首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract: Perlecan is a specific heparan sulfate proteoglycan that accumulates in the fibrillar β-amyloid (Aβ) deposits of Alzheimer's disease. Perlecan purified from the Engelbreth-Holm-Swarm tumor was used to define perlecan's interactions with Aβ and its effects on Aβ fibril formation. Using a solid-phase binding immunoassay, freshly solubilized full-length Aβ peptides bound immobilized perlecan at two sites, representing both high-affinity [KD = ~5.8 × 10?11M for Aβ (1–40); KD = ~6.5 × 10?12M for Aβ (1–42)] and lower-affinity [KD = 3.5 × 10?8M for Aβ (1–40); KD = 4.3 × 10?8M for Aβ (1–42)] interactions. An increase in the binding capacity of Aβ (1–40) to perlecan correlated with an increase in Aβ amyloid fibril formation during a 1-week incubation period. The high-capacity binding of Aβ (1–40) to perlecan was similarly observed using perlecan heparan sulfate glycosaminoglycans and was completely abolished by heparin, but not by chondroitin-4-sulfate. Using a thioflavin T fluorometry assay, perlecan accelerated the rate of Aβ (1–40) amyloid fibril formation, causing a significant increase in Aβ fibril assembly over a 2-week incubation period at 1 h (2.8-fold increase), 1 day (3.6-fold increase), and 3 days (2.8-fold increase) in comparison with Aβ (1–40) alone. Perlecan also initially accelerated the formation of Aβ (1–42) fibrils within 1 h and maintained significantly higher levels of Aβ (1–42) thioflavin T fluorescence throughout a 2-week experimental period in comparison with Aβ (1–42) alone, suggesting perlecan's ability to maintain amyloid fibril stability. Perlecan's effects on Aβ (1–40) fibril formation and maintenance of Aβ (1–42) fibril stability occurred in a dose-dependent manner and was also mediated primarily by perlecan's glycosaminoglycan chains. Perlecan was the most effective enhancer and accelerator of Aβ fibril formation when compared directly with other amyloid plaque components, including apolipoprotein E, α1-antichymotrypsin, P component, C1q, and C3. This study, therefore, demonstrates that perlecan not only binds to the predominant isoforms of Aβ, but also accelerates Aβ fibril formation and stabilizes amyloid fibrils once formed, confirming pivotal roles for perlecan in the pathogenesis of Aβ amyloidosis in Alzheimer's disease.  相似文献   

2.
We determined the binding sites of curcumin (cur), resveratrol (res), and genistein (gen) with milk β-lactoglobulin (β-LG) at physiological conditions. Fourier transform infrared spectroscopy, circular dichroism, and fluorescence spectroscopic methods as well as molecular modeling were used to determine the binding of polyphenol–protein complexes. Structural analysis showed that polyphenols bind β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of Kcurcumin–β-LG?=?4.4 (±?.4)?×?104 M?1, Kresveratrol–β-LG?=?4.2 (±?.2)?×?104 M?1, and Kgenistein–β-LG?=?1.2 (±?.2)?×?104?M?1. The number of polyphenol molecules bound per protein (n) was 1 (cur), 1.1 (res), and 1 (gen). Molecular modeling showed the participation of several amino acid residues in polyphenol–protein complexation with the free binding energy of ?12.67 (curcumin–β-LG), ?12.60 (resveratrol–β-LG), and ?10.68?kcal/mol (genistein–β-LG). The order of binding was cur?>?res?>?gen. Alteration of the protein conformation was observed in the presence of polyphenol with a major reduction of β-sheet and an increase in turn structure, causing a partial protein structural destabilization. β-LG might act as a carrier to transport polyphenol in vitro.  相似文献   

3.
β-lactoglobulin (β-LG) is a member of lipocalin superfamily of transporters for small hydrophobic molecules such as retinoids. We located the binding sites of retinol and retinoic acid on β-LG in aqueous solution at physiological conditions, using FTIR, CD, fluorescence spectroscopic methods, and molecular modeling. The retinoid-binding sites and the binding constants as well as the effect of retinol and retinoic acid complexation on protein stability and secondary structure were determined. Structural analysis showed that retinoids bind strongly to β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of K retinol- β -LG?=?6.4 (±?.6)?×?106?M?1 and K retinoic acid- β -LG?=?3.3 (±?.5)?×?106?M?1. The number of retinoid molecules bound per protein (n) is 1.1 (±?.2) for retinol and 1.5 (±?.3) for retinoic acid. Molecular modeling showed the participation of several amino acids in the retinoid–protein complexes with the free binding energy of ?8.11?kcal/mol for retinol and ?7.62?kcal/mol for retinoic acid. Protein conformation was altered with reduction of β-sheet from 59 (free protein) to 52–51% and a major increase in turn structure from 13 (free protein) to 24–22%, in the retinoid–β-LG complexes, indicating a partial protein destabilization.  相似文献   

4.
Small globular protein, β-lactoglobulin (βLG), which has significant affinity toward many drugs, is the most abundant whey protein in milk. In this study, the interaction of βLG with three important nutrients, ascorbic acid (ASC), folic acid (FOL), and vitamin K3 (VK3) was investigated by spectroscopic methods (UV–visible and fluorescence) along with molecular docking technique. The results of fluorescence measurements showed that studied nutrients strongly quenched βLG fluorescence in static (FOL and ACS) or static–dynamic combined quenching (VK3) mode. The values of binding constants (KβLG-ASC ~ 4.34 × 104 M?1, KβLG-FOL ~ 1.67 × 104 M?1and KβLG-VK3 ~ 13.49 × 104 M?1 at 310 K) suggested that VK3 and FOL had stronger binding affinity toward βLG than ASC. Thermodynamic analysis indicated that hydrophobic interactions are the major forces in the stability of FOL–βLG complex with enthalpy- and entropy-driving mode while, hydrogen bonds and van der Waals interactions play a major role for βLG–ASC and βLG–VK3 associations. The results of 3D fluorescence FT-IR and UV–Visible measurements indicated that the binding of above nutrients to βLG may induce conformational and micro-environmental changes of protein. Also, there is a reciprocal complement between spectroscopic techniques and molecular docking modeling. The docking results indicate that the ASC, FOL, and VK3 bind to residues located in the subdomain B of βLG. Finally, this report suggests that βLG could be used as an effective carrier of above nutrients in functional foods.  相似文献   

5.
Abstract

Monocellular suspensions of epithelial cells from mammary glands of rabbits at 20–22 days of pregnancy were prepared by sequential dissociation with collagenase-hyaluronidase followed by Pronase. Maintenance in D-valine-substituted minimum essential medium (D-valine-MEM) supplemented with 10% dialyzed calf serum yielded monolayers enriched for rabbit mammary epithelial cells (RMEC). RMEC specifically and reversibly bound bovine PRL with Ka = 1.41–1.85 × 109M-1. Association of lactogen with RMEC receptor followed bimolecular reaction kinetics with rate of 5.17 (±0.75) x 105M-1 sec-1 at 24 C, and 1.03 (±0.11) x 106M-1 sec-1 at 37 C. Dissociation was first order (k-1 = 5.97 (±0.70) x 10-5 sec-1) and was unaffected by the presence of lactogen. Specific binding determined with an excess of unlabelled bPRL was 66–77% of the total binding, and was optimal at pH 7.4. The binding reaction reached equilibrium in 2 h at 37 C, in 3 h at 24 C, and after 24 h at 4 C. Studies of binding capacity revealed the presence of 4.6–6.3 × 103 sites per cell, competition for which was limited to hormones demonstrating lacto-genic activity. Recovered lactogen was not degraded by incubation with or dissociation from RMEC. Approximately 25% of the radioactivity remained associated with the cells even upon prolonged incubation. These studies demonstrated several advantages of RMEC for the investigation of hormone-receptor interaction and receptor regulation.  相似文献   

6.
F G Walz  B Terenna  D Rolince 《Biopolymers》1975,14(4):825-837
Spectrophotometric binding studies were undertaken on the interaction of neutral red with native and heat-denatured, sonicated, calf thymus DNA in a 0.2M ionic strength buffer containing Tris–sodium acetate–potassium chloride at 25°C. The pKA of neutral red was found to be 6.81. At pH 5 the binding of protonated neutral red was complicated even at low concentration ratios of dye to DNA. In the pH range 7.5–8.5 the tight binding process could be studied and it was found that both protonated and free base species of neutral red significantly bind with DNA having association constants (in terms of polynucleotide phosphate) of 5.99 × 103 M?1 and 0.136 × 103 M?1, respectively, for native DNA and 7.48 × 103 M?1 and 0.938 × 103 M?1, respectively, for denatured DNA. The pKA value of the neutral red–DNA complexes were 8.46 for native DNA and 7.72 for denatured DNA. These results are discussed in terms of possible binding mechanisms.  相似文献   

7.
Abstract: The β-amyloid peptide (Aβ) is a normal proteolytic processing product of the amyloid precursor protein, which is constitutively expressed by many, if not most, cells. For reasons that are still unclear, Aβ is deposited in an aggregated fibrillar form in both diffuse and senile plaques in the brains of patients with Alzheimer's disease (AD). The factor(s) responsible for the clearance of soluble Aβ from biological fluids or tissues are poorly understood. We now report that human α2-macroglobulin (α2M), a major circulating endoproteinase inhibitor, which has recently been shown to be present in senile plaques in AD, binds 125I-Aβ(1–42) with high affinity (apparent dissociation constant of 3.8 × 10?10M). Approximately 1 mol of Aβ is bound per mole of α2M. Both native and methylamine-activated α2M bind 125I-Aβ(1–42). The binding of 125I-Aβ(1–42) to α2M is enhanced by micromolar concentrations of Zn2+ (but not Ca2+) and is inhibited by noniodinated Aβ(1–42) and Aβ(1–40) but not by the reverse peptide Aβ(40-1) or the cytokines interleukin 1β or interleukin 2. α1-Antichymotrypsin, another plaque-associated protein, inhibits both the binding of 125I-Aβ(1–42) to α2M as well as the degradation of 125I-Aβ(1–42) by proteinase-activated α2M. Moreover, the binding of 125I-Aβ(1–42) to α2M protects the peptide from proteolysis by exogenous trypsin. These data suggest that α2M may function as a carrier protein for Aβ and could serve to either facilitate or impede clearance of Aβ from tissues such as the brain.  相似文献   

8.
The binding of 4-methylumbelliferyl-α-D-galactopyranoside, -β-D-galactopyranoside and -D-Galβ(1→3)DGalNac to peanut agglutinin was studied by fluorescence. Peanut agglutinin quenched the fluorescence intensity of 4-methylumbelliferyl-α-D-galactopyranoside but enhanced that of the two 4-methylumbelliferyl-β-galactosides. For α-D-galactopyranoside, the association constants measured at 4 and 25°C were 3.4 × 103 and 1.7 × 103 M?1 respectively, and for D-Galβ(1→3)DGalNac, 1.5 × 105 and 3.3 × 104 M?1. The binding enthalpies estimated from these values are consistent with the existence of extended sugar binding sites in the peanut agglutinin molecule.  相似文献   

9.
Radioiodinated α1 antitrypsin has been found to bind to human lymphocytes. This binding is fast and reversible, and the cells can be saturated. Each lymphocyte can bind a maximum of approximately 1.2 × 106 molecules of α1 antitrypsin with an association constant of 0.7 × 106 M?1×l. The binding is inhibited by the addition of cold α1 antitrypsin or Soybean trypsin inhibitor, and partially by α2 macroglobulin. The data suggest that α1 antitrypsin is likely to bind to a cell surface-associated protease. The addition of cell-free supernatants from lymphocytes incubated at 37°C was found to decrease the binding of α1 antitrypsin, suggesting that the receptor is released from the cell surface.  相似文献   

10.
We are reporting the synthesis, characterization, and calf thymus DNA binding studies of novel chiral macrocyclic Mn(III) salen complexes S‐1 , R‐1 , S‐2 , and R‐2 . These chiral complexes showed ability to bind with DNA, where complex S‐1 exhibits the highest DNA binding constant 1.20 × 106 M?1. All the compounds were screened for superoxide and hydroxyl radical scavenging activities; among them, complex S‐1 exhibited significant activity with IC50 1.36 and 2.37 μM, respectively. Further, comet assay was used to evaluate the DNA damage protection in white blood cells against the reactive oxygen species wherein complex S‐1 was found effective in protecting the hydroxyl radicals mediated plasmid and white blood cells DNA damage. Chirality 24:1063–1073, 2012.© 2012 Wiley Periodicals, Inc.  相似文献   

11.
Coumarin molecules have biological activities possessing lipid-controlling activity, anti-hepatitis C activity, anti-diabetic, anti-Parkinson activity, and anti-cancer activity. Here, we have presented an inclusive study on the interaction of 8-substituted-7-hydroxy coumarin derivatives (Umb-1/Umb-2) with α-1-glycoprotein (AGP) and human serum albumin (HSA) which are the major carrier proteins in the human blood plasma. Binding constants obtained from fluorescence emission data were found to be KUmb-1=3.1 ± .01 × 104 M?1, KUmb-2 = 7 ± .01 × 104 M?1, which corresponds to ?6.1 and ?6.5 kcal/mol of free energy for Umb-1 and Umb-2, respectively, suggesting that these derivatives bind strongly to HSA. Also these molecules bind to AGP with binding constants of KUmb-1-AGP=3.1 ± .01 × 103 M?1 and KUmb-2-AGP = 4.6 ± .01 × 103 M?1. Further, the distance, r between the donor (HSA) and acceptor (Umb-1/Umb-2) was calculated based on the Forster’s theory of non-radiation energy transfer and the values were observed to be 1.14 and 1.29 nm in Umb-1–HSA and Umb-2–HSA system, respectively. The protein secondary structure of HSA was partially unfolded upon binding of Umb-1 and Umb-2. Furthermore, site displacement experiments with lidocaine, phenylbutazone (IIA), and ibuprofen (IIIA) proves that Umb derivatives significantly bind to subdomain IIIA of HSA which is further supported by docking studies. Furthermore, Umb-1 binds to LYS402 with one hydrogen bond distance of 2.8 Å and Umb-2 binds to GLU354 with one hydrogen bond at a distance of 2.0 Å. Moreover, these molecules are stabilized by hydrophobic interactions and hydrogen bond between the hydroxyl groups of carbon-3 of coumarin derivatives.  相似文献   

12.
Novel enamine derivatives were synthesized from the reaction of lactone and chalcones and their antiproliferative and cytotoxic activities against six cancer cell lines (e. g., HeLa, HT29, A549, MCF7, PC3 and Hep3B) and one normal cell lines (e. g., FL) were investigated along with their mode of interactions with CT‐DNA. Most of the enamine derivatives with IC50 values of 86–168 μM demonstrated much stronger antiproliferative activity than the starting molecules against the cancer cells. While, among the enamine derivatives, four compounds displayed higher cytotoxic potency than the control drugs (5‐fluorouracil and cisplatin) against the Hep3B cell lines, these compounds did not exhibit any significant toxicity against normal cells, FL. The UV/VIS spectral data suggest that eight compounds cause hypochromism with a slight bathochromic shift (~6 nm), indicating that they bind to the DNA by way of an intercalative or minor groove binding mode. The binding constants of the compounds are in the range of 0.1×103 M?1–2.3×104 M?1. The antiproliferative activity of studied enamine derivatives could possibly be due to their DNA binding as well as their cytotoxic properties. In addition to these assays, the chalcones and enamine derivatives were investigated by molecular docking to calculate the synergistic effect of antiproliferative activities against six human cancer cell lines.  相似文献   

13.
Beta-amyloid peptide (Aβ), a major protein component of senile plaques associated with Alzheimer’s disease (AD), is also directly neurotoxic. Mitigation of Aβ-induced neurotoxicity is thus a possible therapeutic approach to delay or prevent onset and progression of AD. This study evaluated the protective effect of Bajijiasu (β- d-fructofuranosyl (2–2) β- d-fructofuranosyl), a dimeric fructose isolated from the Chinese herb Radix Morinda officinalis, on Aβ-induced neurotoxicity in pheochromocytoma (PC12) cells. Bajijiasu alone had no endogenous neurotoxicity up to 200 μM. Brief pretreatment with 10–40 μM Bajijiasu (2 h) significantly reversed the reduction in cell viability induced by subsequent 24 h exposure to Aβ25–35 (21 μM) as measured by MTT and LDH assays, and reduced Aβ25–35-induced apoptosis as indicated by reduced annexin V-EGFP staining. Bajijiasu also decreased the accumulation of intracellular reactive oxygen species and the lipid peroxidation product malondialdehyde in PC12 cells, upregulated expression of glutathione reductase and superoxide dismutase, prevented depolarization of the mitochondrial membrane potential (Ψm), and blocked Aβ25–35-induced increases in [Ca2+] i . Furthermore, Bajijiasu reversed Aβ25–35-induced changes in the expression levels of p21, CDK4, E2F1, Bax, NF-κB p65, and caspase-3. Bajijiasu is neuroprotective against Aβ25–35-induced neurotoxicity in PC12 cells, likely by protecting against oxidative stress and ensuing apoptosis.  相似文献   

14.
The DNA-binding and photonuclease activity of newly synthesized tetra-azamacrocyclic ligand L (C32H32N8O4) and its complexes of type [MLCl2] and [ML]Cl2 (where M = Co(II), Fe(II) and Cu(II); L = N,N′-[3-(4-{5-[(2-amino-ethylamino)-methyl]-isoxazol-3yl}-phenyl)-isoxazol-5-yl methyl-ethane-1,2-diamine] are specified. An octahedral geometry has been proposed for Fe(II) and Co(II) complexes, while the Cu(II) complex has a square planar environment. The absorption spectral results indicate that the complexes bind with the base pairs of DNA, with an intrinsic binding constant Kb of Fe(II), Co(II), and Cu(II) complexes found to be 3.2 × 104 M?1, 5.3 × 104 M?1, and 4.2 × 104 M?1, respectively, in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2. The large enhancement in the relative viscosity of DNA on binding to the complexes supports the proposed DNA binding modes. The viscosity and thermal denaturation studies sustain the effective intercalation with DNA. The DNA photocleavage studies demonstrated that compounds exhibit significant photonuclease activity by a concentration dependent on singlet oxygen mediated mechanism.  相似文献   

15.
Ferrocene‐incorporated selenoureas 1‐(4‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P4Me), 1‐(3‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P3Me), and 1‐(2‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P2Me) were synthesized and characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, atomic absorption spectroscopy, CHNS, and single‐crystal X‐ray diffraction. DNA interaction of the compounds was investigated with cyclic voltammetry, UV–visible spectroscopy, and viscometry, which is a prerequisite for anticancer agents. Drug‐DNA binding constant was found to vary in the sequence: KP4Me (4.9000 × 104 M?1) > KP2Me (2.318 × 104 M?1) > KP3Me (1.296 × 104 M?1). Antioxidant (1,1‐diphenyl‐2‐picrylhydrazyl), antifungal (against Faussarium solani and Helmentosporium sativum), and antibacterial (against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis) activities have also been reported in addition.  相似文献   

16.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   

17.
We examined a variety of factors that might modulate the initiation of neurite outgrowth in an attempt to identify means by which its initiation might be accelerated. We examined this initiatio from an identified molluscan neuron, Helisoma trivolvis buccal neuron B5 after axotomy, and determined whether the site of injury, temperature, ion channel blockers, pH, the second messenger cAMP, and protein synthesis affect the initiation of neurite outgrowth. Neurite outgrowth was assayed from axotomized neurons by filling the neurons intracellularly with Lucifer Yellow and examining the percentage of axons that extended (sprouted) new process after 9 or 24 h in organ culture. About one-third (31%) of axotomized neurons sprouted from the site of injury after 9 h (n = 22), and 88% (n = 20) sprouted after 24 h in saline at 22°–24°C when the injury was located 800 μm from the soma. Elevating the temperature to 32°C or moving the lesion site to 400 or 1500 μm from the soma did not significantly alter the incidence of sprouting. Blocking sodium channels with tetrodotoxin [TTX (2 × 10?5 M)] did not significantly reduce the incidence of sprouting, whereas the sodium channel agonist, veratridine (10?5 M) did. The calcium channel blocker lanthanum (10?6–10?4 M), stimulated neurite outgrowth; however, the organic calcium channel blocker verapamil (10?3–10?5 M), and the calcium ionophore A23187 (10?5 M), had no effect on sprouting. Exposure of neurons to the potassium channel blocker tetraethylammonium [TEA (20 mM)], elevation of intracellular pH with NH4Cl (5 mM), or treatment with the adenylate cyclase activator forskolin (10?5 M) reduced the incidence of sprouting, whereas dideoxy-forskolin (10?5 M) had no effect. Inhibition of protein synthesis with anisomycin (2 × 10?4 to 2 × 10?6 M) did not significantly suppress sprouting 24 h after axotomy. Both d and l isomers of glutamate (300 μM) stimulated sprouting. The present results suggest that the initiation of sprouting is regulated locally at or near the site of injury, and that blocking specific ion channels may either inhibit or enhance the initiation of neurite outgrowth.  相似文献   

18.
The purpose of this study was to elucidate the binding of paeonol to human serum albumin (HSA) through spectroscopic methods. The fluorescence quenching of HSA by paeonol was a result of the formation of the HSA–paeonol complex with low binding affinity (K = 4.45 × 103 M?1 at 298 K). Thermodynamic parameters (ΔG = –2.08 × 104 J·mol?1, ΔS = 77.9 J·mol?1·K?1, ΔH = 2.41 × 103 J·mol?1, kq = 9.67 × 1012 M?1·s?1) revealed that paeonol mainly binds HSA through hydrophobic force following a static quenching mode. The binding distance was estimated to be 1.91 nm by fluorescence resonant energy transfer. The conformation of HSA was changed and aggregates were formed in the presence of paeonol, revealed by synchronous fluorescence, circular dichroism, Fourier transform infrared spectroscopy, three‐dimensional fluorescence spectroscopy, and resonance light scattering results.  相似文献   

19.
Y Tsunashima  K Moro  B Chu  T Y Liu 《Biopolymers》1978,17(2):251-265
Group-specific polysaccharides isolated by means of a cetavlon procedure are immunogenic in man and induce protective immunity against meningococcal meningitis. Minute quantities of the polymers in solution can act as vaccines. We now report the first characterization of a fractionated (C-1) group C polysaccharide in 0.4KM KCl and 0.05M sodium acetate by means of light-scattering spectroscopy. Independent measurements of refractive index increments, absolute scattered intensities, angular scattering intensities and line widths as a function of scattering angles and delay times at different concentrations using incident wavelengths of 632.8 nm from a He–Ne laser and of 488 nm from an argon–ion laser yield information on aggregation properties, molecular weight (Mr), radius of gyration 〈r0g1/2z, translational diffusion coefficient 〈D〉0z, and second virial coefficients A2 and B2 of C-1 polysaccharide. At relatively high ionic strength (0.04M KCl + 0.05M sodium acetate), we obtain for the C-1 polysaccharide in solution Mr = 5.15 × 105, 〈r2g1/2z = 345 Å, A2 = 1.25 × 10?4 ml/g, 〈D〉 = 1.16 × 10?7 cm2/sec with a corresponding Stokes radius of 240 Å and B2 = 4.4 ml/g. A2 and B2 are the second virial coefficients from intensity- and diffusion-coefficient measurements. The C-1 polysaccharide aggregates in solution and behaves hydrodynamically like random coils. Viscosity and sedimentation studies further confirm our conclusions that the fractioned C-1 polysaccharide aggregates in solution and EDTA can partially break up those aggregates. However, the system remains polydisperse even after adding an excess amount of EDTA. The weight-average molecular weight of the C-1 polysaccharide in solution depends upon ionic strength and exhibits a minimum at ~0.2M KCl. Finally, viscosity, light-scattering, and sedimentation results all show that the aggregated macromolecular system behaves like random-coiled polymers with no measurable shape factors.  相似文献   

20.
In the acridine orange–dermatan sulfate system, free and bound dye can be distinguished from each other spectroscopically. This permits the use of fluorometric methods to study the binding of acridine orange to the acid mucopolysaccharide dermatan sulfate. Experiments were conducted at 24°C in 10?3 M citrate/phosphate buffer at pH = 7.0. The binding of the dye is highly cooperative, as evidenced by considerable interaction between adjacent bound dye molecules. Analysis of the data indicates that dermatan sulfate binds 2.3 ± 0.3 mol of acridine orange per dermatan sulfate uronic acid residue with a cooperative binding constant, Kq ranging from 4.9 to 6.0 × 105 M?1 which corresponds to a free energy of 7.74 ? ΔG° ? 7.86. The cooperativity parameter q apparently increases with increasing polymer-to-dye ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号