首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Necroptosis as a molecular program, rather than simply incidental cell death, was established by elucidating the roles of receptor interacting protein (RIP) kinases 1 and 3, along with their downstream partner, mixed lineage kinase-like domain protein (MLKL). Previous studies suggested that phosphoglycerate mutase family member 5 (PGAM5), a mitochondrial protein that associates with RIP1/RIP3/MLKL complex, promotes necroptosis. We have generated mice deficient in the pgam5 gene and surprisingly found PGAM5-deficiency exacerbated rather than reduced necroptosis in response to multiple in vitro and in vivo necroptotic stimuli, including ischemic reperfusion injury (I/R) in the heart and brain. Electron microscopy, biochemical, and confocal analysis revealed that PGAM5 is indispensable for the process of PINK1 dependent mitophagy which antagonizes necroptosis. The loss of PGAM5/PINK1 mediated mitophagy causes the accumulation of abnormal mitochondria, leading to the overproduction of reactive oxygen species (ROS) that worsen necroptosis. Our results revise the former proposal that PGAM5 acts downstream of RIP1/RIP3 to mediate necroptosis. Instead, PGAM5 protects cells from necroptosis by independently promoting mitophagy. PGAM5 promotion of mitophagy may represent a therapeutic target for stroke, myocardial infarction and other diseases caused by oxidative damage and necroptosis.  相似文献   

2.
3.
Regulated intramembrane proteolysis is a widely conserved mechanism for controlling diverse biological processes. Considering that proteolysis is irreversible, it must be precisely regulated in a context-dependent manner. Here, we show that phosphoglycerate mutase 5 (PGAM5), a mitochondrial Ser/Thr protein phosphatase, is cleaved in its N-terminal transmembrane domain in response to mitochondrial membrane potential (ΔΨm) loss. This ΔΨm loss-dependent cleavage of PGAM5 was mediated by presenilin-associated rhomboid-like (PARL). PARL is a mitochondrial resident rhomboid serine protease and has recently been reported to mediate the cleavage of PINK1, a mitochondrial Ser/Thr protein kinase, in healthy mitochondria with intact ΔΨm. Intriguingly, we found that PARL dissociated from PINK1 and reciprocally associated with PGAM5 in response to ΔΨm loss. These results suggest that PARL mediates differential cleavage of PINK1 and PGAM5 depending on the health status of mitochondria. Our data provide a prototypical example of stress-dependent regulation of PARL-mediated regulated intramembrane proteolysis.  相似文献   

4.
Mitochondrial dynamics in the regulation of neuronal cell death   总被引:1,自引:0,他引:1  
Mitochondria undergo continuous fission and fusion events in physiological situations. Fragmentation of mitochondria during cell death has been shown to play a key role in cell death progression, including release of the mitochondrial apoptotic proteins. Ultrastructural changes in mitochondria, such as cristae remodeling, is also involved in cell death initiation. Here, we emphasize the important role of mitochondrial fission/fusion machinery in neuronal cell death. Unlike many other cell types such as immortalized cell lines, neurons are distinct morphologically and functionally. We will discuss how this uniqueness presents special challenges in the cellular response to neurotoxic stresses, and how this affects the mitochondrial dynamics in the regulation of cell death in neurons.  相似文献   

5.
Recent advances in mitochondrial imaging have revealed that in many cells mitochondria can be highly dynamic. They can undergo fission/fusion processes modulated by various mitochondria-associated proteins and also by conformational transitions in the inner mitochondrial membrane. Moreover, precise mitochondrial distribution can be achieved by their movement along the cytoskeleton, recruiting various connector and motor proteins. Such movement is evident in various cell types ranging from yeast to mammalian cells and serves to direct mitochondria to cellular regions of high ATP demand or to transport mitochondria destined for elimination. Existing data also demonstrate that many aspects of mitochondrial dynamics, morphology, regulation and intracellular organization can be cell type-/tissue-specific. In many cells like neurons, pancreatic cells, HL-1 cells, etc., complex dynamics of mitochondria include fission, fusion, small oscillatory movements of mitochondria, larger movements like filament extension, retraction, fast branching in the mitochondrial network and rapid long-distance intracellular translocation of single mitochondria. Alternatively, mitochondria can be rather fixed in other cells and tissues like adult cardiomyocytes or skeletal muscles with a very regular organelle organization between myofibrils, providing the bioenergetic basis for contraction. Adult cardiac cells show no displacement of mitochondria with only very small-amplitude rapid vibrations, demonstrating remarkable, cell type-dependent differences in the dynamics and spatial arrangement of mitochondria. These variations and the cell-type specificity of mitochondrial dynamics could be related to specific cellular functions and demands, also indicating a significant role of integrations of mitochondria with other intracellular systems like the cytoskeleton, nucleus and endoplasmic reticulum (ER).  相似文献   

6.
Decline in ovarian reserve with aging is associated with reduced fertility and the development of metabolic abnormalities. Once mitochondrial homeostasis is imbalanced, it may lead to poor reproductive cell quality and aging. However, Phosphoglycerate translocase 5 (PGAM5), located in the mitochondrial membrane, is associated with necroptosis, apoptosis, and mitophagy, although the underlying mechanisms associated with ovarian aging remain unknown. Therefore, we attempted to uncover whether the high phosphoglycerate mutant enzyme family member 5 (PGAM5) expression is associated with female infertility in cumulus cells, and aims to find out the underlying mechanism of action of PGAM5. We found that PGAM5 is highly expressed and positively associated with aging, and has the potential to help maintain and regulate mitochondrial dynamics and metabolic reprogramming in aging granulosa cells, ovaries of aged female mice, and elderly patients. PGAM5 undergoes activation in the aging group and translocated to the outer membrane of mitochondria, co‐regulating DRP1; thereby increasing mitochondrial fission. A significant reduction in the quality of mitochondria in the aging group, a serious imbalance, and a significant reduction in energy, causing metabolism shift toward glycolysis, were also reported. Since PGAM5 is eliminated, the mitochondrial function and metabolism of aging cells are partially reversed. A total of 70 patients undergoing in vitro fertilization (IVF) treatment were recruited in this clinical study. The high expression of PGAM5 in the cumulus cells is negatively correlated with the pregnancy rate of infertile patients. Hence, PGAM5 has immense potential to be used as a diagnostic marker.  相似文献   

7.
The chemotherapeutic isothiocyanate sulforaphane (SFN) was early linked to anticarcinogenic and antiproliferative activities. Soon after, this compound, derived from cruciferous vegetables, became an excellent and useful trial for anti-cancer research in experimental models including growth tumor, metastasis, and angiogenesis. Many subsequent reports showed modifications in mitochondrial signaling, functionality, and integrity induced by SFN. When cytoprotective effects were found in toxic and ischemic insult models, seemingly contradictory behaviors of SFN were discovered: SFN was inducing deleterious changes in cancer cell mitochondria that eventually would carry the cell to death via apoptosis and also was protecting noncancer cell mitochondria against oxidative challenge, which prevented cell death. In both cases, SFN exhibited effects on mitochondrial redox balance and phase II enzyme expression, mitochondrial membrane potential, expression of the family of B cell lymphoma 2 homologs, regulation of proapoptotic proteins released from mitochondria, activation/inactivation of caspases, mitochondrial respiratory complex activities, oxygen consumption and bioenergetics, mitochondrial permeability transition pore opening, and modulation of some kinase pathways. With the ultimate findings related to the induction of mitochondrial biogenesis by SFN, it could be considered that SFN has effects on mitochondrial dynamics that explain some divergent points. In this review, we list the reports involving effects on mitochondrial modulation by SFN in anti-cancer models as well as in cytoprotective models against oxidative damage. We also attempt to integrate the data into a mechanism explaining the various effects of SFN on mitochondrial function in only one concept, taking into account mitochondrial biogenesis and dynamics and making a comparison with the theory of reactive oxygen species threshold of cell death. Our interest is to achieve a complete view of cancer and protective therapies based on SFN that can be extended to other chemotherapeutic compounds with similar characteristics. The work needed to test this hypothesis is quite extensive.  相似文献   

8.
《Cell calcium》2015,57(6):457-466
Mitochondrial Ca2+ plays a critical physiological role in cellular energy metabolism and signaling, and its overload contributes to various pathological conditions including neuronal apoptotic death in neurological diseases. Live cell mitochondrial Ca2+ imaging is an important approach to understand mitochondrial Ca2+ dynamics. Recently developed GCaMP genetically-encoded Ca2+ indicators provide unique opportunity for high sensitivity/resolution and cell type-specific mitochondrial Ca2+ imaging. In the current study, we implemented cell-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s) and used two-photon microscopy to image astrocytic and neuronal mitochondrial Ca2+ dynamics in culture, revealing Ca2+ uptake mechanism by these organelles in response to cell stimulation. Using these mitochondrial Ca2+ indicators, our results show that mitochondrial Ca2+ uptake in individual mitochondria in cultured astrocytes and neurons can be seen after stimulations by ATP and glutamate, respectively. We further studied the dependence of mitochondrial Ca2+ dynamics on cytosolic Ca2+ changes following ATP stimulation in cultured astrocytes by simultaneously imaging mitochondrial and cytosolic Ca2+ increase using mito-GCaMP5G and a synthetic organic Ca2+ indicator, x-Rhod-1, respectively. Combined with molecular intervention in Ca2+ signaling pathway, our results demonstrated that the mitochondrial Ca2+ uptake is tightly coupled with inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release from the endoplasmic reticulum and the activation of G protein-coupled receptors. The current study provides a novel approach to image mitochondrial Ca2+ dynamics as well as Ca2+ interplay between the endoplasmic reticulum and mitochondria, which is relevant for neuronal and astrocytic functions in health and disease.  相似文献   

9.
The SPFH (stomatin, prohibitin, flotillin, HflC/K) superfamily is composed of scaffold proteins that form ring‐like structures and locally specify the protein–lipid composition in a variety of cellular membranes. Stomatin‐like protein 2 (SLP2) is a member of this superfamily that localizes to the mitochondrial inner membrane (IM) where it acts as a membrane organizer. Here, we report that SLP2 anchors a large protease complex composed of the rhomboid protease PARL and the i‐AAA protease YME1L, which we term the SPY complex (for SLP2–PARL–YME1L). Association with SLP2 in the SPY complex regulates PARL‐mediated processing of PTEN‐induced kinase PINK1 and the phosphatase PGAM5 in mitochondria. Moreover, SLP2 inhibits the stress‐activated peptidase OMA1, which can bind to SLP2 and cleaves PGAM5 in depolarized mitochondria. SLP2 restricts OMA1‐mediated processing of the dynamin‐like GTPase OPA1 allowing stress‐induced mitochondrial hyperfusion under starvation conditions. Together, our results reveal an important role of SLP2 membrane scaffolds for the spatial organization of IM proteases regulating mitochondrial dynamics, quality control, and cell survival.  相似文献   

10.
Phosphoglycerate mutase 5 (PGAM5) is an atypical mitochondrial Ser/Thr phosphatase that modulates mitochondrial dynamics and participates in both apoptotic and necrotic cell death. The mechanisms that regulate the phosphatase activity of PGAM5 are poorly understood. The C-terminal phosphoglycerate mutase domain of PGAM5 shares homology with the catalytic domains found in other members of the phosphoglycerate mutase family, including a conserved histidine that is absolutely required for catalytic activity. However, this conserved domain is not sufficient for maximal phosphatase activity. We have identified a highly conserved amino acid motif, WDXNWD, located within the unique N-terminal region, which is required for assembly of PGAM5 into large multimeric complexes. Alanine substitutions within the WDXNWD motif abolish the formation of multimeric complexes and markedly reduce phosphatase activity of PGAM5. A peptide containing the WDXNWD motif dissociates the multimeric complex and reduces but does not fully abolish phosphatase activity. Addition of the WDXNWD-containing peptide in trans to a mutant PGAM5 protein lacking the WDXNWD motif markedly increases phosphatase activity of the mutant protein. Our results are consistent with an intermolecular allosteric regulation mechanism for the phosphatase activity of PGAM5, in which the assembly of PGAM5 into multimeric complexes, mediated by the WDXNWD motif, results in maximal activation of phosphatase activity. Our results suggest the possibility of identifying small molecules that function as allosteric regulators of the phosphatase activity of PGAM5.  相似文献   

11.
Mitochondrial homeostasis is essential for providing cellular energy, particularly in resource‐demanding neurons, defects in which cause neurodegeneration, but the function of interferons (IFNs) in regulating neuronal mitochondrial homeostasis is unknown. We found that neuronal IFN‐β is indispensable for mitochondrial homeostasis and metabolism, sustaining ATP levels and preventing excessive ROS by controlling mitochondrial fission. IFN‐β induces events that are required for mitochondrial fission, phosphorylating STAT5 and upregulating PGAM5, which phosphorylates serine 622 of Drp1. IFN‐β signaling then recruits Drp1 to mitochondria, oligomerizes it, and engages INF2 to stabilize mitochondria–endoplasmic reticulum (ER) platforms. This process tethers damaged mitochondria to the ER to separate them via fission. Lack of neuronal IFN‐β in the Ifnb –/– model of Parkinson disease (PD) disrupts STAT5‐PGAM5‐Drp1 signaling, impairing fission and causing large multibranched, damaged mitochondria with insufficient ATP production and excessive oxidative stress to accumulate. In other PD models, IFN‐β rescues dopaminergic neuronal cell death and pathology, associated with preserved mitochondrial homeostasis. Thus, IFN‐β activates mitochondrial fission in neurons through the pSTAT5/PGAM5/S622Drp1 pathway to stabilize mitochondria/ER platforms, constituting an essential neuroprotective mechanism.  相似文献   

12.
13.
In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.  相似文献   

14.
INrf2 (Keap1) is an adaptor protein that facilitates INrf2-Cul3-Rbx1-mediated ubiquitination/degradation of Nrf2, a master regulator of cytoprotective gene expression. Here, we present evidence that members of the phosphoglycerate mutase family 5 (PGAM5) proteins are involved in the INrf2-mediated ubiquitination/degradation of anti-apoptotic factor Bcl-xL. Mass spectrometry and co-immunoprecipitation assays revealed that INrf2, through its DGR domain, interacts with PGAM5, which in turn interacts with anti-apoptotic Bcl-xL protein. INrf2-Cul3-Rbx1 complex facilitates ubiquitination and degradation of both PGAM5 and Bcl-xL. Overexpression of PGAM5 protein increased INrf2-mediated degradation of Bcl-xL, whereas knocking down PGAM5 by siRNA decreased INrf2 degradation of Bcl-xL, resulting in increased stability of Bcl-xL. Mutation of PGMA5-E79A/S80A abolished INrf2/PGAM5/Bcl-xL interaction. Therefore, PGAM5 protein acts as a bridge between INrf2 and Bcl-xL interaction. Further studies showed that overexpression of INrf2 enhanced degradation of PGAM5-Bcl-xL complex, led to etoposide-mediated accumulation of Bax, increased release of cytochrome c from mitochondria, activated caspase-3/7, and enhanced DNA fragmentation and apoptosis. In addition, antioxidant (tert-butylhydroquinone) treatment destabilized the Nrf2-INrf2-PGAM5-Bcl-xL complex, which resulted in release of Nrf2 in cytosol and mitochondria, release of Bcl-xL in mitochondria, increase in Bcl-xL heterodimerization with Bax in mitochondria, and reduced cellular apoptosis. These data provide the first evidence that INrf2 controls Bcl-xL via PGAM5 and controls cellular apoptosis.  相似文献   

15.
PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-onset Parkinson's disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin) phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1.  相似文献   

16.
The capacity of yeast cells to produce reactive oxygen species (ROS), both as a response to manipulation of mitochondrial functions and to growth conditions, was estimated and compared with the viability of the cells. The chronological ageing of yeast cells (growth to late-stationary phase) was accompanied by increased ROS accumulation and a significantly higher loss of viability in the mutants with impaired mitochondrial functions than in the parental strain. Under these conditions, the ectopic expression of mammalian Bcl-x(L), which is an anti-apoptotic protein, allowed cells to survive longer in stationary phase. The protective effect of Bcl-x(L) was more prominent in respiratory-competent cells that contained defects in mitochondrial ADP/ATP translocation, suggesting a model for Bcl-x(L) regulation of chronological ageing at the mitochondria. Yeast can also be triggered into apoptosis-like cell death, at conditions leading to the depletion of the intramitochondrial ATP pool, as a consequence of the parallel inhibition of mitochondrial respiration and ADP/ATP translocation. If respiratory-deficient (rho(0)) cells were used, no correlation between the numbers of ROS-producing cells and the viability loss in the population was observed, indicating that ROS production may be an accompanying event. The protective effect of Bcl-x(L) against death of these cells suggests a mitochondrial mechanism which is different from the antioxidant activity of Bcl-x(L).  相似文献   

17.
Cell death from mitochondrial dysfunction and compromised bioenergetics is common after ischemia-reperfusion injury and toxicant exposure. Thus, promoting mitochondrial biogenesis is therapeutically attractive for sustaining oxidative phosphorylation and maintaining ATP-dependent cellular functions. Here, we evaluated increased mitochondrial biogenesis prior to or after oxidant exposure in primary cultures of renal proximal tubular cells (RPTC). Over-expression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1 alpha (PGC-1alpha) in control RTPC increased basal and uncoupled cellular respiration, ATP, and mitochondria. Increasing mitochondrial number/function prior to oxidant exposure did not preserve mitochondrial function, but potentiated dysfunction and cell death. However, increased mitochondrial biogenesis after oxidant injury accelerated recovery of mitochondrial function. In oxidant treated RPTC, mitochondrial protein expression was reduced by 50%. Also, ATP and cellular respiration decreased 48 h after oxidant exposure, whereas mitochondrial function in injured RPTC over-expressing PGC-1alpha returned to control values. Thus, up-regulation of mitochondrial biogenesis after oxidant exposure accelerates recovery of mitochondrial and cellular functions.  相似文献   

18.
Wang Z  Jiang H  Chen S  Du F  Wang X 《Cell》2012,148(1-2):228-243
Highlights? PGAM5 is a mitochondrial phosphatase that functions in programmed necrosis (necroptosis) ? Both splicing variants of PGAM5, PGAM5L and PGAM5S, are required for necroptosis ? PGAM5 dephosphorylates and activates mitochondrial fission protein Drp1 ? PGAM5 is required for necrosis induced by TNF-α, ROS, and calcium overload  相似文献   

19.
Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These “non-canonical” roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   

20.
Mitochondrial dynamics is a morphological balance between fragmented and elongated shapes, reflecting mitochondrial metabolic status, cellular damage, and mitochondrial dysfunction. The anaphylatoxin C5a derived from complement component 5 cleavage, enhances cellular responses involved in pathological stimulation, innate immune responses, and host defense. However, the specific response of C5a and its receptor, C5a receptor (C5aR), in mitochondria is unclear. Here, we tested whether the C5a/C5aR signaling axis affects mitochondrial morphology in human-derived retinal pigment epithelial cell monolayers (ARPE-19). C5aR activation with the C5a polypeptide induced mitochondrial elongation. In contrast, oxidatively stressed cells (H2O2) responded to C5a with an enhancement of mitochondrial fragmentation and an increase in the number of pyknotic nuclei. C5a/C5aR signaling increased the expression of mitochondrial fusion-related protein, mitofusin-1 (MFN1) and − 2 (MFN2), as well as enhanced optic atrophy-1 (Opa1) cleavage, which are required for mitochondrial fusion events, whereas the mitochondrial fission protein, dynamin-related protein-1 (Drp1), and mitogen-activated protein kinase (MAPK)-dependent extracellular signal-regulated protein kinase (Erk1/2) phosphorylation were not affected. Moreover, C5aR activation increased the frequency of endoplasmic reticulum (ER)-mitochondria contacts. Finally, oxidative stress induced in a single cell within an RPE monolayer (488 nm blue laser spot stimulation) induced a bystander effect of mitochondrial fragmentation in adjacent surrounding cells only in C5a-treated monolayers. These results suggest that C5a/C5aR signaling produced an intermediate state, characterized by increased mitochondrial fusion and ER-mitochondrial contacts, that sensitizes cells to oxidative stress, leading to mitochondrial fragmentation and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号