首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continue migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration, and condensation of these cells. This review elucidates what is currently known about these factors.  相似文献   

2.
Neural crest cells are multipotential cells that delaminate from the dorsal neural tube and migrate widely throughout the body. A subregion of the cranial neural crest originating between the otocyst and somite 3 has been called "cardiac neural crest" because of the importance of these cells in heart development. Much of what we know about the contribution and function of the cardiac neural crest in cardiovascular development has been learned in the chick embryo using quail-chick chimeras to study neural crest migration and derivatives as well as using ablation of premigratory neural crest cells to study their function. These studies show that cardiac neural crest cells are absolutely required to form the aorticopulmonary septum dividing the cardiac arterial pole into systemic and pulmonary circulations. They support the normal development and patterning of derivatives of the caudal pharyngeal arches and pouches, including the great arteries and the thymus, thyroid and parathyroids. Recently, cardiac neural crest cells have been shown to modulate signaling in the pharynx during the lengthening of the outflow tract by the secondary heart field. Most of the genes associated with cardiac neural crest function have been identified using mouse models. These studies show that the neural crest cells may not be the direct cause of abnormal cardiovascular development but they are a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Since, cardiac neural crest cells span from the caudal pharynx into the outflow tract, they are especially susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations as represented by the DiGeorge syndrome will necessarily require understanding development of the cardiac neural crest.  相似文献   

3.
It has been demonstrated that the septation of the outflow tract of the heart is formed by the cardiac neural crest. Ablation of this region of the neural crest prior to its migration from the neural fold results in anomalies of the outflow and inflow tracts of the heart and the aortic arch arteries. The objective of this study was to examine the migration and distribution of these neural crest cells from the pharyngeal arches into the outflow region of the heart during avian embryonic development. Chimeras were constructed in which each region of the premigratory cardiac neural crest from quail embryos was implanted into the corresponding area in chick embryos. The transplantations were done unilaterally on each side and bilaterally. The quail-chick chimeras were sacrificed between Hamburger-Hamilton stages 18 and 25, and the pharyngeal region and outflow tract were examined in serial paraffin sections to determine the distribution pattern of quail cells at each stage. The neural crest cells derived from the presumptive arch 3 and 4 regions of the neuraxis occupied mainly pharyngeal arches 3 and 4 respectively, although minor populations could be seen in pharyngeal arches 2 and 6. The neural crest cells migrating from the presumptive arch 6 region were seen mainly in pharyngeal arch 6, but they also populated pharyngeal arches 3 and 4. Clusters of quail neural crest cells were found in the distal outflow tract at stage 23.  相似文献   

4.
Cardiac neural crest cells migrate into the pharyngeal arches where they support development of the pharyngeal arch arteries. The pharyngeal endoderm and ectoderm both express high levels of FGF8. We hypothesized that FGF8 is chemotactic for cardiac crest cells. To begin testing this hypothesis, cardiac crest was explanted for migration assays under various conditions. Cardiac neural crest cells migrated more in response to FGF8. Single cell tracing indicated that this was not due to proliferation and subsequent transwell assays showed that the cells migrate toward an FGF8 source. The migratory response was mediated by FGF receptors (FGFR) 1 and 3 and MAPK/ERK intracellular signaling. To test whether FGF8 is chemokinetic and/or chemotactic in vivo, dominant negative FGFR1 was electroporated into the premigratory cardiac neural crest. Cells expressing the dominant negative receptor migrated slower than normal cardiac neural crest cells and were prone to remain in the vicinity of the neural tube and die. Treating with the FGFR1 inhibitor, SU5402 or an FGFR3 function-blocking antibody also slowed neural crest migration. FGF8 over-signaling enhanced neural crest migration. Neural crest cells migrated to an FGF8-soaked bead placed dorsal to the pharynx. Finally, an FGF8 producing plasmid was electroporated into an ectopic site in the ventral pharyngeal endoderm. The FGF8 producing cells attracted a thick layer of mesenchymal cells. DiI labeling of the neural crest as well as quail-to-chick neural crest chimeras showed that neural crest cells migrated to and around the ectopic site of FGF8 expression. These results showing that FGF8 is chemotactic and chemokinetic for cardiac neural crest adds another dimension to understanding the relationship of FGF8 and cardiac neural crest in cardiovascular defects.  相似文献   

5.
The distribution and migration of the cardiac neural crest was studied in chick embryos from stages 11 to 17 that were immunochemically stained in whole-mount and sectioned specimens with a monoclonal antibody, HNK-1. The following results were obtained: 1) The first phase of the migration in the cardiac crest follows the dorsolateral pathway beneath the ectoderm. 2) In the first site of arrest, the cardiac crest forms a longitudinal mass of neural-crest cells, called in the present study, the circumpharyngeal crest; this mass is located dorsolateral to the dorsal edge of the pericardium (pericardial dorsal horn) where splanchnic and somatic lateral mesoderm meet. 3) A distinctive strand of neural-crest cells, called the anterior tract, arises from the mid-otic level and ends in the circumpharyngeal crest. 4) By stage 16, after the degeneration of the first somite, another strand of neural-crest cells, called the posterior tract, appears dorsal to the circumpharyngeal crest. It forms an arch-like pathway along the anterior border of the second somite. 5) The seeding of the pharyngeal ectomesenchyme takes place before the formation of pharyngeal arches in the postotic area, i.e., the crest cells are seeded into the lateral body wall ventrally from the circumpharyngeal crest; and, by the ventral-ward regression of the pericardial dorsal horn, lateral expansion of pharyngeal pouch, and caudal regression of the pericardium, the crest cell population is pushed away by the pharyngeal pouch. Thus the pharyngeal arch ectomesenchyme is segregated. 6) By stage 14, at the occipital somite level, ventrolateral migration of the neural crest is observed within the anterior half of each somite. Some of these crest cells are continuous with the caudal portion of the circumpharyngeal crest. An early contribution to the enteric neuroblasts is apparent in this area.  相似文献   

6.
Neural crest cells are essential for proper development of a variety of tissues and structures, including peripheral and autonomic nervous systems, facial skeleton, aortic arches and pharyngeal glands like the thymus and parathyroids. Previous work has shown that bone morphogenic protein (BMP) signalling is required for the production of migratory neural crest cells that contribute to the neurogenic and skeletogenic lineages. We show here that BMP-dependent neural crest cells are also required for development of the embryonic aortic arches and pharynx-derived glands. Blocking formation or migration of this crest cell population from the caudal hindbrain resulted in strong phenotypes in the cardiac outflow tract and the thymus. Thymic aplasia or hypoplasia occurs despite uncompromised gene induction in the pharyngeal endoderm. In addition, when hypoplastic thymic tissue is found, it is ectopically located, but functional in thymopoiesis. Our data indicate that thymic phenotypes produced by neural crest deficits result from aberrant formation of pharyngeal pouches and impaired migration of thymic primordia because the mesenchymal content in the branchial arches is below a threshold level.  相似文献   

7.
The velo-cardio-facial syndrome (VCFS)/DiGeorge syndrome (DGS) is a genetic disorder characterized by phenotypic abnormalities of the derivatives of the pharyngeal arches, including cardiac outflow tract defects. Neural crest cells play a major role in the development of the pharyngeal arches, and defects in these cells are likely responsible for the syndrome. Most patients are hemizygous for a 1.5- to 3.0-Mb region of 22q11, that is suspected to be critical for normal pharyngeal arch development. Mice hemizygous for a 1.5-Mb homologous region of chromosome 16 (Lgdel/+) exhibit conotruncal cardiac defects similar to those seen in affected VCFS/DGS patients. To investigate the role of Lgdel genes in neural crest development, we fate mapped neural crest cells in Lgdel/+ mice and we performed hemizygous neural crest-specific inactivation of Lgdel. Hemizygosity of the Lgdel region does not eliminate cardiac neural crest migration to the forming aortic arches. However, neural crest cells do not differentiate appropriately into smooth muscle in both fourth and sixth aortic arches and the affected aortic arch segments develop abnormally. Tissue-specific hemizygous inactivation of Lgdel genes in neural crest results in normal cardiovascular development. Based on our studies, we propose that Lgdel genes are required for the expression of soluble signals that regulate neural crest cell differentiation.  相似文献   

8.
Cardiac neural crest cells are essential for normal development of the great vessels and the heart, giving rise to a range of cell types, including both neuronal and non-neuronal adventitial cells and smooth muscle. Endothelin (ET) signaling plays an important role in the development of cardiac neural crest cell lineages, yet the underlying mechanisms that act to control their migration, differentiation, and proliferation remain largely unclear. We examined the expression patterns of the receptor, ET(A), and the ET-specific converting enzyme, ECE-1, in the pharyngeal arches and great vessels of the developing chick embryo. In situ hybridization analysis revealed that, while ET(A) is expressed in the pharyngeal arch mesenchyme, populated by cardiac neural crest cells, ECE-1 expression is localized to the outermost ectodermal cells of the arches and then to the innermost endothelial cells of the great vessels. This dynamic pattern of expression suggests that only a subpopulation of neural crest cells in these regions is responsive to ET signaling at particular developmental time points. To test this, retroviral gene delivery was used to constitutively express preproET-1, a precursor of mature ET-1 ligand, in the cardiac neural crest. This resulted in a selective expansion of the outermost, adventitial cell population in the great vessels. In contrast, neither differentiation nor proliferation of neural crest-derived smooth muscle cells was significantly affected. These results suggest that constitutive expression of exogenous preproET-1 in the cardiac neural crest results in expansion restricted to an adventitial cell population of the developing great vessels.  相似文献   

9.
The development of the vertebrate head is a highly complex process involving tissues derived from all three germ layers. The endoderm forms pharyngeal pouches, the paraxial mesoderm gives rise to endothelia and muscles, and the neural crest cells, which originate from the embryonic midbrain and hindbrain, migrate ventrally to form cartilage, connective tissue, sensory neurons, and pigment cells. All three tissues form segmental structures: the hindbrain compartmentalizes into rhombomeres, the mesoderm into somitomeres, and the endoderm into serial gill slits. It is not known whether the different segmented tissues in the head develop by the same molecular mechanism or whether different pathways are employed. It is also possible that one tissue imposes segmentation on the others. Most recent studies have emphasized the importance of neural crest cells in patterning the head. Neural crest cells colonize the segmentally arranged arches according to their original position in the brain and convey positional information from the hindbrain into the periphery. During the screen for mutations that affect embryonic development of zebrafish, one mutant, called van gogh (vgo), in which segmentation of the pharyngeal region is absent, was isolated. In vgo, even though hindbrain segmentation is unaffected, the pharyngeal endoderm does not form reiterated pouches and surrounding mesoderm is not patterned correctly. Accordingly, migrating neural crest cells initially form distinct streams but fuse when they reach the arches. This failure to populate distinct pharyngeal arches is likely due to the lack of pharyngeal pouches. The results of our analysis suggest that the segmentation of the endoderm occurs without signaling from neural crest cells but that tissue interactions between the mesendoderm and the neural crest cells are required for the segmental appearance of the neural crest-derived cartilages in the pharyngeal arches. The lack of distinct patches of neural crest cells in the pharyngeal region is also seen in mutants of one-eyed pinhead and casanova, which are characterized by a lack of endoderm, as well as defects in mesodermal structures, providing evidence for the important role of the endoderm and mesoderm in governing head segmentation.  相似文献   

10.
In the head of vertebrate embryos, neural crest cells migrate from the neural tube into the presumptive facial region and condense to form cranial ganglia and skeletal elements in the branchial arches. We show that newly formed neural folds and migrating neural crest cells express the neuropilin 2 (npn2) receptor in a manner that is highly conserved in amniotes. The repulsive npn2 ligand semaphorin (sema) 3F is expressed in a complementary pattern in the mouse. Furthermore, mice carrying null mutations for either npn2 or sema3F have abnormal cranial neural crest migration. Most notably, "bridges" of migrating cells are observed crossing between neural crest streams entering branchial arches 1 and 2. In addition, trigeminal ganglia fail to form correctly in the mutants and are improperly condensed and loosely organized. These data show that npn2/sema3F signaling is required for proper cranial neural crest development in the head.  相似文献   

11.
Neural crest contributions to the lamprey head   总被引:5,自引:0,他引:5  
The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.  相似文献   

12.
A vital dye analysis of cranial neural crest migration in the chick embryo has provided a positional fate map of greater resolution than has been possible using labelled graft techniques. Focal injections of the fluorescent membrane probe DiI were made into the cranial neural folds at stages between 3 and 16 somites. Groups of neuroepithelial cells, including the premigratory neural crest, were labelled by the vital dye. Analysis of whole-mount embryos after 1-2 days further development, using conventional and intensified video fluorescence microscopy, revealed the pathways of crest cells migrating from mesencephalic and rhombencephalic levels of the neuraxis into the subjacent branchial region. The patterns of crest emergence and emigration correlate with the segmented disposition of the rhombencephalon. Branchial arches 1, 2 and 3 are filled by crest cells migrating from rhombomeres 2, 4 and 6 respectively, in register with the cranial nerve entry/exit points in these segments. The three streams of ventrally migrating cells are separated by alternating regions, rhombomeres 3 and 5, which release no crest cells. Rostrally, rhombomere 1 and the caudal mesencephalon also contribute crest to the first arch, primarily to its upper (maxillary) component. Both r3 and r5 are associated with enhanced levels of cell death amongst cells of the dorsal midline, suggesting that crest may form at these levels but is then eliminated. Organisation of the branchial region is thus related by the dynamic process of neural crest immigration to the intrinsic mechanisms that segment the neuraxis.  相似文献   

13.
Summary The existence of a neural crest cell migration pathway from occipital levels of the hindbrain into the heart was suspected in mammalian embryos because it had previously been identified in avian embryos and because the Di George anomaly, an association between craniofacial and cardiac malformations, is most easily explained on the basis of abnormal neural crest cell migration to all of the affected structures. In order to demonstrate the existence of this pathway, neural crest cells were labelled in situ in rat embryos with the fluorescent dye DiI, and the embryos cultured for up to 48 h. Cells labelled between occipital somites 1 and 2 or 3 and 4 migrated within and dorsal to the third and fourth pharyngeal arches and into the outflow tract of the heart (conus cordis and truncus arteriosus). The cardiac labelling was in individually visible cells, in contrast to the mass of fluorescence seen in the pharyngeal and dorsal mesenchyme. Within the outflow tract wall, the labelled cells were enmeshed by strands of alcian blue-stained extracellular matrix. There was no labelling of cardiac cells following injections just rostral to, or just caudal to, somites one and four. This study establishes the existence and precise levels of origin of the cardiac neural crest in a mammalian embryo.  相似文献   

14.
Most of the bone, cartilage and connective tissue of the lower jaw is derived from cranial neural crest cells (NCCs) arising from the posterior midbrain and hindbrain. Multiple factors direct the patterning of these NCCs, including endothelin-1-mediated endothelin A receptor (Edn1/Ednra) signaling. Loss of Ednra signaling results in multiple defects in lower jaw and neck structures, including homeotic transformation of lower jaw structures into upper jaw-like structures. However, since the Ednra gene is expressed by both migrating and post-migrating NCCs, the actual function of Ednra in cranial NCC development is not clear. Ednra signaling could be required for normal migration or guidance of NCCs to the pharyngeal arches or in subsequent events in post-migratory NCCs, including proliferation and survival. To address this question, we performed a fate analysis of cranial NCCs in Ednra-/- embryos using the R26R;Wnt1-Cre reporter system, in which Cre expression within NCCs results in permanent beta-galactosidase activity in NCCs and their derivatives. We find that loss of Ednra does not detectably alter either migration of most cranial NCCs into the mandibular first arch and second arch or their subsequent proliferation. However, mesenchymal cell apoptosis is increased two fold in both E9.5 and E10.5 Ednra-/- embryos, with apoptotic cells being present in and just proximal to the pharyngeal arches. Based on these studies, Ednra signaling appears to be required by most cranial NCCs after they reach the pharyngeal arches. However, a subset of NCCs appear to require Ednra signaling earlier, with loss of Ednra signaling likely leading to premature cessation of migration into or within the arches and subsequent cell death.  相似文献   

15.
Endothelin-1 (Edn1), originally identified as a vasoconstrictor peptide, is involved in the development of cranial/cardiac neural crest-derived tissues and organs. In craniofacial development, Edn1 binds to Endothelin type-A receptor (Ednra) to induce homeobox genes Dlx5/Dlx6 and determines the mandibular identity in the first pharyngeal arch. However, it remains unsolved whether this pathway is also critical for pharyngeal arch artery development to form thoracic arteries. Here, we show that the Edn1/Ednra signaling is involved in pharyngeal artery development by controlling the fate of neural crest cells through a Dlx5/Dlx6-independent mechanism. Edn1 and Ednra knock-out mice demonstrate abnormalities in pharyngeal arch artery patterning, which include persistent first and second pharyngeal arteries, resulting in additional branches from common carotid arteries. Neural crest cell labeling with Wnt1-Cre transgene and immunostaining for smooth muscle cell markers revealed that neural crest cells abnormally differentiate into smooth muscle cells at the first and second pharyngeal arteries of Ednra knock-out embryos. By contrast, Dlx5/Dlx6 knockout little affect the development of pharyngeal arch arteries and coronary arteries, the latter of which is also contributed by neural crest cells through an Edn-dependent mechanism. These findings indicate that the Edn1/Ednra signaling regulates neural crest differentiation to ensure the proper patterning of pharyngeal arch arteries, which is independent of the regional identification of the pharyngeal arches along the dorsoventral axis mediated by Dlx5/Dlx6.  相似文献   

16.
Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential morphogen signaling molecule and major regulator of embryonic development. The dysregulation of RA levels during embryogenesis has been associated with numerous congenital anomalies, including craniofacial, auditory, and ocular defects. These anomalies result from disruptions in the cranial neural crest, a vertebrate‐specific transient population of stem cells that contribute to the formation of diverse cell lineages and embryonic structures during development. In this review, we summarize our current knowledge of the RA‐mediated regulation of cranial neural crest induction at the edge of the neural tube and the migration of these cells into the craniofacial region. Further, we discuss the role of RA in the regulation of cranial neural crest cells found within the frontonasal process, periocular mesenchyme, and pharyngeal arches, which eventually form the bones and connective tissues of the head and neck and contribute to structures in the anterior segment of the eye. We then review our understanding of the mechanisms underlying congenital craniofacial and ocular diseases caused by either the genetic or toxic disruption of RA signaling. Finally, we discuss the role of RA in maintaining neural crest‐derived structures in postembryonic tissues and the implications of these studies in creating new treatments for degenerative craniofacial and ocular diseases.  相似文献   

17.
Craniofacial and cardiac development relies on the proper patterning of the neural crest-derived ectomesenchyme of the pharyngeal arches, from which many craniofacial and great vessel structures arise. One of the intercellular signaling molecules that is involved in this process, endothelin-1 (ET-1), is expressed in the arch epithelium and influences arch development by binding to its cognate receptor, the endothelin A (ET(A)) receptor, found on ectomesenchymal cells. We have previously shown that absence of ET(A) signaling in ET(A)(-/-) mouse embryos disrupts neural crest cell development, resulting in craniofacial and cardiovascular defects similar in many aspects to those in mouse models of DiGeorge syndrome. These changes may reflect a cell-autonomous requirement for ET(A) signaling during crest cell development because the ET(A) receptor is an intracellular signaling molecule. However, it is also possible that some of the observed defects in ET(A)(-/-) embryos could arise from the absence of downstream signaling that act in a non-cell-autonomous manner. To address this question, we performed chimera analysis using ET(A)(-/-) embryonic stem cells. We observe that, in almost all early ET(A)(-/-) --> (+/+) chimeric embryos, ET(A)(-/-) cells are excluded from the caudoventral aspects of the pharyngeal arches, suggesting a cell-autonomous role for ET(A) signaling in crest cell migration and/or colonization. Interestingly, in the few embryos in which mutant cells do reach the ventral arch, structures derived from this area are either composed solely of wild type cells or are missing, suggesting a second cell-autonomous role for ET(A) signaling in postmigratory crest cell differentiation. In the cardiac outflow tract and great vessels, ET(A)(-/-) cells are excluded from the walls of the developing pharyngeal arch arteries, indicating that ET(A) signaling also acts cell-autonomously during cardiac neural crest cell development.  相似文献   

18.
19.
Pharyngeal arches are a prominent and critical feature of the developing vertebrate head. They constitute a series of bulges within which musculature and skeletal elements form; importantly, these tissues derive from different embryonic cell types [1]. Numerous studies have emphasised the role of the cranial neural crest, from which the skeletal components derive, in patterning the pharyngeal arches [2-4]. It has never been clear, however, whether all arch patterning is completely dependent on this cell type. Here, we show that pharyngeal arch formation is not coupled to the process of crest migration and, furthermore, that pharyngeal arches form, are regionalized and have a sense of identity even in the absence of the neural crest. Thus, vertebrate head morphogenesis can now be seen to be a more complex process than was previously believed and must result from an integration of both neural-crest-dependent and -independent patterning mechanisms. Our results also reflect the fact that the evolutionary origin of pharyngeal segmentation predates that of the neural crest, which is an exclusively vertebrate characteristic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号