首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pathogens can cause chronic premature needle abscission in coniferous species. To assess the potential impacts on tree productivity, stomatal regulation was investigated in Douglas fir with chronic stomatal occlusion and defoliation from varying levels of the Swiss needle cast (SNC) fungus, Phaeocryptopus gaeumannii. Levels of SNC disease and subsequent defoliation were manipulated by choosing six sites with varying levels of disease and by foliar applications of fungicides on six trees per site. Diurnal measurements of leaf water potential (Ψleaf), stomatal conductance (g s) and vapor pressure deficit (D) were made on six fungicide treated and six control trees per site. In addition, leaf specific hydraulic conductance was calculated on a single branch (K L_B) from three trees per treatment per site. Stomatal conductance at D=1 kPa (g sref) was negatively correlated with fungal colonization (number of fruiting bodies present in needle stomata) and positively correlated with K L_B. Despite reduced needle retention in diseased trees, K L declined due to a reduction in sapwood area and permeability (i.e., increasing presence of latewood in functional sapwood). In general, stomatal sensitivity to D for all foliage was consistent with stomatal regulation based on a simple hydraulic model [g s=K Lsoilleaf)/ D], which assumes strict stomatal regulation of Ψleaf. However, when fungal presence reduced maximum g s below the potential maximum supported by hydraulic architecture, stomatal sensitivity was lower than expected based on the theoretical relationship: dg s/dlnD=0.6·g sref. The results indicate that losses in productivity associated with physical blockage of stomata and defoliation are compounded by additional losses in K L and a reduction in g s in remaining functional stomata.  相似文献   

2.
Higher plant hydraulic conductivity (K plant) is vital for plant growth, especially under PEG-induced water deficit stress (PEG-IWDS). Leaf venation architecture is a key determinant of leaf hydraulic conductivity (K leaf) and K leaf is a major component of K plant across different plant species. However, there is little information about (1) varietal difference in leaf vein development in cereal crops, such as rice plants; (2) the effects of PEG-IWDS on leaf vein development; (3) the coordination between leaf venation architecture and K plant as well as K leaf under PEG-IWDS. In the present study, widely cultivated eight rice cultivars were grown hydroponically under well-watered condition (WWC) and PEG-IWDS, simulated by adding 15 % (w/v) PEG6000. Leaf venation architecture, including total longitudinal leaf vein number, leaf vein numbers per unit width (LVNW), vein thickness and leaf mass per area, as well as K plant and K leaf were measured to address above-mentioned questions. The results showed that leaf venation architecture exhibited significant varietal differences and PEG-IWDS significantly increased LVNW while decreased vein thickness. PEG-IWDS suppressed both K plant and K leaf but the decrease was much higher in K plant than K leaf. There was a significant and positive correlation observed between LVNW and K leaf under both WWC and PEG-IWDS but the correlation between LVNW and K plant was only significant under WWC. K leaf was significantly and positively correlated with K plant under WWC but not under PEG-IWDS. It is concluded that K leaf is a major determinant for K plant under WWC but not under PEG-IWDS; therefore, breeding or selecting rice cultivars with high LVNW can improve shoot water supplement under WWC but not under PEG-IWDS condition.  相似文献   

3.
Salix psammophila and Caragana korshinskii are two common shrubs in the southern Mu Us Desert, China. Their hydraulic strategies for adapting to this harsh, dry desert environment are not yet clear. This study examined the hydraulic transport efficiency, vulnerability to cavitation, and daily embolism refilling in the leaves and stems of these two shrubs during the dry season. In order to gain insight into water use strategies of whole plants, other related traits were also considered, including daily changes in stomatal conductance, leaf mass per area, leaf pressure–volume parameters, wood density and the Huber value. The leaves and stems of S. psammophila had greater hydraulic efficiency, but were more vulnerable to drought-induced hydraulic dysfunction than C. korshinskii. The difference between leaf and stem water potential at 50 % loss of conductivity was 0.12 MPa for S. psammophila and 0.81 MPa for C. korshinskii. Midday stomatal conductance decreased by 74 % compared to that at 8:30 in S. psammophila, whereas no change occurred in C. korshinskii. Daily embolism and refilling occurred in the stems of S. psammophila and leaves of C. korshinskii. These results suggest that a stricter stomatal regulation, daily embolism repair in stems, and a higher stem water capacitance could be partially compensating for the greater susceptibility to xylem embolism in S. psammophila, whereas higher leaf elastic modulus, greater embolism resistance in stems, larger difference between leaf and stem hydraulic safety, and drought-induced leaf shedding in C. korshinskii were largely responsible for its more extensive distribution in arid and desert steppes.  相似文献   

4.

Key message

Different groundwater conditions affect leaf hydraulic conductance and leaf pressure–volume parameters in Populus euphratica at the extremely arid zone in the northwest of China.

Abstract

Efficient water transport inside leaves constitutes a major determinant of plant function, especially in drought-stressed plants. The previous researches have reported the correlation between leaf hydraulic properties and water availability. In this study, we tested the hypothesis that water relation parameters of Populus euphratica in an extremely arid zone of China are sensitive and acclimated to groundwater depth. We measured leaf hydraulic conductance (K leaf) using rehydration kinetics methods (RKM), pressure–volume (P–V) curves, and leaf vulnerability curves of P. euphratica growing at four groundwater depth gradients. We also assessed the hydraulic safety margins across groundwater depth gradients. We found that K leaf–max shows an increasing trend as the groundwater depth increases, while osmotic potential at full turgor (πft) and turgor loss point (Ψtlp) exhibits a decreasing trend, suggesting that increased tolerance to drought is formed as the groundwater depth increases. Furthermore, safety margins showed positive and negative variations under different groundwater depths, indicating that P. euphratica has formed special drought survival strategies, which can be summarized as a “conservative” strategy in favorable water conditions or a “risk” strategy in severe drought stress.
  相似文献   

5.
Diurnal depression of leaf hydraulic conductance in a tropical tree species   总被引:10,自引:2,他引:8  
Diurnal patterns of hydraulic conductance of the leaf lamina (Kleaf) were monitored in a field‐grown tropical tree species in an attempt to ascertain whether the dynamics of stomatal conductance (gs) and CO2 uptake (Aleaf) were associated with short‐term changes in Kleaf. On days of high evaporative demand mid‐day depression of Kleaf to between 40 and 50% of pre‐dawn values was followed by a rapid recovery after 1500 h. Leaf water potential during the recovery stage was less than ?1 MPa implying a refilling mechanism, or that loss of Kleaf was not linked to cavitation. Laboratory measurement of the response of Kleaf to Ψleaf confirmed that leaves in the field were operating at water potentials within the depressed region of the leaf ‘vulnerability curve’. Diurnal courses of Kleaf and Ψleaf predicted from measured transpiration, xylem water potential and the Kleaf vulnerability function, yielded good agreement with observed trends in both leaf parameters. Close correlation between depression of Kleaf, gs and Aleaf suggests that xylem dysfunction in the leaf may lead to mid‐day depression of gas exchange in this species.  相似文献   

6.
Nothofagus obliqua, N. dombeyi, N. alpina and N. antarctica are characteristic tree species of the temperate forests on the western slopes of the Andes with centres of distribution that differ in their temperature and moisture regimes. We tested branch wood from co-occurring specimens of these species for the inherent differences in xylem anatomy and theoretical hydraulic conductance to evaluate their resistance to drought or frost. The hydraulic conductivity of the xylem was calculated using a modified Hagen–Poiseuille equation and related to wood density. Conduit dimensions were used to predict the water potential that would cause 50 % loss of hydraulic conductivity (Ψ 50). Nothofagus alpina, which mainly grows at sites with low frost frequency, exhibited the largest conduits and the highest mean values for conduit area, fraction of conduit area in the cross-section and hydraulic conductivity, but the lowest wood density. Opposite relationships were found in the plastic N. antarctica, whose xylem seems to be least vulnerable to freezing-induced, but also to drought-induced embolism. Calculated Ψ 50 was highest (least negative) in N. alpina, indicating a relatively high susceptibility to cavitation. The xylem of the thermophilic N. obliqua and of N. dombeyi, which mainly occurs under oceanic climate, but can also survive at sporadically dry and warm sites, is not particularly adapted to periods of drought stress. Across all species, wood density was negatively correlated with the calculated hydraulic conductance. The xylem traits of N. alpina might contribute to its relatively high growth rate and facilitate its spread into forest gaps.  相似文献   

7.
Effects of temperature on leaf hydraulic architecture of tobacco plants   总被引:1,自引:0,他引:1  

Main Conclusion

Modifications in leaf anatomy of tobacco plants induced greater leaf water transport capacity, meeting greater transpirational demands and acclimating to warmer temperatures with a higher vapor pressure deficit. Temperature is one of the most important environmental factors affecting photosynthesis and growth of plants. However, it is not clear how it may alter leaf hydraulic architecture. We grew plants of tobacco (Nicotiana tabacum) ‘k326’ in separate glasshouse rooms set to different day/night temperature conditions: low (LT 24/18 °C), medium (MT 28/22 °C), or high (HT 32/26 °C). After 40 days of such treatment, their leaf anatomies, leaf hydraulics, photosynthetic rates, and instantaneous water-use efficiency (WUEi) were measured. Compared with those under LT, plants exposed to HT or MT conditions had significantly higher values for minor vein density (MVD), stomatal density (SD), leaf area, leaf hydraulic conductance (K leaf), and light-saturated photosynthetic rate (A sat), but lower values for leaf water potential (ψ l) and WUEi. However, those parameters did not differ significantly between HT and MT conditions. Correlation analyses demonstrated that SD and K leaf increased in parallel with MVD. Moreover, greater SD and K leaf were partially associated with accelerated stomatal conductance. And then stomatal conductance was positively correlated with A sat. Therefore, under well-watered, fertilized conditions, when relative humidity was optimal, changes in leaf anatomy seemed to facilitate the hydraulic acclimation to higher temperatures, meeting greater transpirational demands and contributing to the maintenance of great photosynthetic rates. Because transpiration rate increased more with temperature than photosynthetic rate, WUEi reduced under warmer temperatures. Our results indicate that the modifications of leaf hydraulic architecture are important anatomical and physiological strategies for tobacco plants acclimating to warmer temperatures under a higher vapor pressure deficit.  相似文献   

8.
The objectives of this study were to investigate stomatal regulation in maize seedlings during progressive soil drying and to determine the impact of stomatal movement on photosynthetic activity. In well-watered and drought-stressed plants, leaf water potential (Ψ leaf), relative water content (RWC), stomatal conductance (g s), photosynthesis, chlorophyll fluorescence, leaf instantaneous water use efficiency (iWUEleaf), and abscisic acid (ABA) and zeatin-riboside (ZR) accumulation were measured. Results showed that g s decreased significantly with progressive drought and stomatal limitations were responsible for inhibiting photosynthesis in the initial stages of short-term drought. However, after 5 days of withholding water, non-stomatal limitations, such as damage to the PSII reaction center, became the main limiting factor. Stomatal behavior was correlated with changes in both hydraulic and chemical signals; however, changes in ABA and ZR occurred prior to any change in leaf water status. ABA in leaf and root tissue increased progressively during soil drying, and further analysis found that leaf ABA was negatively correlated with g s (R 2 = 0.907, p < 0.05). In contrast, leaf and root ZR decreased gradually. ZR in leaf tissue was positively correlated with g s (R 2 = 0.859, p < 0.05). These results indicate that ABA could induce stomatal closure, and ZR works antagonistically against ABA in stomatal behavior. In addition, the ABA/ZR ratio also had a strong correlation with g s, suggesting that the combined chemical signal (the interaction between ABA and cytokinin) plays a role in coordinating stomatal behavior. In addition, Ψ leaf and RWC decreased significantly after only 3 days of drought stress, also affecting stomatal behavior.  相似文献   

9.
The native alpine plant Saussurea superba is widely distributed in Qinghai–Tibetan Plateau regions. The leaves of S. superba grow in whorled rosettes, and are horizontally oriented to maximize sunlight exposure. Experiments were conducted in an alpine Kobresia humilis meadow near Haibei Alpine Meadow Ecosystem Research Station (37°29′–37°45′N, 101°12′–101°33′E; alt. 3200 m). Leaf growth, photosynthetic pigments and chlorophyll fluorescence parameters were measured in expanding leaves of S. superba. The results indicate that leaf area increased progressively from inner younger leaves to outside fully expanded ones, and then slightly decreased in nearly senescent leaves, due to early unfavorable environmental conditions, deviating from the ordinary growth pattern. The specific leaf area decreased before leaves were fully expanded, and the leaf thickness was largest in mature leaves. There were no significant changes in the content of chlorophylls (Chl) and carotenoids (Car), but the ratios of Chl a/b and Car/Chl declined after full expansion of the leaves. The variation of Chl a/b coincided well with changes in photochemical quenching (q P) and the fraction of open PSII reaction centers (q L). The maximum quantum efficiency of PSII photochemistry after 5 min dark relaxation (F (v)/F (m)) continuously increased from younger leaves to fully mature leaves, suggesting that mature leaves could recover more quickly from photoinhibition than younger leaves. The light-harvesting capacity was relatively steady during leaf expansion, as indicated by the maximum quantum efficiency of open PSII centers (\(F_{\text{v}}^{{\prime }}\)/\(F_{\text{m}}^{{\prime }}\)). UV-absorbing compounds could effectively screen harmful solar radiation, and are a main protection way on the photosynthetic apparatus. The decline of q P and q L during maturation, together with limitation of quantum efficiency of PSII reaction centers (L (PFD)), shows a decrease of oxidation state of QA in PSII reaction centers under natural sunlight. Furthermore, light-induced (Φ NPQ) and non-light-induced quenching (Φ NO) were consistent with variation of L (PFD). It is concluded that the leaves of S. superba could be classified into four functional groups: young, fully expanded, mature, and senescent. Quick recovery from photoinhibition was correlated with protection by screening pigments, and high level of light energy trapping was correlated with preservation of photosynthetic pigments. Increasing of Φ NPQ and Φ NO during leaves maturation indicates that both thermal dissipation of excessive excitation energy in safety and potential threat to photosynthetic apparatus were strengthened due to the declination of q P and q L, and enhancement of L (PFD).  相似文献   

10.
Identifying the drivers of stomatal closure and leaf damage during stress in grasses is a critical prerequisite for understanding crop resilience. Here, we investigated whether changes in stomatal conductance (gs) during dehydration were associated with changes in leaf hydraulic conductance (Kleaf), xylem cavitation, xylem collapse, and leaf cell turgor in wheat (Triticum aestivum). During soil dehydration, the decline of gs was concomitant with declining Kleaf under mild water stress. This early decline of leaf hydraulic conductance was not driven by cavitation, as the first cavitation events in leaf and stem were detected well after Kleaf had declined. Xylem vessel deformation could only account for <5% of the observed decline in leaf hydraulic conductance during dehydration. Thus, we concluded that changes in the hydraulic conductance of tissues outside the xylem were responsible for the majority of Kleaf decline during leaf dehydration in wheat. However, the contribution of leaf resistance to whole plant resistance was less than other tissues (<35% of whole plant resistance), and this proportion remained constant as plants dehydrated, indicating that Kleaf decline during water stress was not a major driver of stomatal closure.  相似文献   

11.
Although precipitation plays a central role in structuring Africa’s miombo woodlands, remarkably little is known about plant-water relations in this seasonally dry tropical forest. Therefore, in this study, we investigated xylem vulnerability to cavitation for nine principal tree species of miombo woodlands, which differ in habitat preference and leaf phenology. We measured cavitation vulnerability (Ψ50), stem-area specific hydraulic conductivity (K S), leaf specific conductivity (K L), seasonal variation in predawn water potential (ΨPD) and xylem anatomical properties [mean vessel diameter, mean hydraulic diameter, mean hydraulic diameter accounting for 95 % flow, and maximum vessel length (V L)]. Results show that tree species with a narrow habitat range (mesic specialists) were more vulnerable to cavitation than species with a wide habitat range (generalists). Ψ50 for mesic specialists ranged between ?1.5 and ?2.2 MPa and that for generalists between ?2.5 and ?3.6 MPa. While mesic specialists exhibited the lowest seasonal variation in ΨPD, generalists displayed significant seasonal variations in ΨPD suggesting that the two miombo habitat groups differ in their rooting depth. We observed a strong trade-off between K S and Ψ50 suggesting that tree hydraulic architecture is one of the decisive factors setting ecological boundaries for principal miombo species. While vessel diameters correlated weakly (P > 0.05) with Ψ50, V L was positively and significantly correlated with Ψ50. ΨPD was significantly correlated with Ψ50 further reinforcing the conclusion that tree hydraulic architecture plays a significant role in species’ habitat preference in miombo woodlands.  相似文献   

12.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

13.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   

14.
Previous studies have reported correlation of leaf hydraulic vulnerability with pressure–volume parameters related to cell turgor. This link has been explained on the basis of the effects of turgor on connectivity among cells and tissue structural integrity, which affect leaf water transport. In this study, we tested the hypothesis that osmotic adjustment to water stress would shift the leaf vulnerability curve toward more negative water potential (Ψleaf) by increasing turgor at low Ψleaf. We measured leaf hydraulic conductance (Kleaf), Kleaf vulnerability [50 and 80% loss of Kleaf (P50 and P80); |Ψleaf| at 50 and 80% loss of Kleaf, respectively), bulk leaf water relations, leaf gas exchange and sap flow in two Vitis vinifera cultivars (Tempranillo and Grenache), under two water treatments. We found that P50, P80 and maximum Kleaf decreased seasonally by more than 20% in both cultivars and watering treatments. However, Kleaf at ?2 MPa increased threefold, while osmotic potential at full turgor and turgor loss point decreased. Our results indicate that leaf resistance to hydraulic dysfunction is seasonally plastic, and this plasticity may be mediated by osmotic adjustment.  相似文献   

15.

Aims

To evaluate the impact of the amount and distribution of soil water on xylem anatomy and xylem hydraulics of current-year shoots, plant water status and stomatal conductance of mature ‘Manzanilla’ olive trees.

Methods

Measurements of water potential, stomatal conductance, hydraulic conductivity, vulnerability to embolism, vessel diameter distribution and vessel density were made in trees under full irrigation with non-limiting soil water conditions, localized irrigation, and rain-fed conditions.

Results

All trees showed lower stomatal conductance values in the afternoon than in the morning. The irrigated trees showed water potential values around ?1.4 and ?1.6 MPa whereas the rain-fed trees reached lower values. All trees showed similar specific hydraulic conductivity (K s) and loss of conductivity values during the morning. In the afternoon, K s of rain-fed trees tended to be lower than of irrigated trees. No differences in vulnerability to embolism, vessel-diameter distribution and vessel density were observed between treatments.

Conclusions

A tight control of stomatal conductance was observed in olive which allowed irrigated trees to avoid critical water potential values and keep them in a safe range to avoid embolism. The applied water treatments did not influence the xylem anatomy and vulnerability to embolism of current-year shoots of mature olive trees.  相似文献   

16.

Key message

Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1.

Abstract

Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.
  相似文献   

17.
To investigate the effects of atmospheric CO2 enrichment on physiology and autumnal leaf phenology, we exposed 3-year-old sugar maple (Acer saccharum Marsh.) seedlings to 800 (A8), 600 (A6), and 400 μL(CO2) L–1 (AA) in nine continuous stirred tank reactor (CSTR) chambers during the growing season of 2014. Leaf abscission timing, abscised leaf area percentages, leaf number, light-saturated net photosynthetic rate (PNmax), leaf area, accumulative growth rates, and biomass were determined and assessed. The results suggested the following: (1) no significant differences were found in the timing of leaf abscission in the three CO2-concentration treatments; (2) PNmax was continuously stimulated to the greatest extent in A8 at 319% and 160% in A6 until the end of the growing season, respectively; and (3) leaf number, leaf area, and accumulative height growth all significantly increased by elevated CO2, which led to a 323% increase in A8 biomass and 235% in A6 biomass after 156-d fumigation. In summary, the results suggest, the timing of leaf abscission of sugar maple in fall was not modified by CO2 enrichment, the increased carbon gain by elevated CO2 was mainly due to increased leaf area, more leaves, and the continuously enhanced high photosynthesis throughout the growing season instead of the leaf life span.  相似文献   

18.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

19.
The genetic manipulation of Capsicum has been unsuccessful, and a large bottleneck to transferring the desired genes is due to the difficulty in regenerating whole plants through tissue culture because of its highly recalcitrant and high genotype specificity. This study aimed to investigate and establish rapid shoot regeneration from the proximal ends of the leaves of Capsicum frutescens KT-OC and BOX-RUB varieties. A maximum of 8–10 shoot buds were obtained from the margins of the proximal portion of a cotyledonary leaf explant of C. frutescens variety KT-OC on medium I containing 44.44 µM 6-benzylaminopurine (BA), 5.71 µM indole-3-acetic acid (IAA), 10 µM silver nitrate (AgNO3) and 1.98 mg L?1 2-(N-morpholine) ethane sulphonic acid within 4 weeks of incubation, of which 60% of explants responded in terms of shoot buds. Petiole explants (40%) cultured on the same medium produced 2–4 shoots per explant from the distal portion. The cut portions of the cotyledonary leaf proximal portions responded well to shoot bud formation in the presence of 22.20 µM BA and 14.68 µM phenyl acetic acid (PAA), wherein 100% of explants responded in terms of shoot bud formation, with an average of 10?±?1.7 and 8?±?1.9 shoot buds per explant in KT-OC and BOX-RUB varieties, respectively. The differentiated shoots grew well and proliferated in the presence of 14.68 µM PAA?+?22.20 µM BA and 10 µM AgNO3. Shoot elongation was obtained in presence of 1.44 µM gibberellic acid (GA3) and 10 µM AgNO3. These shoots were rooted on plant growth regulator-free half-strength MS medium and upon hardening; field survival rate was 70%. This reproducible regeneration method for C. frutescens, especially the Indian high pungent variety, from proximal portion of cotyledonary leaf and petiole explants, can be used for biotechnological improvement.  相似文献   

20.
Hydraulic traits and hydraulic-related structural properties were examined in three deciduous (Hevea brasiliensis, Macaranga denticulate, and Bischofia javanica) and three evergreen (Drypetes indica, Aleurites moluccana, and Codiaeum variegatum) Euphorbiaceae tree species from a seasonally tropical forest in south-western China. Xylem water potential at 50% loss of stem hydraulic conductivity (P50stem) was more negative in the evergreen tree, but leaf water potential at 50% loss of leaf hydraulic conductivity (P50leaf) did not function as P50stem did. Furthermore, P50stem was more negative than P50leaf in the evergreen tree; contrarily, this pattern was not observed in the deciduous tree. Leaf hydraulic conductivity overlapped considerably, but stem hydraulic conductivity diverged between the evergreen and deciduous tree. Correspondingly, structural properties of leaves overlapped substantially; however, structural properties of stem diverged markedly. Consequently, leaf and stem hydraulic traits were closely correlated with leaf and stem structural properties, respectively. Additionally, stem hydraulic efficiency was significantly correlated with stem hydraulic resistance to embolism; nevertheless, such a hydraulic pattern was not found in leaf hydraulics. Thus, these results suggest: (1) that the evergreen and deciduous tree mainly diverge in stem hydraulics, but not in leaf hydraulics, (2) that regardless of leaf or stem, their hydraulic traits result primarily from structural properties, and not from leaf phenology, (3) that leaves are more vulnerable to drought-induced embolism than stem in the evergreen tree, but not always in the deciduous tree and (4) that there exists a trade-off between hydraulic efficiency and safety for stem hydraulics, but not for leaf hydraulics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号