首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytochemical investigation of the rhizomes of Smilax trinervula led to isolation and structure elucidation of eight lignan glycosides, including five new lignans, namely, (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4′-O-β-d-glucopyranoside (1), (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4-O-β-d- glucopyranoside (2) (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-4′, 7-epoxy-8, 5′-neolignan 9′-O-β-d-glucopyranoside (3), (7R, 8R)-4, 9, 9′-trihydroxy-3, 5-dimethoxy-7.O.4′, 8.O.3′- neolignan 9′-O-β-d-glucopyranoside (4), and (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-8, 4′-oxy-neolignan 4-O-β-d-glucopyranoside (5), along with three known compounds (6-8). Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI–MS and comparison with the literature. Compounds 1-8 were tested in vitro for their cytotoxic activity against four human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo). Compounds 3 and 5 exhibited cytotoxic activity against Lovo cells, with IC50 value of 10.4 μM and 8.5 μM, respectively.  相似文献   

2.
Chemical investigation of an acidic methanol extract of the whole plants of Datura metel resulted in the isolation of two new guainane sesquiterpenes, 1β,5α,7β-guaiane-4β,10α,11-triol (1) and 1α,5α,7α-11-guaiene-2α,3β,4α,10α,13-pentaol (2), along with eight known compounds: pterodontriol B (3), disciferitriol (4), scopolamine (5), kaempferol 3-O-β-d-glucosyl(1  2)-β-d-galactoside 7-O-β-d-glucoside (6), kaempferol 3-O-β-glucopyranosyl(1  2)-β-glucopyranoside-7-O-α-rhamnopyranoside (7), pinoresinol 4′′-O-β-d-glucopyranoside (8), (7R,8S,7′S,8′R)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxy-lignan-4-O-β-d-glucopyranoside (9), and (7S,8R,7′S,8′S)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxylignan-4-O-β-d-glucopyranoside (10). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. Compounds 2-4 and 6-10 were shown to have modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.  相似文献   

3.
The cytotoxic activities of sesquilignans, (7S,8S,7′R,8′R)- and (7R,8R,7′S,8′S)-morinol A and (7S,8S,7′S,8′S)- and (7R,8R,7′R,8′R)-morinol B were compared, showing no significant difference between stereoisomers (IC50 = 24–35 μM). As a next stage, the effect of substituents at 7, 7′, and 7″-aromatic ring on the activity was evaluated to find out the higher activity of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18 (IC50 = 6–7 μM). In the research on the structure–activity relationship of 7″-position of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18, the most potent compounds were 7,7′,7″-phenyl derivative 18 (IC50 = 6 μM) against HeLa cells. Against HL-60 cells, 7″-(4-nitrophenyl)-7,7′-phenyl derivative 33 and 7″-hexyl-7,7′-phenyl derivative 37 (IC50 = 5 μM) showed highest activity. We discovered the compounds showed four to sevenfold potent activity than that of natural (7S,8S,7′R,8′R)-morinol A. It was also confirmed that the 7′-benzylic hydroxy group have an important role for exhibiting activity, on the other hand, the resonance system of cinnamyl structure is not crucial for the potent activity.  相似文献   

4.
Three new neolignan glucosides (13), together with four known analogs (47), have been isolated from the stems of Dendrobium aurantiacum var. denneanum. Structures of the new compounds including the absolute configurations were determined by spectroscopic and chemical methods as (−)-(8R,7′E)-4-hydroxy-3,3′,5,5′-tetramethoxy-8,4′-oxyneolign-7′-ene-9,9′-diol 4,9-bis-O-β-d-glucopyranoside (1), (−)-(8S,7′E)-4-hydroxy-3,3′,5,5′-tetramethoxy-8,4′-oxyneolign-7′-ene-9,9′-diol 4,9-bis-O-β-d-glucopyranoside (2), and (−)-(8R,7′E)-4-hydroxy-3,3′,5,5′,9′-pentamethoxy-8,4′-oxyneolign-7′-ene-9-ol 4,9-bis-O-β-d-glucopyranoside (3), respectively.  相似文献   

5.
Sixteen known lignans were isolated from the 95% alcohol extract of the whole plant of Serissa japonica (Thunb.) Thunb., including nine furofurans (19), three tetrahydrofurans (1012) and four arylnaphthalenes (1316). In the present report, compounds (+)-epipinoresinol (1), (+)-1-hydroxy-6-epipinoresinol 4,4″-di-O-methyl ether (3), (−)-pinoresinol (4), (+)-8-hydroxypinoresinol (6), pseuderesinol (7), (+)-1-hydroxysyringaresinol (8), (−)-(7′S,8S,8′R)-4,4′-dihydroxy-3,3′,5,5′-tetramethoxy-7′,9-epoxylignan-9′-ol-7-one (10), wikstrone (11), 7'-(+)-oxomatairesinol (12), (+)-cycloolivil (13), (+)-isolariciresinol (14), 5-methoxy-(+)-isolariciresinol (15) and cyclolignans (16) were reported from the Serissa genus for the first time, and compounds (+)-lirioresinol A (2) and (−)-lirioresinol B (5) were firstly isolated from the plant. Their structures were elucidated on the basis of extensive spectroscopic and chemical analyses. Moreover, the chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

6.
To develop potential agents for slowing the progression of Alzheimer′s disease, two pairs of new enantiomeric lignans, including a couple of rarely 8′,9′-dinor-3′,7-epoxy-8,4′-oxyneolignanes named (7S, 8S)- and (7R, 8R)-pithecellobiumin A (1a/1b) and a pair of 2′,9′-epoxy-arylnaphthalenes named (7R, 8R, 8′R)- and (7S, 8S, 8′S)-pithecellobiumin B (2a/2b) were separated by chiral high performance liquid chromatography (HPLC). Their planar structures were elucidated by spectroscopic data analyses. The absolute configurations were determined by comparing of experimental and calculated electronic circular dichroism (ECD). The inhibitory activity on Aβ aggregation of all optical pure compounds was tested by ThT assay. Interestingly, enantiomeric inhibitors 1a (62.1%) and 1b (81.6%) exhibited different degrees of anti-Aβ aggregation activity. However, 2a (65.4%) and 2b (68.4%) showed similar inhibition rate. The different inhibition profiles were explained by molecular dynamics and docking simulation studies.  相似文献   

7.
Extensive screening for the antiproliferative activity of different compounds found in trees was performed by extracting the leaves of Aphananthe aspera (Thunb.) Planch and then using chromatographic separation to afford 2 new compounds, (2S,4R)-2-carboxy-4-(E)-p-caffeoyl-1-methyl-hydroxyproline (1) and 5-O-caffeoyl quinic acid-(7′R,8′S,7′′E)-3′,4′,3′′-dihydroxy-4′′,7′-epoxy-8′,5′′-neolign-7′-ene-9- carboxyl (2). In addition, 6 known compounds were discovered from the leaves of this plant. The structural determination of all compounds, including their absolute configurations, was established by UV, IR, HRESIMS, 1D and 2D NMR, and CD spectroscopy. The novel compound 1 showed strong antiproliferative activity against human breast adenocarcinoma cells MCF-7 and MDA-MB-231.  相似文献   

8.
Two new lignans, named (+)-(7′S, 7″S, 8′R, 8″R)-4, 4′, 4″-trihydroxy-3, 5′, 3″-trimethoxy-7-oxo-8-ene [8-3′, 7′-O-9″, 8′-8″, 9′-O-7″] lignoid (1) and (1S)-4-Hydroxy-3-[2-(4-hydroxy-3-methoxy-phenyl)-1-hydroxymethyl-2-oxo-ethyl]-5-methoxy-benzaldehyde (2), along with five known (37) ones, have been isolated from the 95% ethanol extract of the seeds of Herpetospermum caudigerum Wall. The structures of the new compounds, including the absolute configurations, were elucidated by spectroscopic and CD analysis. Compounds 1, 2, and 7 displayed inhibitory activities on HBsAg secretion with IC50 values of 20.5, 0.34, and 4.89 μM, while 1, 2, and 7 displayed inhibitory activities on HBeAg secretion with IC50 values of 3.54, 4.83 × 10−4, and 8.02 μM, and cytotoxicity on HepG 2.2.15 cells with CC50 values of 12.7, 2.96 × 105, and 11.4 μM, respectively.  相似文献   

9.
Three prenylflavanones, (2S)-5,7-dihydroxy-4′-methoxy-8-(3″,3″-dimethylallyl)flavanone (3), (2S)-5,4′-dihydroxy-7-methoxy-6-(3″,3″-dimethylallyl)flavanone (6), 8-prenylnaringenin (11), and a new epimeric pair (2″S/2″R)-(2S)-5,7-dihydroxy-4′-methoxy-6-(2″-hydroxy-3″-methylbut-3″-enyl)flavanones (4a/4b) were isolated together with taraxerone, taraxerol, epitaraxerol, β-sitosterol, oleanolic acid, 1-O-docosanoyl glycerol, apigenin, and apigenin 7-O-β-D-glucopyranoside from the MeOH extract of the leaves of Mallotus mollissimus. The structures of the isolated compounds were determined on the basis of 1D/2D NMR and HR-MS spectroscopic data; the 2S configuration of the prenylflavanones 3, 4, and 6 was deduced from CD spectroscopic data. The presence of three taraxerane triterpenoids reinforces the inclusion of M. mollissimus (syn. Croton mollissimus) in Mallotus genus. Among species of Mallotus the occurrence of the (2S)-prenylflavanones 3, 4, and 6 is confined to M. mollissimus.  相似文献   

10.
Phytochemical investigation on the whole plant of Anemone rivularis var. flore-minore led to the isolation of a new labdane-type diterpene glycoside (1) and a new trihydroxyfuranoid lignanoid glycoside (2), together with three known triterpene and triterpenoid glycosides (35). The structures of the two new compounds were elucidated as β-d-glucopyranosyl (13S)-13-hydroxy-7-oxo-labda-8,14-diene-18-oate (1) and (7S,7′R,8R,8′S)-7′-butoxy-7,9′-epoxy-4,4′,9-trihydroxy-3,3′-dimethoxylignane 9-O-β-d-glucopyranoside (2), on the basis of extensive spectral analysis and chemical evidence. Compound 1 is characterized by a glucose (Glc) esterified C-18 carboxyl group, which is a rarely encountered labdane-type diterpene glycoside in nature. The two new compounds (1 and 2) reported here are the first examples of diterpene glycoside and lignanoid glycoside found in the genus Anemone, and the known triterpene and triterpenoid glycosides (35) are identified for the first time from the title plant.  相似文献   

11.
O-α-d-Galactopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→4)-d-glucopyranose (12) was prepared by inversion of configuration at C-4″ of 2,3,2′,3′,6′,2″,3″-hepta-O-acetyl-1,6-anhydro-4″,6″-di-O-methylsulfonyl-β-maltotriose (7), followed by O-deacylation, acetylation, acetolysis, and de-O-acetylation. The intermediate 7 was obtained by treatment of 1,6-anhydro-β-maltotriose (2) with benzal chloride in pyridine, followed by acetylation, removal of the benzylidene group, and methane-sulfonylation. Selective tritylation of 2 and subsequent acetylation afforded 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-trityl-β-maltotriose (6), which was O-detritylated and p-toluenesulfonylated to give 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-p-tolylsulfonyl-β-maltotriose (13). Nucleophilic displacement of 13 with thioacetate, iodide, bromide, chloride, and azide ions gave 6″-S-acetyl- (14), 6″-iodo- (15), 6″-bromo- (16), 6″-chloro- (19), and 6″-azido- (20) 1,6-anhydro-β-maltotriose octaacetates, respectively. 6″Deoxy- (18) and 6″-acetamido-6″-deoxy (21) derivatives of 1,6-anhydro-β-maltotriose decaacetates were also prepared from 15 and 16, and 20, respectively. Acetolysis of 14, 15, 16, 18, 19, and 21 afforded 1,2,3,6,2′,3′,6′,2″,3″,4″-deca-O-acetyl-6″-S-acetyl (22), -6″-iodo (23), -6″-bromo (24), -6″-deoxy (25), -6″-chloro (26), and -6″-acetamido-6′-deoxy (27) derivatives of α-maltotriose, respectively. O-Deacetylation of 24, 25, and 26 furnished 6″-bromo-(28), 6″-deoxy- (29), and 6″-chloro- (30) maltotrioses, respectively, which on acetylation gave the corresponding β-decaacetates.  相似文献   

12.
(7S,8R,7′S)-9,7′,9′-Trihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (1) and (7S,8R,7′S)-9,9′-dihydroxy-3,4-methylenedioxy-3′,7′-dimethoxy [7-O-4′,8-5′] neolignan (2), two new natural dihydrobenzofuran-type neolignans, along with 9,9′-dihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (3) and (-)-machicendiol (4), were isolated from the whole plants of Breynia fruticosa. The structures of 1 and 2, including the absolute configurations, were determined by spectroscopic methods and circular dichroism (CD) techniques. The absolute configuration of 4 was confirmed by calculations of the OR spectrum, together with OR and ECD spectra of its p-bromobenzoate ester (4a).  相似文献   

13.
The structures of three previously unidentified carotenoids from Eutreptiella gymnastica are reported. These include siphonein with defined n-2-trans-2-dodecenoic esterifying acid and assigned 3R(?), 3′R,6′R chirality, (3R)-3′,4′-anhydrodiatoxanthin and eutreptiellanone (3,6-epoxy-3′,4′,7′,8′-tetradehydro-5,6-dihydro-β,β-caroten-4-one) with probable 3S,5R,6S chirality.  相似文献   

14.
The phytochemical study of Piper pleiocarpum Chang ex Tseng led to the isolation of eighteen compounds (118), including ten lignanoids, galbelgin (1), (+) sesamin (2), denudatin A (3), hancinone (4), (7S,8S, 3′R)-Δ8'-3,3′,4-trimethoxy-3′,6′-dihydro-6′-oxo-7.0.4′,8.3′-lignan[(2S,3S,3aR)-2-(3,4-dimethoxyphenyl)-3,3a-dihydro-3a-methoxy-3-methyl-5-(2-propenyl)-6(2H))-benzofuranone] (5), (−)-(7R,8R)-machilin D (6), (1R,2R)-2-[2-methoxy-4-((E)-prop-1-enyl)phenoxy]-1-(3,4-dimethoxyphenyl)propyl acetate (7), piperbonin A (8), machilin D (9), 4-methoxymachilin D (10), one amide alkaloid, Δα,β-dihydropiperine (11), six polyoxygenated cyclohexenes, ent-curcuminol F (12), uvaribonol E (13), ellipeiopsol A (14), 1S,2R,3R,4S-1-ethoxy-2-[(benzoyloxy)methyl]cyclohex-5-ene-2,3,4-triol, 3-acetate (15), (+)-crotepoxide (16), (+)-senediol (17), and one benzoate derivative, 2-acetoxybenzyl benzoate (18). Their structures were established by spectroscopic data and by comparison with the literature. All the compounds were firstly isolated from P. pleiocarpum, while ten compounds 67, 910, 1215, 1718 were isolated from the genus Piper and the family Piperaceae for the first time. The chemotaxonomic significance of these compounds was also discussed. The isolation of compounds 67, 910 may be used as chemotaxonomic markers for the genus of Piper.  相似文献   

15.
Microbial metabolism of cannflavin A and B isolated from Cannabis sativa   总被引:1,自引:0,他引:1  
Microbial metabolism of cannflavin A (1) and B (2), two biologically active flavonoids isolated from Cannabis sativa L., produced five metabolites (37). Incubation of 1 and 2 with Mucor ramannianus (ATCC 9628) and Beauveria bassiana (ATCC 13144), respectively, yielded 6″S,7″-dihydroxycannflavin A (3), 6″S,7″-dihydroxycannflavin A 7-sulfate (4) and 6″S,7″-dihydroxycannflavin A 4′-O-α-l-rhamnopyranoside (5), and cannflavin B 7-O-β-d-4?-O-methylglucopyranoside (6) and cannflavin B 7-sulfate (7), respectively. All compounds were evaluated for antimicrobial and antiprotozoal activity.  相似文献   

16.
Four new lignans, strebluslignanol F (1), (7′R,8′S,7″R,8″S)-erythro-strebluslignanol G (2), isomagnaldehyde (3) and isostrebluslignanaldehyde (4), along with 12 known lignans (516) were isolated from the ethyl acetate-soluble part of MeOH extract of the root of Streblus asper. Their structures were elucidated through various spectroscopic methods, including 1D NMR (1H NMR, 13C NMR), 2D NMR (HMQC, HMBC and NOESY) and HRMS. The stereochemistry at the chiral centers was determined using CD spectra, as well as analyses of coupling constants and optical rotation data. The isolated lignans were evaluated for their anti-HBV activities in vitro using the HBV transfected HepG2.2.15 cell line. The most active lignans, (7′R,8′S,7″R,8″S)-erythro-strebluslignanol G, magnolol, isomagnolol and isolariciresinol, exhibited significant anti-HBV activities with IC50 values of 1.58, 2.03, 10.34 and 3.67 μM, respectively, for HBsAg with no cytotoxicity, and of 3.24, 3.76, 8.83 and 14.67 μM, respectively, for HBeAg with no cytotoxicity. (7′R,8′S,7″R,8″S)-erythro-Strebluslignanol G and magnolol showed significant anti-HBV activities to inhibit the replication of HBV DNA with the IC50 values of 9.02 and 8.67 μM, respectively.  相似文献   

17.
The absolute configurations of heteroxanthin ((3S,5S,6S,3′R)- 7′,8′-didehydro-5,6-dihydro-β,β-carotene-3,5,3′,6′-tetrol) ex Euglena gracilis and of diadinoxanthin ((3S,5R,6S,3′R)-5,6-epoxy-7′,8′-didehydro-5,6-dihydro-β,β-carotene-3,3′-diol) from the same source have been established by chemical reactions, hydrogen bonding studies, 1H NMR and CD. Two previously unknown carotenoids (artefacts?) from Trollius europaeus, assigned the structures (3S,5S,6S,3′S,5′R,6′R)-6,7-didehydro-5,6,5′,6′-tetrahydro-β,β -carotene-3,5,6,3′,5′-pentol and its 5R epimer, served as useful models.  相似文献   

18.
One new β-hydroxychalcone, 4-acetoxy-5,2′,4′,6′,β-pentahydroxy-3-methoxychalcone (1), one new flavanone, 7,3′-dihydroxy-5,4′-dimethoxyflavanone (2) and seven known compounds, 2R, 3R-trans-aromadendrin (3), naringenin-7-O-methylether (4), myricetin (5), quercetin-3-O-rutinoside (6), ursolic acid (7), gallic acid (8) and d-glucose (9) were isolated from the methanolic fruit extract of Cornus mas L. (=Cornus mascula L.), Cornaceae. The structures of the new compounds were elucidated on the basis of extensive spectroscopic methods, including 2D NMR experiments and of known compounds by comparison of physical and spectral data with literature.  相似文献   

19.
Populations of Primula auricula L. subsp. auricula from Austrian Alps were studied for flavonoid composition of both farinose exudates and tissue of leaves. The leaf exudate yielded Primula-type flavones, such as unsubstituted flavone and its derivatives, while tissue flavonoids largely consisted of flavonol 3-O-glycosides, based upon kaempferol (3, 4) and isorhamnetin (57). Kaempferol 3-O-(2″-O-β-xylopyranosyl-[6″-O-β-xylopyranosyl]-β-glucopyranoside) (3) and isorhamnetin 3-O-(2″-O-β-xylopyranosyl-[6″-O-β-xylopyranosyl]-β-glucopyranoside) (6) are newly reported as natural compounds. Remarkably, two Primula type flavones were also detected in tissues, namely 3′-hydroxyflavone 3′-O-β-glucoside (1) and 3′,4′-dihydroxyflavone 4′-O-β-glucoside (2), of which (1) is reported here for the first time as natural product. All structures were unambiguously identified by NMR and MS data. Earlier reports on the occurrence of 7,2′-dihydroxyflavone 7-O-glucoside (macrophylloside) in this species could not be confirmed. This structure was now shown to correspond to 3′,4′-dihydroxyflavone 4′-O-glucoside (2) by comparison of NMR data. Observed exudate variations might be specific for geographically separated populations. The structural diversification between tissue and exudate flavonoids is assumed to be indicative for different ecological roles in planta.  相似文献   

20.
The ethyl acetate extract from the whole plant of Crinum biflorum Rottb. Showed a moderate activity against Enterococcus faecalis. Its phytochemical investigation led to the isolation of a new flavan-3-ol derivative namely (2R,3R)-3-hydroxy-7-methoxy-3′,4′-methylenedioxyflavan, together with (2S)-7-hydroxy-3′,4′-methylenedioxyflavan, (2R,3R)-7-methoxy-flavan-3-ol, (2S)-7-hydroxy-3′,4′-dimethoxyflavan, 3′,7-dihydroxy-4′-methoxyflavan, 4′,7-dimethoxy-3′-hydroxyflavan, farrerol, β-sitosterol, β-sitosterol-3-O-β-D-glucopyranoside, oleanolic acid, kaempferol, pancratistatin, lupeol, aurantiamide acetate, Narciprimine and 2,3-dihydroxypropyl palmitate. Their structures were elucidated mainly by extensive spectroscopic analysis and comparison with published data. The absolute configuration of the new metabolite was determined by electronic circular dichroism (ECD) analysis and comparison of optical rotation. Some of the isolated compounds were tested for their antimicrobial activity but no inhibition was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号