首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
RNA editing of a miRNA precursor   总被引:22,自引:2,他引:20       下载免费PDF全文
  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The coding sequence of several mitochondrial mRNAs of the kinetoplastid protozoa is created through the insertion and deletion of specific uridylates. The editing reactions are required to be highly specific in order to ensure that functional open reading frames are created in edited mRNAs and that potentially deleterious modification of normally nonedited sequence does not occur. Selection-amplification and mutagenesis were previously used to identify the optimal sequence requirements for in vitro editing. There is, however, a minority of natural editing sites with suboptimal sequence. Several cis-acting elements, obtained from an in vitro selection, are described here that are able to compensate for a suboptimal editing site. An A + U sequence element within the 5'-untranslated region of cytochrome b mRNA from Leishmania tarentolae is also demonstrated to function as a cis-acting guide RNA and is postulated to compensate for a suboptimal editing site in vivo. Two proteins within an enriched editing extract are UV-cross-linked to two different in vitro selected editing substrates more efficiently than poorly edited RNAs. The results suggest that these proteins contribute to the specificity of the editing reaction.  相似文献   

12.
Rapid evolution of RNA editing sites in a small non-essential plastid gene   总被引:3,自引:0,他引:3  
Chloroplast RNA editing proceeds by C-to-U transitions at highly specific sites. Here, we provide a phylogenetic analysis of RNA editing in a small plastid gene, petL, encoding subunit VI of the cytochrome b6f complex. Analyzing representatives from most major groups of seed plants, we find an unexpectedly high frequency and dynamics of RNA editing. High-frequency editing has previously been observed in plastid ndh genes, which are remarkable in that their mutational inactivation does not produce an obvious mutant phenotype. In order to test the idea that reduced functional constraints allow for more flexible evolution of RNA editing sites, we have created petL knockout plants by tobacco chloroplast transformation. We find that, in the higher plant tobacco, targeted inactivation of petL does not impair plant growth under a variety of conditions markedly contrasting the important role of petL in photosynthesis in the green alga Chlamydomonas reinhardtii. Together with a low number of editing sites in plastid genes that are essential to gene expression and photosynthetic activity, these data suggest that RNA editing sites may evolve more readily in those genes whose transitory loss of function can be tolerated. Accumulated evidence for this ‘relative neutrality hypothesis for the evolution of plastid editing sites’ is discussed.  相似文献   

13.
14.
15.
16.
17.
陆生植物叶绿体RNA编辑是转录后基因表达调控的一种重要方式。该文在预测棉花(Gossypium hirsutum)叶绿体基因RNA编辑位点的基础上,选取中棉10(CRRI 10)为实验材料,采用PCR、RT-PCR及测序等方法,确定CRRI 10的27个叶绿体蛋白编码基因共有55个编辑位点,均是C→U的转换。与棉种柯字310(C310)的编辑位点比对后发现,CRRI 10多出accD-468和rpoC1-163两个编辑位点,同时缺失psbN-10。利用生物信息学分析这3个位点,rpoC1-163和psbN-10的编辑可能会改变各自蛋白的二级结构。对CRRI 10中55个编辑位点上游的顺式作用元件(?30–?1)分析显示,共有8组顺式作用元件的相似性达到60%或以上,推测各组中的编辑位点可能由相同的反式作用因子来识别。  相似文献   

18.
19.
The RNA editing that produces most functional mRNAs in trypanosomes is catalysed by a multiprotein complex. This complex catalyses the endoribonucleolytic cleavage, uridylate addition and removal, and RNA ligation steps of the editing process. Enzymatic and in vitro editing analyses reveal that each catalytic step contributes to the specificity of the editing and, together with the interaction between gRNA and the mRNA, results in precisely edited mRNAs. Tandem mass spectrometric analysis was used to identify the genes for several components of biochemically purified editing complexes. Their identity and presence in the editing complex were confirmed using immunochemical analyses utilizing mAbs specific to the editing complex components. The genes for two RNA ligases were identified. Genetic studies show that some, but not all, of the components of the complex are essential for editing. The TbMP52 RNA ligase is essential for editing while the TbMP48 RNA ligase is not. Editing was found to be essential in bloodstream form trypanosomes. This is surprising because mutants devoid of genes encoding RNAs that become edited survive as bloodstream forms but encouraging since editing complex components may be targets for chemotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号