首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29046篇
  免费   3512篇
  国内免费   1篇
  2019年   251篇
  2018年   288篇
  2017年   260篇
  2016年   476篇
  2015年   757篇
  2014年   839篇
  2013年   1071篇
  2012年   1302篇
  2011年   1208篇
  2010年   772篇
  2009年   740篇
  2008年   1100篇
  2007年   1088篇
  2006年   1003篇
  2005年   967篇
  2004年   947篇
  2003年   950篇
  2002年   917篇
  2001年   917篇
  2000年   912篇
  1999年   768篇
  1998年   397篇
  1997年   369篇
  1996年   349篇
  1995年   321篇
  1994年   320篇
  1993年   336篇
  1992年   681篇
  1991年   628篇
  1990年   611篇
  1989年   660篇
  1988年   564篇
  1987年   601篇
  1986年   475篇
  1985年   564篇
  1984年   478篇
  1983年   385篇
  1982年   399篇
  1981年   358篇
  1980年   329篇
  1979年   435篇
  1978年   382篇
  1977年   336篇
  1976年   314篇
  1975年   334篇
  1974年   382篇
  1973年   361篇
  1972年   305篇
  1971年   286篇
  1970年   247篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The functional efficacy of colocalized, linked protein domains is dependent on linker flexibility and system compaction. However, the detailed characterization of these properties in aqueous solution presents an enduring challenge. Here, we employ a novel, to our knowledge, combination of complementary techniques, including small-angle neutron scattering, neutron spin-echo spectroscopy, and all-atom molecular dynamics and coarse-grained simulation, to identify and characterize in detail the structure and dynamics of a compact form of mercuric ion reductase (MerA), an enzyme central to bacterial mercury resistance. MerA possesses metallochaperone-like N-terminal domains (NmerA) tethered to its catalytic core domain by linkers. The NmerA domains are found to interact principally through electrostatic interactions with the core, leashed by the linkers so as to subdiffuse on the surface over an area close to the core C-terminal Hg(II)-binding cysteines. How this compact, dynamical arrangement may facilitate delivery of Hg(II) from NmerA to the core domain is discussed.  相似文献   
2.
The unique viscoelastic nature of axons is thought to underlie selective vulnerability to damage during traumatic brain injury. In particular, dynamic loading of axons has been shown to mechanically break microtubules at the time of injury. However, the mechanism of this rate-dependent response has remained elusive. Here, we present a microstructural model of the axonal cytoskeleton to quantitatively elucidate the interaction between microtubules and tau proteins under mechanical loading. Mirroring the axon ultrastructure, the microtubules were arranged in staggered arrays, cross-linked by tau proteins. We found that the viscoelastic behavior specifically of tau proteins leads to mechanical breaking of microtubules at high strain rates, whereas extension of tau allows for reversible sliding of microtubules without any damage at small strain rates. Based on the stiffness and viscosity of tau proteins inferred from single-molecule force spectroscopy studies, we predict the critical strain rate for microtubule breaking to be in the range 22–44 s−1, in excellent agreement with recent experiments on dynamic loading of micropatterned neuronal cultures. We also identified a characteristic length scale for load transfer that depends on microstructural properties and have derived a phase diagram in the parameter space spanned by loading rate and microtubule length that demarcates those regions where axons can be loaded and unloaded reversibly and those where axons are injured due to breaking of the microtubules.  相似文献   
3.
4.
5.
6.

Background

Accurately predicting the probability of a live birth after in vitro fertilisation (IVF) is important for patients, healthcare providers and policy makers. Two prediction models (Templeton and IVFpredict) have been previously developed from UK data and are widely used internationally. The more recent of these, IVFpredict, was shown to have greater predictive power in the development dataset. The aim of this study was external validation of the two models and comparison of their predictive ability.

Methods and Findings

130,960 IVF cycles undertaken in the UK in 2008–2010 were used to validate and compare the Templeton and IVFpredict models. Discriminatory power was calculated using the area under the receiver-operator curve and calibration assessed using a calibration plot and Hosmer-Lemeshow statistic. The scaled modified Brier score, with measures of reliability and resolution, were calculated to assess overall accuracy. Both models were compared after updating for current live birth rates to ensure that the average observed and predicted live birth rates were equal. The discriminative power of both methods was comparable: the area under the receiver-operator curve was 0.628 (95% confidence interval (CI): 0.625–0.631) for IVFpredict and 0.616 (95% CI: 0.613–0.620) for the Templeton model. IVFpredict had markedly better calibration and higher diagnostic accuracy, with calibration plot intercept of 0.040 (95% CI: 0.017–0.063) and slope of 0.932 (95% CI: 0.839–1.025) compared with 0.080 (95% CI: 0.044–0.117) and 1.419 (95% CI: 1.149–1.690) for the Templeton model. Both models underestimated the live birth rate, but this was particularly marked in the Templeton model. Updating the models to reflect improvements in live birth rates since the models were developed enhanced their performance, but IVFpredict remained superior.

Conclusion

External validation in a large population cohort confirms IVFpredict has superior discrimination and calibration for informing patients, clinicians and healthcare policy makers of the probability of live birth following IVF.  相似文献   
7.
8.
9.
Surface plasmon resonance was used to investigate the kinetics, affinity, and specificity of binding between anti-Aβ (beta-amyloid) IgG antibodies and oligomeric Aβ. Two factors were needed to accurately characterize the IgG binding kinetics. First, a bivalent model was necessary to properly fit the kinetic association and dissociation sensograms. Second, a high concentration of IgG was necessary to overcome a significant mass transport limitation that existed regardless of oligomer density on the sensor surface. Using high IgG concentrations and bivalent fits, consistent kinetic parameters were found at varying sensor surface ligand densities. A comparison of binding specificity, affinity, and kinetic flux between monoclonal and natural human anti-Aβ IgG antibodies revealed the following findings. First, monoclonal antibodies 6E10 and 4G8 single-site binding affinity is similar between Aβ oligomers and monomers. Second, natural human anti-Aβ IgG binding readily binds Aβ oligomers but does not bind monomers. Third, natural human anti-Aβ IgG binds Aβ oligomers with a higher affinity and kinetic flux than 6E10 and 4G8. Both the current analytical methodology and antibody binding profiles are important for advances in antibody drug development and kinetic biomarker applications for Alzheimer’s disease.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号