUBs). DUBs display a variety of functions and their inhibition may have pathological consequences. Using the broad specificity DUB inhibitor PR-619 we previously have shown that DUB inhibition leads to an overload of ubiquitinated proteins, to protein aggregate formation and subsequent inhibition of the UPS. This study was undertaken to investigate whether PR-619 modulates autophagic functions to possibly compensate the failure of the proteasomal system. Using the oligodendroglial cell line OLN-t40 and a new oligodendroglial cell line stably expressing GFP-LC3, we show that DUB inhibition leads to the activation of autophagy and to the recruitment of LC3 and of the ubiquitin binding protein p62 to the forming aggresomes without impairing the autophagic flux. Furthermore, PR-619 induced the transport of lysosomes to the forming aggregates in a process requiring an intact microtubule network. Further stimulation of autophagy by rapamycin did not prevent PR-619 aggregate formation but rather exerted cytotoxic effects. Hence, inhibition of DUBs by PR-619 activated the autophagic pathway supporting the hypothesis that the UPS and the autophagy–lysosomal pathway are closely linked together.  相似文献   

16.
《Autophagy》2013,9(2):277-279
The term "autophagic cell death" was coined to describe a form of cell death associated with the massive formation of autophagic vacuoles without signs of apoptosis. However, questions about the actual role of autophagy and its molecular basis in cell death remain to be elucidated. We recently reported that adult hippocampal neural stem (HCN) cells undergo autophagic cell death following insulin withdrawal. Insulin-deprived HCN cells exhibit morphological and biochemical markers of autophagy, including accumulation of Beclin 1 and the type II form of microtubule-associated protein 1 light chain 3 (LC3) without evidence of apoptosis. Suppression of autophagy by knockdown of Atg7 reduces cell death, whereas promotion of autophagy with rapamycin augments cell death in insulin-deficient HCN cells. These data reveal a causative role of autophagy in insulin withdrawal-induced HCN cell death. HCN cells have intact apoptotic capability despite the lack of apoptosis following insulin withdrawal. Our study demonstrates that autophagy is the default cell death mechanism in insulin-deficient HCN cells, and provides a genuine model of autophagic cell death in apoptosis-intact cells. Novel insight into molecular mechanisms of this underappreciated form of programmed cell death should facilitate the development of therapeutic methods to cope with human diseases caused by dysregulated cell death.  相似文献   

17.

Background

The ubiquitin proteasome system (UPS) is a key player in regulating many cellular processes via proteasomal degradation of ubiquitinated proteins. Recently published data show that Jab1/CSN5 interacts with p97/VCP and controls the ubiquitination status of proteins bound to p97/VCP in mouse and human cells. However, coexpression of p97/VCP and Jab1/CSN5 in the developing rat testis and epididymis has not previously been studied.

Methods

Testicular and epididymal tissues from 5-, 15-, 30-, and 60-day-old rats were examined by immunohistochemistry and Western blotting. Colocalisation of proteins was determined by immunofluorescence microscopy.

Results

In the 5-day-old rat testis, p97/VCP and Jab1/CSN5 were specifically expressed in gonocytes. The expression of p97/VCP and Jab1/CSN5 significantly increased at day 15 and was found in spermatogonia, Sertoli cells and spermatocytes. In 30- and 60-day-old rat testes, p97/VCP indicated moderate to strong expression in Sertoli cells, spermatogonia, round and elongating spermatids. However, moderate to weak expression was observed in spermatocytes. Jab1/CSN5 showed strong expression in spermatogonia and spermatocytes, while relatively moderate expression was observed in round and elongating spermatids in 30- and 60-day-old rat testes. In contrast, in the epididymis, the expression of both proteins gradually increased from 5 to 60 days of age. After rats reached 2 weeks of age, the expression of both proteins was mostly restricted to the basal and principal cells of the caput epididymis.

Conclusions

Our study suggests that p97/VCP and Jab1/CSN5 could be an important part of the UPS in the developing rat testis and epididymis and that both proteins may be involved in the regulation of spermatogenesis and epididymal epithelial functions.  相似文献   

18.
Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients.  相似文献   

19.
In retinopathy of prematurity (ROP), the abnormal retinal neovascularization is often accompanied by retinal neuronal dysfunction. Here, a rat model of oxygen-induced retinopathy (OIR), which mimics the ROP disease, was used to investigate changes in the expression of key mediators of autophagy and markers of cell death in the rat retina. In addition, rats were treated from birth to postnatal day 14 and 18 with 3-methyladenine (3-MA), an inhibitor of autophagy. Immunoblot and immunofluorescence analysis demonstrated that autophagic mechanisms are dysregulated in the retina of OIR rats and indicated a possible correlation between autophagy and necroptosis, but not apoptosis. We found that 3-MA acts predominantly by reducing autophagic and necroptotic markers in the OIR retinas, having no effects on apoptotic markers. However, 3-MA does not ameliorate retinal function, which results compromised in this model. Taken together, these results revealed the crucial role of autophagy in retinal cells of OIR rats. Thus, inhibiting autophagy may be viewed as a putative strategy to counteract ROP.  相似文献   

20.
《Autophagy》2013,9(12):1462-1471
Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号