首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.  相似文献   

2.
3.
It has been previously shown that the SuUR gene encodes a protein located in intercalary and pericentromeric heterochromatin in Drosophila melanogaster polytene chromosomes. The SuUR mutation suppresses the formation of ectopic contacts and DNA underreplication in polytene chromosomes; SuUR+ in extra doses enhances the expression of these characters. This study demonstrates that heterochromatin-dependent PEV silencing is also influenced by SuUR. The SuUR protein localizes to chromosome regions compacted as a result of PEV; the SuUR mutation suppresses DNA underreplication arising in regions of polytene chromosomes undergoing PEV. The SuUR mutation also suppresses variegation of both adult morphological characters and chromatin compaction observed in rearranged chromosomes. In contrast, SuUR+ in extra doses and its overexpression enhance variegation. Thus, SuUR affects PEV silencing in a dose-dependent manner. However, its effect is expressed weaker than that of the strong modifier Su(var)2-5.  相似文献   

4.
In the Suppressor of Underreplication( SuUR) mutant strain of Drosophila melanogaster, the heterochromatin of polytene chromosomes is not underreplicated and, as a consequence, a number of beta-heterochromatic regions acquire a banded structure. The chromocenter does not form in these polytene chromosomes, and heterochromatic regions, normally part of the chromocenter, become accessible to cytological analysis. We generated four genomic DNA libraries from specific heterochromatic regions by microdissection of polytene chromosomes. In situ hybridization of individual libraries onto SuUR polytene chromosomes shows that repetitive DNA sequences spread into the neighboring euchromatic regions. This observation allows the localization of eu-heterochromatin transition zones on polytene chromosomes. We find that genomic scaffolds from the eu-heterochromatin transition zones are enriched in repetitive DNA sequences homologous to those flanking the suppressor of forked gene [ su(f) repeat]. We isolated and sequenced about 300 clones from the heterochromatic DNA libraries obtained. Most of the clones contain repetitive DNA sequences; however, some of the clones have unique DNA sequences shared with parts of unmapped genomic scaffolds. Hybridization of these clones onto SuUR polytene chromosomes allowed us to assign the cytological localizations of the corresponding genomic scaffolds within heterochromatin. Our results demonstrate that the SuUR mutant renders possible the mapping of heterochromatic scaffolds on polytene chromosomes.  相似文献   

5.
6.
7.
Iurlova AA  Makunin IV  Zhimulev IF 《Genetika》2010,46(9):1272-1275
Different genome regions differ in replication timing during the S phase. Late-replicating sequences are often underreplicated in the Drosophila salivary-gland polytene chromosomes. The SuUR gene, whose mutation changes the replication time of late-replicating regions in salivary-gland cells, has been identified in Drosophila melanogaster. The SUUR protein lacks homologs by a BLAST search, and only moderate homology is observed between its N-terminal end and chromatin-remodeling proteins of the SWI2/SNF2 family. The gene and the protein were analyzed in insects. Orthologs of the SuUR gene were found in all annotated Drosophila species. The number of amino acid substitutions in the SUUR protein proved to be extremely high, corresponding to that of rapidly evolving genes. Orthologs with low homology were found in mosquitoes Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. No orthologs of the SuUR gene were detected beyond Diptera.  相似文献   

8.
The Suppressor of Underreplication ( SuUR) gene contributes to the regulation of DNA replication in regions of intercalary heterochromatin in salivary gland polytene chromosomes. In the SuUR mutant these regions complete replication earlier than in wild type and, as a consequence, undergo full polytenization. Here we describe the effects of ectopic expression of SuUR using the GAL4-UAS system. We demonstrate that ectopically expressed SuUR exerts qualitatively distinct influences on polyploid and diploid tissues. Ectopic expression of SuUR inhibits DNA replication in polytene salivary gland nuclei, and reduces the degree of amplification of chorion protein genes that occurs in the follicle cell lineage. Effects caused by ectopic SuUR in diploid tissues vary considerably; there is no obvious effect on eye formation, but apoptosis is observed in the wing disc, and wing shape is distorted. The effect of ectopic SuUR expression is enhanced by mutations in the genes E2F and mus209 ( PCNA). Differential responses of polyploid and diploid cells to ectopic SuUR may reflect differences in the mechanisms underlying mitotic cell cycles and endocycles.  相似文献   

9.
10.
Heterochromatin is characteristically the last portion of the genome to be replicated. In polytene cells, heterochromatic sequences are underreplicated because S phase ends before replication of heterochromatin is completed. Truncated heterochromatic DNAs have been identified in polytene cells of Drosophila and may be the discontinuous molecules that form between fully replicated euchromatic and underreplicated heterochromatic regions of the chromosome. In this report, we characterize the temporal pattern of heterochromatic DNA truncation during development of polytene cells. Underreplication occurred during the first polytene S phase, yet DNA truncation, which was found within heterochromatic sequences of all four Drosophila chromosomes, did not occur until the second polytene S phase. DNA truncation was correlated with underreplication, since increasing the replication of satellite sequences with the cycE(1672) mutation caused decreased production of truncated DNAs. Finally, truncation of heterochromatic DNAs was neither quantitatively nor qualitatively affected by modifiers of position effect variegation including the Y chromosome, Su(var)205(2), parental origin, or temperature. We propose that heterochromatic satellite sequences present a barrier to DNA replication and that replication forks that transiently stall at such barriers in late S phase of diploid cells are left unresolved in the shortened S phase of polytene cells. DNA truncation then occurs in the second polytene S phase, when new replication forks extend to the position of forks left unresolved in the first polytene S phase.  相似文献   

11.
12.
13.
Studies of the position effect resulting from chromosome rearrangements in Drosophila melanogaster have shown that replication distortions in polytene chromosomes correlate with heritable gene silencing in mitotic cells. Earlier studies mostly focused on the effects of euchromatin-heterochromatin rearrangements on replication and silencing of euchromatic regions adjacent to the heterochromatin breakpoint. This review is based on published original data and considers the effect of rearrangements on heterochromatin: heterochromatin blocks that are normally underrepresented or underreplicated in polytene chromosomes are restored. Euchromatin proved to affect heterochromatin, preventing its underreplication. The effect is opposite to the known inactivation effect, which extends from heterochromatin to euchromatin. The trans-action of heterochromatin blocks on replication of heterochromatin placed within euchromatin is discussed. Distortions of heterochromatin replication in polytene chromosomes are considered to be an important characteristic associated with the functional role of the corresponding genome regions.  相似文献   

14.
Studies of the position effect resulting from chromosome rearrangements in Drosophila melanogaster have shown that replication distortions in polytene chromosomes correlate with heritable gene silencing in mitotic cells. Earlier studies mostly focused on the effects of euchromatin--heterochromatin rearrangements on replication and silencing of euchromatic regions adjacent to the heterochromatin breakpoint. This review is based on published original data and considers the effect of rearrangements on heterochromatin: heterochromatin blocks that are normally underrepresented or underreplicated in polytene chromosomes are restored. Euchromatin proved to affect heterochromatin, preventing its underreplication. The effect is opposite to the known inactivation effect, which extends from heterochromatin to euchromatin. The trans-action of heterochromatin blocks on replication of heterochromatin placed within euchromatin is discussed. Distortions of heterochromatin replication in polytene chromosomes are considered to be an important characteristic associated with the functional role of the corresponding genome regions.  相似文献   

15.
We studied the influence of the Suppressor of Underreplication (SuUR) gene expression on the intercalary heterochromatin (IH) regions of Drosophila melanogaster polytene chromosomes. We observed a strong positive correlation between increased SuUR expression, underreplication extent, amount of DNA truncation, and formation of ectopic contacts in IH regions. SuUR overexpression from heat shock-driven transgene results in the formation of partial chromosomal aberrations whose breakpoints map exclusively to the regions of intercalary and pericentric heterochromatin. It is important to note that all these effects are seen only if SuUR overexpression is induced during early stages of chromosome polytenization. Therefore, we developed the idea that ectopic pairing results from the joining of free DNA ends, which are formed as a consequence of underreplication.  相似文献   

16.
The Suppressor of UnderReplication (SuUR) gene controls the DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster salivary gland polytene chromosomes. In the present work, we investigate the functional importance of different regions of the SUUR protein by expressing truncations of the protein in an UAS–GAL4 system. We find that SUUR has at least two separate chromosome-binding regions that are able to recognize intercalary and pericentric heterochromatin specifically. The C-terminal part controls DNA underreplication in intercalary heterochromatin and partially in pericentric heterochromatin regions. The C-terminal half of SUUR suppresses endoreplication when ectopically expressed in the salivary gland. Ectopic expression of the N-terminal fragments of SUUR depletes endogenous SUUR from polytene chromosomes, causes the SuUR phenotype and induces specific swellings in heterochromatin.  相似文献   

17.
In Drosophila polytene chromosomes, regions of intercalary heterochromatin are scattered throughout the euchromatic arms. Here, we present data on the first fine analysis of the individual intercalary heterochromatin region, 75C1-2, located in the 3L chromosome. By using electron microscopy, we demonstrated that this region appears as three closely adjacent condensed bands. Mapping of the region on the physical map by means of the chromosomal rearrangements with known breakpoints showed that the length of the region is about 445 kb. Although it seems that the SUUR protein binds to the whole 75C1-2 region, the proximal part of the region is fully polytenized, so the DNA underreplication zone is asymmetric and located in the distal half of the region. Finally, we speculate that intercalary heterochromatin regions of Drosophila polytene chromosomes are organized into three different types with respect to the localization of the underreplication zone.  相似文献   

18.
Intercalary heterochromatin consists of extended chromosomal domains which are interspersed throughout the euchromatin and contain silent genetic material. These domains comprise either clusters of functionally unrelated genes or tandem gene duplications and possibly stretches of noncoding sequences. Strong repression of genetic activity means that intercalary heterochromatin displays properties that are normally attributable to classic pericentric heterochromatin: high compaction, late replication and underreplication in polytene chromosomes, and the presence of heterochromatin-specific proteins. Late replication and underreplication occurs when the suppressor of underreplication protein is present in intercalary heterochromatic regions. Intercalary heterochromatin underreplication in polytene chromosomes results in free double-stranded ends of DNA molecules; ligation of these free ends is the most likely mechanism for ectopic pairing between intercalary heterochromatic and pericentric heterochromatic regions. No support has been found for the view that the frequency of chromosome aberrations is elevated in intercalary heterochromatin.  相似文献   

19.
The behaviour of IH (intercalary heterochromatin) regions of Drosophila melanogaster polytene chromosomes was compared with that of euchromatin condensed as a result of position-effect variegation. Normally replicating regions, when subject to such an effect, were found to become among the last regions in the genome to replicate. It is shown that the factors which enhance position effect (low temperature, the removal of the Y chromosome, genetic enhancers of position effect) increase the weak point frequency in the IH, i.e. enhance DNA underreplication in these regions. We suggest that the similarity in the properties of IH, CH (centromeric heterochromatin) and the dense blocks induced by position effect is due to strong genetic inactivation and supercondensation caused by specific proteins in early development. The primary DNA structure is not likely to play a key role in this process.  相似文献   

20.
In polytene chromosomes of Drosophila melanogaster, regions of pericentric heterochromatin coalesce to form a compact chromocenter and are highly underreplicated. Focusing on study of X chromosome heterochromatin, we demonstrate that loss of either SU(VAR)3-9 histone methyltransferase activity or HP1 protein differentially affects the compaction of different pericentric regions. Using a set of inversions breaking X chromosome heterochromatin in the background of the Su(var)3-9 mutations, we show that distal heterochromatin (blocks h26-h29) is the only one within the chromocenter to form a big "puff"-like structure. The "puffed" heterochromatin has not only unique morphology but also very special protein composition as well: (i) it does not bind proteins specific for active chromatin and should therefore be referred to as a pseudopuff and (ii) it strongly associates with heterochromatin-specific proteins SU(VAR)3-7 and SUUR, despite the fact that HP1 and HP2 are depleted particularly from this polytene structure. The pseudopuff completes replication earlier than when it is compacted as heterochromatin, and underreplication of some DNA sequences within the pseudopuff is strongly suppressed. So, we show that pericentric heterochromatin is heterogeneous in its requirement for SU(VAR)3-9 with respect to the establishment of the condensed state, time of replication, and DNA polytenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号