首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We compare cadmium and copper induced oxidative stress in tomato leaves and the antioxidative enzyme response during a time course of 96 h. Plants were subjected to 25 μM of CdCl2 or CuSO4 and malondialdehyde (MDA) level and activity of guaiacol peroxidase, superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase were determined. The results showed that there was an early increase in the MDA level and in the guaiacol peroxidase activity more pronounced with copper exposure during almost all the time course of the experiment. The activity of superoxide dismutase and catalase was induced very early after cadmium and copper treatment, reached a maximal value after 12 h and then declined but it remained always slightly higher than the control at the end of the experiment. Ascorbate peroxidase activity pathway was similar to superoxide dismutase or catalase with a maximal activity after 48 h of heavy metal exposure. Induction of glutathione reductase activity observed only under copper exposure is maintained during almost all the experimental time. The antioxidative activity developed by tomato leaves is more induced by copper treatment. This can be related to the ability of this metal to induce more than cadmium an accumulation of reactive oxygen species (ROS) at the cellular level. Decline in the antioxidative enzymes activity at the end of the experiment can be a consequence of cadmium- and copper-inducing a further ROS formation that might affect enzymes activity.  相似文献   

2.
Selenium (Se) is an important metalloid with industrial, environmental, biological and toxicological significance. Excessive selenium in soil and water may contribute to environmental selenium pollution, and affect plant growth and human health. By using Vicia faba micronucleus (MN) and sister chromatid exchange (SCE) tests, possible genotoxicity of sodium selenite and sodium biselenite was evaluated in this study. The results showed that sodium selenite, at concentrations from 0.01 to 10.0 mg/L, induced a 1.9–3.9-fold increase in MN frequency and a 1.5–1.6-fold increase in SCE frequency, with a statistically significantly difference from the control (P < 0.05 and 0.01, respectively). Sodium selenite also caused mitotic delay and a 15–80% decrease in mitotic indices (MI), but at the lowest concentration (0.005 mg/L), it slightly stimulated mitotic activity. Similarly, the frequencies of MN and SCE also increased significantly in sodium biselenite treated samples, with MI decline only at relatively higher effective concentrations. Results of the present study suggest that selenite is genotoxic to V. faba root cells and may be a genotoxic risk to human health.  相似文献   

3.
The present study reports mutagenic and genotoxic activities associated with ambient air collected at 15 sites characteristic for urban, industrial or rural conditions in Flanders. Airborne particulates (PM10) and semi-volatile compounds were collected on quartz filters (QF) and polyurethane foam (PUF) cartridges using a high-volume sampling device. The mutagenic and genotoxic potency of the organic extracts – Soxhlet extraction with acetone – was determined by use of the Salmonella mutagenicity standard plate-incorporation assay and the Vitotox® assay, respectively. Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in the extracts were determined by reversed-phase high-performance liquid chromatography (HPLC).Ambient air samples contained significant PAH levels and mutagenic activities at all 15 sites: direct mutagenicity of up to 47 revertants per cubic meter was found in the QF extracts and more limited activity of up to 11 rev m−3 in the PUF extracts. Metabolic activation of PUF extracts resulted in an important increase in mutagenic activity, up to 30 rev m−3, but no such increase was observed for QF extracts. The highest values were observed outside large cities at industrial sites and at a rural site contaminated by pollution from a chemical plant at a distance of 4 km. Also at the background location near the North Sea a significant mutagenic activity was measured in the QF extracts (+S9: 9 rev m−3; −S9: 7 rev m−3). Apparently, there is in Flanders a significant background exposure level to airborne mutagenicity, even in areas with limited or no nearby pollution sources. Based on the concentrations of 10 mutagenic PAHs and supposing additivity of their specific mutagenicities, only a few percent (mean 3%) of the observed indirect mutagenic activity could be explained. This implies that most mutagenic activity originated from other substances that were not identified or measured in our chemical analysis. This underscores the importance of bio-monitoring measurements.  相似文献   

4.
The functional properties of a novel extracellular polysaccharide (EPS) produced by Pseudomonas oleovorans grown on glycerol byproduct, generated by the biodiesel industry, were investigated. The EPS is a high molecular weight (4.6 × 106) heteropolysaccharide, composed by neutral sugars (galactose, 68%; mannose, 17%; glucose, 13%; rhamnose, 2%; fucose, 4%) and acyl groups (3.04%). This biopolymer has pseudoplastic fluid behaviour in aqueous media. The apparent viscosity was stable for the pH range 2.9–7.1 and NaCl concentrations up to 1.0 M. Though the apparent viscosity decreased at high temperatures, at alkaline conditions and at NaCl concentrations of 2.0 M, pseudoplastic fluid behaviour was retained. The EPS was capable of stabilizing water emulsions with several hydrophobic compounds, including hydrocarbons, vegetable and mineral oils. It retained its emulsifying activity during exposure to wide temperature (30–50 °C) and pH (2–12) variations, as well as to the presence of NaCl at concentrations as high as 2.0 M.  相似文献   

5.
Heavy metal-contaminated sites are excellent areas to examine the antioxidative machinery responsible for physiological adaptations of many plant species.Superoxide dismutase (SOD), guaiacol peroxide (GPX), ascorbate peroxide (APX), catalase (CAT) activity and hydrogen peroxide (H2O2) content were analyzed in leaves and roots of Viola tricolor (Viola) from contaminated soils (‘Bukowno’, ‘Saturn’, ‘Warpie’ heaps), and non-contaminated soil (‘Zakopane meadow’) to examine the level of oxidative stress and antioxidative response.In leaves, six isoforms of SOD were recognized. Roots possessed two additional bands, named manganese superoxide dismutase (MnSOD)-like form (MnSODI) and Cu/ZnSOD-like form (Cu/ZnSODIV). The H2O2 content in leaves ranged from 554 to 5 098 μmol H2O2/g f.w. and was negatively correlated with CAT activity. The non-contaminated population was characterized by the lowest CAT activity combined with the highest H2O2 concentration. Two isoforms of CAT, CAT-1 and CAT-2, were recognized in leaves of plants from non-contaminated and contaminated sites, respectively. In roots of individuals from two heaps (‘Warpie’ and ‘Saturn’), two distinct bands for each CAT isoform were observed. A slower migrating band may be an aggregate, exhibiting CAT and MnSODs activities. Both peroxidases (APX and GPX) presented the same pattern of activity, depending on the organ, indicating that in leaves and roots APX and GPX were regulated in parallel.Differences in enzyme activities and H2O2 content between plants from different contaminated sites were statistically significant, but were tightly maintained at a very similar level. Prolonged and permanent heavy metal stress evoked a very similar mode of antioxidative response in specimens of analyzed metalliferous populations not causing measurable oxidative stress. Thus, our results clearly indicate that V. tricolor is a taxon well adapted to heavy metal-contaminated soils, and that differences in enzyme activities and H2O2 content result from adjustment of plants to a variety of conditions.  相似文献   

6.
Three pesticides have been studied for their genotoxicity by the use of assays in the plant Crepis capillaris, aimed at measuring chromosomal aberrations, micronuclei and sister chromosome exchange (SCE). The fungicides Rubigan 12 EC (fenarimol) and Rovral 25 Flo (iprodione) and the insecticide Omite 57 E (propargite) are all widely used nowadays. The aim of our study was to evaluate the genotoxic effects of these pesticides at concentrations corresponding to those applied in agricultural practice. In preliminary experiments we found that these concentrations do not influence cell proliferation and do not inhibit the growth of root meristems. In all experiments formulated commercial products were used. From the results we conclude that the three pesticides did not induce chromosomal aberrations as estimated by metaphase and anaphase analyses. They were also not capable to induce SCE. Rubigan did not induce micronucleus formation even at the highest concentration tested, but Omite and Rovral markedly increased micronucleus formation. The MN response depended on the sampling time and the concentration used, which showed a significant dose–response correlation (r = 0.978, P < 0.01 and r = 0.941, P < 0.01, respectively). A greater increase in micronucleus frequency was observed after Rovral treatment, where the highest concentration gave a response 8–10-fold above the negative control. Both pesticides induced high frequencies of lagging chromosomes, even after exposure to the lower test concentrations. The presence of lagging chromosomes is an indication of anti-microtubule activity of the pesticides tested. This effect was more strongly expressed after exposure to the two higher concentrations of Omite and Rovral. In this case a complete destruction of the mitotic spindle was observed, resulting in C-mitoses as well as in numerical aberrations—polyploidy and aneuploidy. The present findings suggest that Omite and Rovral at concentrations comparable to those used in practice can be regarded as potential aneugens.  相似文献   

7.
8.
Our previous study suggests that salicylic acid mediates tolerance in barley plants to paraquat (Ananieva et al. 2002). To further define the role of SA in paraquat induced responses, we analysed the capacity of the antioxidative defence system by measuring the activities of several antioxidative enzymes: superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), dehydroascorbate reductase (DHAR, EC 1.8.5.1), catalase (CAT, EC 1.11.1.6), and guaiacol peroxidase (POX, EC 1.11.1.7). Twelve-day-old barley seedlings were supplied with 500 micromol/L SA or 10 micromol/L Pq via the transpiration stream and kept in the dark for 24 h. Then they were exposed to 100 micromol m(-2) s(-1) PAR and samples were taken 6 h after the light exposure. Treatment of seedlings with 10 micromol/L Pq reduced the activity of APX and GR, did not affect the activity of POX and DHAR but caused over a 40% increase in the activity of CAT. Pre-treatment with 500 micromol/L SA for 24 h in the dark before Pq application increased the activities of the studied enzymes in both the chloroplasts (SOD activity) and the other compartments of the cell (POX, CAT activity). The effect of SA pre-treatment was highly expressed on DHAR and POX activity. The data suggest that SA antagonizes Pq effects, via elicitation of an antioxidative response in barley plants.  相似文献   

9.
Although duckweed Lemna minor L. is a known accumulator of cadmium, detailed studies on its physiological and/or defense responses to this metal are still lacking. In this study, the effects of 10 μM CdCl2 on Lemna minor were monitored after 6 and 12 days of treatment, while growth was estimated every 2 days. Cadmium treatment resulted in progressive accumulation of the metal in the plants and led to a decrease in the growth rate to 54% of the control value. The metal also considerably impaired chloroplast ultrastructure and caused a significant reduction in pigment content, i.e., at day 12, by 30 and 34% for chlorophylls a and b, and by 25% for carotenoids. During cadmium treatment, the contents of malondialdehyde and endogenous H2O2 progressively increased (rising 77 and 46% above the controls by day 12), indicating that cadmium induced considerable oxidative stress. On the other hand, higher activities of pyrogallol peroxidase (PPX), ascorbate peroxidase (APX) and catalase (CAT), as well as the induction of a new APX isoform, in cadmium-treated plants, clearly showed activation of an antioxidative response. At day 6, only PPX activity was significantly above the controls (15%), while, at day 12, PPX, APX and CAT activities were increased (74, 78 and 63%). Cadmium also led to accumulation of the heat shock protein 70 (HSP70) and induced an additional isoform of this protein. The obtained results suggest that cadmium (10 μM) is phytotoxic to Lemna minor, inducing oxidative stress, and that antioxidative enzymes and HSP70 play important roles in the defense against cadmium toxicity. M. Tkalec and T. Prebeg contributed equally to this work  相似文献   

10.
The effect of exogenously applied H2O2 on salt stress acclimation was studied with regard to plant growth, lipid peroxidation, and activity of antioxidative enzymes in leaves and roots of a salt-sensitive maize genotype. Pre-treatment by addition of 1 microM H2O2 to the hydroponic solution for 2 days induced an increase in salt tolerance during subsequent exposure to salt stress. This was evidenced by plant growth, lipid peroxidation and antioxidative enzymes measurements. In both leaves and roots the variations in lipid peroxidation and antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase, and catalase) activities of both acclimated and unacclimated plants, suggest that differences in the antioxidative enzyme activities may, at least in part, explain the increased tolerance of acclimated plants to salt stress, and that H2O2 metabolism is involved as signal in the processes of maize salt acclimation.  相似文献   

11.
Pisum sativum L. cv. Phenomen plants were grown in pots in greenhouse and their growth, and ATP and chlorophyll (Chl) a and b contents were assessed after 9-d exposure to sodium arsenate [0.04 and 0.07 mmol kg–1(soil)], or to lead acetate [2.0 and 4.0 mmol kg–1(soil)], or zinc acetate [5.3 and 9.3 mmol kg–1(soil)]. The luciferin-luciferase method was used for ATP analyses. Soil pollution reduced significantly the growth, but the low toxicant concentrations elevated the cotyledon and shoot ATP concentrations per fresh matter content. The ATP/Chl ratio was increased in the zinc-treated seedlings as compared with the respective controls. The ATP concentration and a number of growth parameters were negatively correlated, and thus the high ATP content might contribute to the significantly reduced growth of seedlings.  相似文献   

12.
Effects of exogenous nickel (Ni: 10 and 200 μM) on growth, mitotic activity, Ni accumulation, H2O2 content and lipid peroxidation as well as the activities of various antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GSH-Px) were investigated in wheat roots. A considerable Ni accumulation in the roots occurred at both the concentrations. Although Ni at 10 μM did not have any significant effect on root growth, it strongly inhibited the root growth at 200 μM. Mitotic activity in the root tips was not significantly affected by exposure of the seedlings to 10 μM Ni; however, it was almost completely inhibited at 200 μM treatment. Ni stress did not result in any significant changes in CAT and APX activities as well as lipid peroxidation. However, H2O2 concentration increased up to 82% over the control in the roots of seedlings exposed to 200 μM Ni. There was a significant decline in both SOD (50%) and GSH-Px (20–30%) activities in the roots when the seedlings were treated with 200 μM Ni. The results indicated that a strong inhibition of wheat root growth caused by Ni stress was not due to enhanced lipid peroxidation, but might be related to the accumulation of H2O2 in root tissue.  相似文献   

13.
The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione S-transferase (GST) as well as proline content were studied in leaves and roots of 14 day-old pea plants treated with NiSO4 (10, 100, 200 μm) for 1, 3, 6 and 9 days. Exposure of pea plants to nickel (Ni) resulted in the decrease in CuZnSOD as well as total SOD activities in both leaves and roots. The activity of APX in leaves of plants treated with 100 and 200 μm Ni increased following the 3rd day after metal application, while in roots at the end of the experiment the activity of this enzyme was significantly reduced. In both organs CAT activity generally did not change in response to Ni treatment. The activity of GST in plants exposed to high concentrations of Ni increased, more markedly in roots. In both leaves and roots after Ni application accumulation of free proline was observed, but in the case of leaves concentration of this amino acid increased earlier and to a greater extent than in roots. The results indicate that stimulation of GST activity and accumulation of proline in the tissues rather than antioxidative enzymes are involved in response of pea plants to Ni stress.  相似文献   

14.
The role of ascorbate in mediating ozone resistance was examined in Plantago major L. Seedlings of eleven populations which exhibited differential resistance to ozone were fumigated in controlled environment chambers with charcoal/Purafil®-filtered air (CFA) or CFA plus 15 nmol·mol–1 ozone overnight rising to a maximum between 12:00–16:00 hours of 75 nmol·mol–1 for 14 d. Measurements of ascorbate content were made on apoplastic and symplastic extracts. Populations differed in their constitutive level of ascorbate in youngest fully expanded leaves, and regression analysis revealed a significant correlation between ascorbate content in ozone-treated leaves and the ozone resistance of the populations. The relationship was stronger using apoplastic ascorbate levels than with corresponding symplastic measurements. The ascorbate content of the youngest fully expanded leaf of an ozone sensitive population was increased by foliar application of ascorbate. No significant difference in stomatal conductance was found between control and ascorbate-treated plants. Following spraying, plants were fumigated with 400 nmol·mol–1 ozone for 7 h. In control plants, ozone exposure resulted in extensive visible leaf damage (20–70 % at the end of the fumigation period) and decreased rates of CO2 assimilation (–57 %). However, ascorbate treatment prevented the appearance of visible injury, and ameliorated the decline in photosynthesis induced by ozone (–26 %). Modelled data estimating the extent of protection afforded by apoplastic ascorbate against ozone supported the experimental observations. The results suggested that although apoplastic ascorbate plays an important role, other factors must also contribute to the mediation of ozone resistance in P. major.  相似文献   

15.
We evaluated determinants of anti-benzo[a]pyrenediolepoxide-(B[a]PDE)–DNA adduct formation (adduct induced by the ultimate carcinogenic metabolite of B[a]P) in lymphomonocytes of subjects environmentally exposed to low doses of polycyclic aromatic hydrocarbons (PAHs) (B[a]P). Our study population consisted of 585 Caucasian subjects, all municipal workers living in North-East Italy and recruited during their periodic check-ups after informed consent. PAH (B[a]P) exposure was assessed by questionnaire. Anti-B[a]PDE–DNA levels were measured by HPLC fluorescence analysis.We found that cigarette smoking (smokers (22%) versus non-smokers, p < 0.0001), dietary intake of PAH-rich meals (≥52 (38%) versus <52 times/year, p < 0.0001), and outdoor exposure (≥4 (19%) versus <4 h/day; p = 0.0115) significantly influenced adduct levels. Indoor exposure significantly increased the frequency of positive subjects (≥0.5 adducts/108 nucleotides; χ2 for linear trend, p = 0.051). In linear multiple regression analysis the major determinants of increased DNA adduct levels (ln values) were smoking (t = 6.362, p < 0.0001) and diet (t = 4.035, p < 0.0001). In this statistical analysis, indoor and outdoor exposure like other factors of PAH exposure had no influence. In non-smokers, the influence of diet (p < 0.0001) and high indoor exposure (p = 0.016) on anti-B[a]PDE–DNA adduct formation became more evident, but not that of outdoor exposure, as was confirmed by linear multiple regression analysis (diet, t = 3.997, p < 0.0001 and high indoor exposure, t = 2.522, p = 0.012).This study indicates that anti-B[a]PDE–DNA adducts can be detected in the general population and are modulated by PAH (B[a]P) exposure not only with smoking – information already known from studies with limited number of subjects – but also with dietary habits and high indoor exposure. In non-smokers, these two factors are the principal determinants of DNA adduct formation. The information provided here seems to be important, since DNA adduct formation in surrogate tissue is an index of genotoxic exposure also in target organs (e.g., lung) and their increase may also be predictive of higher risk for PAH-related cancers.  相似文献   

16.
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from environment. Using two brassica species (Brassica juncea and Brassica napus), nutrient solution experiments were conducted to study variation in tolerance to cadmium (Cd) toxicity based on (1) lipid peroxidation and (2) changes in antioxidative defense system in leaves of both plants (i.e., superoxide dismutase (SOD EC 1.15.1.1), catalase (CAT EC 1.11.1.6), ascorbate peroxidase (APX EC 1.11.1.11), guaiacol peroxidase (GPX EC 1.11.1.7), glutathione reductase (GR EC 1.6.4.2), levels of phytochelatins (PCs), non-protein thiols (NP-SH), and glutathione. Plants were grown in nutrient solution under controlled environmental conditions, and subjected to increasing concentrations of Cd (0, 10, 25 and 50 μM) for 15 days. Results showed marked differences between both species. Brassica napus under Cd stress exhibited increased level of lipid peroxidation, as was evidenced by the increased malondialdehyde (MDA) content in leaves. However, in Brassica juncea treated plants, MDA content remained unchanged. In Brassica napus, with the exception of GPX, activity levels of some antioxidant enzymes involved in detoxification of reactive oxygen species (ROS), including SOD, CAT, GR, and APX, decreased drastically at high Cd concentrations. By contrast, in leaves of Brassica juncea treated plants, there was either only slight or no change in the activities of the antioxidative enzymes. Analysis of the profile of anionic isoenzymes of GPX revealed qualitative changes occurring during Cd exposure for both species. Moreover, levels of NP-SH and PCs, monitored as metal detoxifying responses, were much increased in leaves of Brassica juncea by increasing Cd supply, but did not change in Brassica napus. These results indicate that Brassica juncea plants possess the greater potential for Cd accumulation and tolerance than Brassica napus.  相似文献   

17.
The objective of this study was to determine the ability of the alkaline in vivo Comet assay (pH > 13) to distinguish genotoxic carcinogens from epigenetic carcinogens when performed on freshly isolated kidney cells and to determine the possible interference of cytotoxicity by assessing DNA damage induced by renal genotoxic, epigenetic or toxic compounds after enzymatic isolation of kidney cells from OFA Sprague–Dawley male rats. The ability of the Comet assay to distinguish (1) genotoxicity versus cytotoxicity and (2) genotoxic versus non-genotoxic (epigenetic) carcinogens, was thus investigated by studying five known genotoxic renal carcinogens acting through diverse mechanisms of action, i.e. streptozotocin, aristolochic acids, 2-nitroanisole, potassium bromate and cisplatin, two rodent renal epigenetic carcinogens: d-limonene and ciclosporine and two nephrotoxic compounds: streptomycin and indomethacin. Animals were treated once with the test compound by the appropriate route of administration and genotoxic effects were measured at the two sampling times of 3–6 and 22–26 h after treatment. Regarding the tissue processing, the limited background level of DNA migration observed in the negative control groups throughout all experiments demonstrated that the enzymatic isolation method implemented in the current study is appropriate. On the other hand, streptozotocin, 20 mg/kg, used as positive reference control concurrently to each assay, caused a clear increase in the mean Olive Tail Moment median value, which allows validating the current methodology.Under these experimental conditions, the in vivo rodent Comet assay demonstrated good sensitivity and good specificity: all the five renal genotoxic carcinogens were clearly detected in at least one expression period either directly or indirectly, as in the case of cisplatin: for this cross-linking agent, the significant decrease in DNA migration observed under standard electrophoresis conditions was clearly amplified when the duration of electrophoresis was increased up to 40 min. In contrast, epigenetic and nephrotoxic compounds failed to induce any signifcant increase in DNA migration. In conclusion, the in vivo rodent Comet assay performed on isolated kidney cells could be used as a tool to investigate the genotoxic potential of a test compound if neoplasic/preneoplasic changes occur after subchronic or chronic treatments, in order to determine the role of genotoxicity in tumor induction. Moreover, the epigenetic carcinogens and cytotoxic compounds displayed clearly negative responses in this study. These results allow excluding a DNA direct-acting mechanism of action and can thus suggest that a threshold exists. Therefore, the current in vivo rodent Comet assay could contribute to elucidate an epigenetic mechanism and thus, to undertake a risk assessment associated with human use, depending on the exposure level.  相似文献   

18.
Nitrate induction in spruce: an approach using compartmental analysis   总被引:6,自引:0,他引:6  
Using 13NO 3 -efflux analysis, the induction of nitrate uptake by externally supplied nitrate was monitored in roots of intact Picea glauca (Moench) Voss. seedlings over a 5-d period. In agreement with our earlier studies, efflux analysis revealed three compartments, which have been identified as surface adsorption, apparent free space, and cytoplasm. While induction of nitrate uptake was pronounced, NO 3 fluxes in induced plants were decidedly lower and the induction response was slower than in other species. Influx rose from 0.1 mol·g–1·h–1 (measured at 100 M [NO 3 o) in uninduced plants to a maximum of 0.5 mol·g–1h–1 after 3 d of exposure to 100 M [NO 3 o and declined to 0.3–0.4 mol·g–1h–1 at the end of the 5-d period. Efflux remained relatively constant around 0.02-0.04 mol·g–1h–1, but its percentage with respect to influx declined from initially high values (around 30%) to steady-state values of 4–7%. Cytoplasmic [NO 3 ] ranged from the low micromolar in uninduced plants to a maximum of 2 mM in plants fully induced at 100 M [NO 3 ]o. In-vivo root nitrate reductase activity (NRA) was measured over the same time period, and was found to follow a similar pattern of induction as influx. The maximum response in NRA slightly preceded that of influx. It increased from 25 nmol·g–1·h–1 without prior exposure to NO 3 to peak values around 150 nmol· g–1h–1 after 2 d of exposure to 100 M [NO 3 ]o. Subsequently, NRA declined by about 50%. The dynamics of flux partitioning to reduction, to the vacuole, the xylem, and to efflux during the induction process are discussed.The research was supported by an Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and by a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia campus for providing 13N, to Drs. R.D. Guy and S. Silim for providing plant material, and to Dr. M.Y. Wang, Mr. J. Bailey, Mr. J. Mehroke and Mr. J. Vidmar for essential assistance in experiments.  相似文献   

19.
Effects of NaCl and Mycorrhizal Fungi on Antioxidative Enzymes in Soybean   总被引:12,自引:3,他引:9  
The effects of different concentrations of NaCl on the activities of antioxidative enzymes in the shoots and roots of soybean (Glycine max [L.] Merr cv. Pershing) inoculated or not with an arbuscular mycorrhizal fungus, Glomus etunicatum Becker & Gerdemann, were studied. Furthermore, the effect of salt acclimated mycorrhizal fungi on the antioxidative enzymes in soybean plants grown under salt stress (100 mM NaCl) was investigated. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in the shoots of both mycorrhizal (M) and nonmycorrhizal (NM) plants grown under NaCl salinity. Salinity increased SOD activity in the roots of M and NM plants, but had no effect on CAT and polyphenol oxidase activities in the roots. M plants had greater SOD, POD and ascorbate peroxidase activity under salinity. Under salt stress, soybean plants inoculated with salt pre-treated mycorrhizal fungi showed increased SOD and POD activity in shoots, relative to those inoculated with the non pre-treated fungi.  相似文献   

20.
Exposing newly emerged females of Cotesia congregata(Say) to wild cherry, an inherently unattractive plant, and their host larvae at 0–4 h after adult emergence induced a positive searching response to wild cherry and an inhibited response to cabbage, an attractive plant. Inherent responses were not affected when females were exposed to their hosts at 0–12 h and to cherry at 8–12 h after emergence. The induced response to cherry was constant until its disappearance at 6–7 days;inhibition of the response to cabbage was released at 4–5 days after emergence. Postemergence exposure to cherry and parasitoid cocoons induced similar but weaker searching responses. Induced searching responses exhibit features of associative learning and receptor modification. In addition to its presumed role in foraging, postemergence experience with plants may encourage assortative mating of C. congregatawithin suitable host habitats and, thus, facilitate local adaptations to specific plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号