首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Malignant pleural mesothelioma (MPM) is an aggressive cancer that is refractory to current treatment modalities. Oncolytic herpes simplex viruses (HSV) used for gene therapy are genetically engineered, replication-competent viruses that selectively target tumor cells while sparing normal host tissue. The localized nature, the potential accessibility and the relative lack of distant metastasis make MPM a particularly suitable disease for oncolytic viral therapy. METHODS: The infectivity, selective replication, vector spread and cytotoxic ability of three oncolytic HSV: G207, NV1020 and NV1066, were tested against eleven pathological types of MPM cell lines including those that are resistant to radiation therapy, gemcitabine or cisplatin. The therapeutic efficacy and the effect on survival of NV1066 were confirmed in a murine MPM model. RESULTS: All three oncolytic HSV were highly effective against all the MPM cell lines tested. Even at very low concentrations of MOI 0.01 (MOI: multiplicity of viral infection, ratio of viral particles per cancer cell), HSV were highly effective against MPM cells that are resistant to radiation, gemcitabine and cisplatin. NV1066, an oncolytic HSV that expresses green fluorescent protein (GFP), was able to delineate the extent of the disease in a murine model of MPM due to selective infection and expression of GFP in tumor cells. Furthermore, NV1066 was able to reduce the tumor burden and prolong survival even when treatment was at an advanced stage of the disease. CONCLUSION: These findings support the continued investigation of oncolytic HSV as potential therapy for patients with therapy-resistant MPM.  相似文献   

2.
Studies have demonstrated that oncolytic adenoviruses based on a 24 base pair deletion in the viral E1A gene (D24) may be promising therapeutics for treating a number of cancer types. In order to increase the therapeutic potential of these oncolytic viruses, a novel conditionally replicating adenovirus targeting multiple receptors upregulated on tumors was generated by incorporating an Ad5/3 fiber with a carboxyl terminus RGD ligand. The virus displayed full cytopathic effect in all tumor lines assayed at low titers with improved cytotoxicity over Ad5-RGD D24, Ad5/3 D24 and an HSV oncolytic virus. The virus was then engineered to deliver immunotherapeutic agents such as GM-CSF while maintaining enhanced heterogenic oncolysis.  相似文献   

3.
Replicative adenoviruses for cancer therapy   总被引:27,自引:0,他引:27  
Rapid advances are being made in the engineering of replication-competent viruses to treat cancer. Adenovirus is a mildly pathogenic human virus that propagates prolifically in epithelial cells, the origin of most human cancers. While virologists have revealed many details about its molecular interactions with the cell, applied scientists have developed powerful technologies to genetically modify or regulate every viral protein. In tandem, the limited success of nonreplicative adenoviral vectors in cancer gene therapy has brought the old concept of adenovirus oncolysis back into the spotlight. Major efforts have been directed toward achieving selective replication by the deletion of viral functions dispensable in tumor cells or by the regulation of viral genes with tumor-specific promoters. However, the predicted replication selectivity has not been realized because of incomplete knowledge of the complex virus-cell interactions and the leakiness of cellular promoters in the viral genome. Capsid modifications are being developed to achieve tumor targeting and enhance infectivity. Cellular and viral functions that confer greater oncolytic potency are also being elucidated. Ultimately, the interplay of the virus with the immune system will likely dictate the success of this approach as a cancer therapy.  相似文献   

4.
5.
BACKGROUND: The therapeutic efficacy of G207, a replication-competent herpes simplex virus, for malignancies is increased when combined with certain chemotherapies, but the mechanism is unclear and the interaction between G207 and surgical resection has not been extensively studied. The goals of the current study were to examine the performance of combination treatments for peritoneal disseminated cancers and to explore the mechanism of effective combinations. METHODS: Hamsters and SCID and BALB/c mice harboring peritoneal dissemination of gallbladder, gastric or colon cancer cells were treated with G207, 5-fluorouracil (5FU), or surgical resection alone, or G207 combined with 5FU or surgery. Animal survival, antiviral immunity, intratumoral ribonucleotide reductase activity, and viral spread were compared between the groups. RESULTS: The combination of G207 and 5FU prolonged the survival of hamsters bearing peritoneal dissemination of gallbladder cancer compared with the controls, G207 alone and 5FU alone. 5FU did not suppress the production of neutralizing antibodies against G207, but increased ribonucleotide reductase activity and viral spread in subcutaneous gallbladder tumors. The enhanced efficacy of the combination treatment was also observed in immunodeficient mice with disseminated gastric cancer. Although surgical resection did not significantly prolong animal survival or increase the intratumoral activity of ribonucleotide reductase, long-term survivors emerged from groups of animals treated with surgical resection and G207 for gallbladder and colon disseminated cancers. CONCLUSIONS: These results indicate that the increased activity of ribonucleotide reductase in tumors mediated by 5FU and the decreased tumor burden resulting from surgical resection may enhance the therapeutic efficacy of oncolytic herpes virus for peritoneal disseminated cancer.  相似文献   

6.
Molecular therapy using viruses would benefit greatly from a non-invasive modality for assessing dissemination of viruses. Here we investigated whether positron emission tomography (PET) scanning using [(124)I]-5-iodo-2'-fluoro-1-beta-d-arabinofuranosyl-uracil (FIAU) could image cells infected with herpes simplex viruses (HSV). Using replication-competent HSV-1 oncolytic viruses with thymidine kinase (TK) under control of different promoters, we demonstrate that viral infection, proliferation and promoter characteristics all interact to influence FIAU accumulation and imaging. In vivo, as few as 1 x 107 viral particles injected into a 0.5-cm human colorectal tumor can be detected by [(124)I]FIAU PET imaging. PET signal intensity is significantly greater at 48 hours compared with that at 8 hours after viral injection, demonstrating that PET scanning can detect changes in TK activity resulting from local viral proliferation. We also show the ability of FIAU-PET scanning to detect differences in viral infectivity at 0.5 log increments. Non-invasive imaging might be useful in assessing biologically relevant distribution of virus in therapies using replication-competent HSV.  相似文献   

7.
Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.  相似文献   

8.
9.
溶瘤病毒是一类天然的或经过基因编辑后能特异性在肿瘤细胞中复制、发挥抗肿瘤效应的病毒。溶瘤病毒的抗肿瘤效应主要通过以下两个方面实现:a. 直接的溶瘤效应,例如诱导肿瘤细胞发生凋亡、促使细胞裂解等;b. 溶瘤病毒作为一种激活免疫的药物,通过诱导机体产生强烈的抗肿瘤免疫,达到清除肿瘤的目的。溶瘤病毒疗法作为免疫疗法的一个重要分支,因其具有肿瘤特异性,便于基因改造等优点,成为该领域的研究热点。截至目前,处在临床实验招募和完成阶段的溶瘤病毒疗法虽然已达100多例,但已批准上市的产品仅有4款。溶瘤疗法应用于肿瘤治疗领域还面临着诸多挑战。因此,系统性回顾溶瘤病毒的改造策略,深入了解溶瘤病毒的生物学过程显得尤为必要。病毒依赖于宿主完成复制、增殖过程,其生物学过程与宿主的代谢状态密切相关。肿瘤的标志性特征为代谢重编程,即肿瘤细胞重新构建代谢网络以满足指数生长和增殖的需求并防止氧化应激的过程。通常包括糖酵解的增强和谷氨酰胺分解,以及线粒体功能和氧化还原稳态的变化。通过靶向宿主代谢重编程增强溶瘤病毒的复制、溶瘤能力是当前极具前景的方向。本文综述溶瘤病毒的临床应用现状及与代谢相关的调控机制,为进一步开发新型溶瘤病毒以及联用方式提供新的思路。  相似文献   

10.
单纯疱疹病毒是肿瘤生物治疗中常用的病毒载体之一,可复制性单纯疱疹病毒以其溶瘤效率高、特异性好、可行性强成为近年来研究的热点。其中对溶瘤性单纯疱疹病毒突变株G207的研究开展得早,其溶瘤效果、靶向性及安全性都得到了确认,这也带动了可复制性单疱病毒应用的发展,目前已研究出多种溶瘤单纯疱疹病毒突变株。本文就近几年可复制性单纯疱疹病毒在抗肿瘤方面的研究现状加以综述,以探讨其临床治疗肿瘤的潜在价值及可行性。  相似文献   

11.
A mutant herpes simplex virus 1, mtHSV, was constructed by inserting the E. coli beta-galactosidase gene into the loci of icp34.5, the apoptosis-inhibiting gene of HSV. The mtHSV replicated in and lysed U251 (human glioma cells), EJ (human bladder cells), and S-180 (mice sarcoma cells), but not Wish (human amnion cells) cells. With its intact tk (thymidine kinase) gene, mtHSV exhibited susceptibility to acyclovir (ACV), which provided an approach to control viral replication. An in vivo test with mtHSV was conducted in immune-competent mice bearing sarcoma S-180 tumors, which were treated with a single intratumoral injection of mtHSV or PBS. Tumor dimensions then were measured at serial time points, and the tumor volumes were calculated. Sarcoma growth was significantly inhibited with prolonged time and reduced tumor volume. There was microscopic evidence of necrosis of tumors in treated mice, whereas no damage was found in other organs. Immunohistochemical staining revealed that virus replication was exclusively confined to the treated tumor cells. HSV-1 DNA was detected in tumors, but not in the other organs by a polymerase chain reaction analysis. From these experiments, we concluded that mtHSV should be a safe and promising oncolytic agent for cancer treatment.  相似文献   

12.
Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells.  相似文献   

13.
14.
G207 is an oncolytic herpes simplex virus (HSV) which is attenuated by inactivation of viral ribonucleotide reductase (RR) and deletion of both gamma(1)34.5 genes. The cellular counterparts that can functionally substitute for viral RR and the carboxyl-terminal domain of ICP34.5 are cellular RR and the corresponding homologous domain of the growth arrest and DNA damage protein 34 (GADD34), respectively. Because the thymidylate synthetase (TS) inhibitor fluorodeoxyuridine (FUdR) can alter expression of cellular RR and GADD34, we examined the effect of FUdR on G207 bioactivity with the hypothesis that FUdR-induced cellular changes will alter viral proliferation and cytotoxicity. Replication of wild-type HSV-1 was impaired in the presence of 10 nM FUdR, whereas G207 demonstrated increased replication under the same conditions. Combined use of FUdR and G207 resulted in synergistic cytotoxicity. FUdR exposure caused elevation of RR activity at 10 and 100 nM, whereas GADD34 was induced only at 100 nM. The effect of enhanced viral replication by FUdR was suppressed by hydroxyurea, a known inhibitor of RR. These results demonstrate that the growth advantage of G207 in FUdR-treated cells is primarily based on an RR-dependent mechanism. Although our findings show that TS inhibition impairs viral replication, the FUdR-induced RR elevation may overcome this disadvantage, resulting in enhanced replication of G207. These data provide the cellular basis for the combined use of RR-negative HSV mutants and TS inhibitors in the treatment of cancer.  相似文献   

15.
Preclinical studies demonstrate that a broad spectrum of human and animal malignant cells can be killed by oncolytic paramyxoviruses, which includes cells of ecto-, endo- and mesodermal origin. In clinical trials, significant reduction or even complete elimination of primary tumors and established metastases has been reported. Different routes of virus administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural) and single- vs. multiple-dose administration schemes have been explored. The reported side effects were grades 1 and 2, with the most common among them being mild fever. There are certain advantages in using paramyxoviruses as oncolytic agents compared to members of other virus families exist. Thanks to cytoplasmic replication, paramyxoviruses do not integrate the host genome or engage in recombination, which makes them safer and more attractive candidates for widely used therapeutic oncolysis than retroviruses or some DNA viruses. The list of oncolytic Paramyxoviridae members includes the attenuated measles virus, mumps virus, low pathogenic Newcastle disease, and Sendai viruses. Metastatic cancer cells frequently overexpress certain surface molecules that can serve as receptors for oncolytic paramyxoviruses. This promotes specific viral attachment to these malignant cells. Paramyxoviruses are capable of inducing efficient syncytium-mediated lysis of cancer cells and elicit strong immune stimulation, which dramatically enforces anticancer immune surveillance. In general, preclinical studies and phases I–III of clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches.  相似文献   

16.
The goal of oncolytic therapy is to exploit the innate ability of viruses to infect tumor cells, replicate in tumor cells, and produce selective oncolysis while sparing normal cells. Although the concept that viruses can be oncolytic is not new, it is only in the last three decades that efforts have been directed at genetically mutating viruses to specifically target characteristics of cancer cells. Several viruses have the potential to infect, replicate and lyse tumor cells, each taking advantage of different host cancer cell biology. This review will focus on the major viruses under current investigation for oncolytic therapy, the mechanism by which they specifically eradicate tumors, and the clinical strategies currently under investigation.  相似文献   

17.
Gene therapy using tissue-specific replication competent HSV   总被引:1,自引:0,他引:1  
Miyatake S 《Human cell》2002,15(3):130-137
  相似文献   

18.
Advances in gene modification and viral therapy have led to the development of a variety of vectors in several viral families that are capable of replication specifically in tumor cells. Because of the nature of viral delivery, infection, and replication, this technology, oncolytic virotherapy, may prove valuable for treating cancer patients, especially those with inoperable tumors. Current limitations exist, however, for oncolytic virotherapy. They include the body's B and T cell responses, innate inflammatory reactions, host range, safety risks involved in using modified viruses as treatments, and the requirement that most currently available oncolytic viruses require local administration. Another important constraint is that genetically enhanced vectors may or may not adhere to their replication restrictions in long-term applications. Several solutions and strategies already exist, however, to minimize or circumvent many of these limitations, supporting viral oncolytic therapy as a viable option and powerful tool in the fight against cancer.  相似文献   

19.
In many common cancers, dissemination of secondary tumors via the lymph nodes poses the most significant threat to the affected individual. Metastatic cells often reach the lymph nodes by mimicking the molecular mechanisms used by hematopoietic cells to traffic to peripheral lymphoid organs. Therefore, we exploited naive T cell trafficking in order to chaperone an oncolytic virus to lymphoid organs harboring metastatic cells. Metastatic burden was initially reduced by viral oncolysis and was then eradicated, as tumor cell killing in the lymph node and spleen generated protective antitumor immunity. Lymph node purging of tumor cells was possible even in virus-immune mice. Adoptive transfer of normal T cells loaded with oncolytic virus into individuals with cancer would be technically easy to implement both to reduce the distribution of metastases and to vaccinate the affected individual in situ against micrometastatic disease. As such, this adoptive transfer could have a great therapeutic impact, in the adjuvant setting, on many different cancer types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号