首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BChla-containing Fenna-Matthews-Olson (FMO) protein from the green sulfur bacteriumChlorobium tepidum was purified and characterized. Fluorescence spectra indicate that efficient excited state quenching occurs at neutral or oxidizing redox potentials. The major fluorescence lifetime at room temperature is approximately 60 ps in samples that are in neutral or oxidizing conditions, and approximately 2 ns in samples where the strong reductant sodium dithionite has been added. A similar change is observed in pump-probe picosecond absorbance difference experiments, where the long life time component increases after dithionite addition. A 16 Gauss wide EPR signal with g factor =2.005 is observed in samples without dithionite. This signal largely disappears upon addition of dithionite. Dithionite induces large reversibile changes in the 77 K absorbance spectra of the purified FMO protein and in whole cells. These results indicate that the FMO protein contains redox active groups, which may be involved in the regulation of energy transfer. Room temperature circular dichroism and low temperature absorption spectra show that dithionite also induces conformational or structural changes of the FMO protein complex.  相似文献   

2.
Vinod K. Shah  Winston J. Brill 《BBA》1973,305(2):445-454
Extracts of Azotobacter vinelandii have been fractionated by simple techniques to obtain highly purified components of nitrogenase. The yield of each component is greater than 60%. Purified Component I has a specific activity of 1638 nmoles ethylene formed/min per mg protein. The spectrum of Component I exhibits a broad absorption between 300 and 600 nm, with no distinctive peaks or shoulders. Addition of sodium dithionite or exposure to air has no effect on the absorption spectrum. Component I, examined at 4.2 °K has EPR signals at g = 4.2, 3.65 and 2.01. Addition of sodium dithionite does not produce additional resonances nor does it alter the signals already present. Crystals of Component I are dark brown and needle-shaped.Purified Component II has a specific activity of 1815 nmoles ethylene formed/min per mg protein. The absorption spectrum has no peaks or shoulders between 390 and 650 nm. Upon exposure of Component II to air, absorption increases between 400 and 650 nm. Treatment of oxidized Component II with dithionite causes this absorption to fall below that of the native Component II. EPR spectra of Component II has signals at g values of 2.05, 1.94, and 1.88. Upon inactivation by O2, these signals disappear.Neither component by itself has detectable acetylene-reducing or N2-fixing activity. The ratio of acetylene reduced to N2 fixed is 3.86 with different ratios of the components. Both components form aggregated species upon exposure to air. Dithionite does not reverse this effect.  相似文献   

3.
Changes in the conformation of Complex III (CoQH2-cytochromec reductase) of the mitochondrial respiratory chain were detected upon oxidoreduction using the nitroxide spin label, 3-(maleimidomethyl)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl. EPR spectra of the spin label show a transition from a greater to a lesser degree of immobilization when the labeled enzyme, reduced either with ascorbate or sodium dithionite, is oxidized with potassium ferricyanide or ferricytochromec. These observations are interpreted to indicate that Complex III is more compact in the reduced state at least in the locality of the spin label. An apparent increase in the concentration of total spins during oxidation of the complex suggests change in the interaction between the spin label and other paramagnetic centers and not an oxidation of spin label, itself, since reduced free spin label could not be reoxidized. Addition of antimycin A had no effect on the EPR spectrum of the spin-labeled enzyme, indicating that this inhibitor does not initiate a conformational change in the region of the spin label. Experiments in which N-ethyl-[2-3H] maleimide was bound to Complex III show that binding occurs primarily to a subunit with a molecular weight of 45,000. Although no qualitative differences were observed, it was found that less radioactivity appears in samples reduced with dithionite than in those reduced with ascorbate. This difference appears to be caused by decomposition products of dithionite.  相似文献   

4.
Ferredoxin-nitrite reductase (EC 1.7.7.1), an enzyme which catalyzes the 6-electron reduction of nitrite to ammonia, has been isolated from Spinacia oleracea. The isolated enzyme was homogeneous by disc electrophoresis with polyacrylamide gel. The molecular weight of the enzyme was estimated to be 86,000 by Ultrogel AcA 34 gel filtration. In the oxidized form, the enzyme had absorption maxima at 278, 388 (Soret band), 573 (α band) and 690 nm, indicating that siroheme is directly involved in the catalysis of nitrite reduction. This absorption spectrum was modified by sulfite, hydroxylamine and cyanide. The enzyme exhibited electron paramagnetic resonance signals with g values of 6.9 and 5.2, which are characteristic of a high spin Fe3+ -siroheme in the molecule. These signals disappeared upon the addition of dithionite or nitrite. This isolated enzyme also contained four moles of labile sulfide and 7 g-atoms of iron per 86,000 g of protein.  相似文献   

5.
Ferredoxin-glutamate synthase (EC 1.4.7.1) from Chlamydomonas reinhardii has been purified to electrophoretic homogeneity, with a specific activity of 10.4 units mg-1 protein, by a method which included chromatography on diethylaminoethyl sephacel and hydroxylapatite, and ferredoxin-sepharose affinity treatment. The enzyme is a single polypeptide chain of M r 146000 dalton which shows an absorption spectrum with maxima at 278, 377 and 437 nm, and an A276/A437 absorptivity ratio of 7.0. The anaerobic addition of dithionite results in the loss of the absorption peak at 437 nm, which is restored upon reoxidation of the enzyme with an excess of 2-oxoglutarate, alone or in the presence of glutamine. This indicates the presence in the enzyme of a flavin prosthetic group, which is functional during the catalysis. The ferredoxin-glutamate synthase can be assayed with methyl viologen, chemically reduced with dithionite, but it is unable to use reduced pyridine nucleotide. Azaserine, 6-diazo-5-oxo-norleucine, bromocresol green and p-hydroxymercuribenzoate are potent inhibitors of this activity, which, on the other hand, is stable upon heating at 45°C for 10 min.Abbreviations DEAE-sephacel diethylaminoethyl sephacel - Fd ferredoxin - GOGAT glutaniate synthase (glutamine: -ketoglutarate aminotransferase) - SDS sodium dodecyl sulfate  相似文献   

6.
Cobalt(III)bovine carbonic anhydrase B was prepared by the oxidation of the cobalt(II) enzyme with hydrogen peroxide and was purified by affinity chromatography. The oxidation reaction is inhibited by specific inhibitors of carbonic anhydrase. The inhibition is explained by the fact that the Co(II)-enzyme . inhibitor complex cannot be directly oxidized by hydrogen peroxide, but has to dissociate to give free Co(II) enzyme which is then oxidized. The Co(III) ion in Co(III) carbonic anhydrase cannot be directly substituted by zinc ions. It can be reduced by either dithionite or BH-4 ions to give, first, their complexes with the Co(II) enzyme, and upon their removal, a fully active Co(II) enzyme. Cyanide and azide bind to cobalt(III) carbonic anhydrase with similar rate constants of 0.060 +/- 0.005 and 0.070 +/- 0.007 M-1 S-1 respectively. These rates are faster than those found for Co(III) inorganic complexes. The Co(III) ion in both Co(III) carbonic anhydrase and Co(III) carboxypeptidase A was found to be diamagnetic, indicating a near octahedral symmetry.  相似文献   

7.
A new pathway of photoinactivation of photosystem II (PS II) connected with irreversible photoaccumulation of reduced pheophytin (Ph) in isolated D1–D2–cytochrome b 559 complexes of reaction center (RC) of PS II was discovered. The inhibitory effects of white light illumination on photochemical activity of D1–D2–cytochrome b 559 complexes of RCs of photosystem II, isolated from pea chloroplasts, have been compared under anaerobic conditions in the absence and in the presence of sodium dithionite, electron transfer from which to the oxidized primary electron donor P680+ results in the photoaccumulation of anion-radical of the primary electron acceptor, PH. In both cases, prolonged illumination (1-5 min, 120 W/m2) led to a pronounced loss of the photochemical activity as it was monitored by measuring the amplitude of the reversible photoinduced absorbance changes at 682 nm related to the photoreduction of Ph. The extent of the photoinactivation depended on the illumination time and pH of the medium. At pH 8.0, the presence of dithionite during photoinactivation brought about a protective effect compared to that in a control sample. In contrast, lowering pH to 6.0 increased the sensitivity to photoinactivation in the dithionite containing samples. For 5 min irradiation, the photochemical activity in the absence and in the presence of dithionite decreased by 35 and 72%, respectively (this was accompanied by an irreversible bleaching of the pheophytin Qx absorption band at 542 nm). Degradation of the D1 and D2 proteins was not observed under these conditions. A subsequent addition of an electron acceptor, potassium ferricyanide, to the illuminated samples restored neither the amplitude of the signal at 682 nm nor absorption at 542 nm. It is suggested that at pH < 7.0 the photoaccumulated PH is irreversibly converted into a secondary, most probably protonated form, that does not lead to destruction of the RCs but prevents the photoformation of the primary radical pair [P680+PH]. A possible application of this effect to photoinactivation of PS II in vivo is discussed.  相似文献   

8.
Cobalt(II), cobalt(III), nickel(II), copper(II) and palladium(II) complexes with N-2-(2-pyridyl)ethylring-substituted salicylideneiminates (abbreviated as X-Sal-2-Epy) were synthesized. In addition to CoIII (H-Sal-2-Epy)3, the complexes of the formula MII(X-Sal-2-Epy)2·nH2O were obtained in crystals. The cobalt(III) complex is diamagnetic and has an electronic absorption spectrum typical of the six-coordinate, octahedral cobalt(III) complex. The cobalt(II) complexes in the solid state show electronic spectra typical of the six-coordinate cobalt(II) complexes. Electronic spectra also indicate that the nickel(II) complexes in the solid state and in non-donor solvents are six-coordinate, octahedral. In the cobalt(II) and nickel(II) complexes, the ligand X-Sal-2-Epy functions as terdentates, while in the cobalt(III) complex it acts as a bidentate ligand. The results are compared with those reported previously for related ligands.  相似文献   

9.
A new class of polydentate Mannich bases featuring an N2S2 donor system, bis((2-mercapto-N-phenylacetamido)methyl)phosphinic acid H3L1 and bis((2-mercapto-N-propylacetamido)methyl)phosphinic acid H3L2, has been synthesised from condensation of phosphinic acid and paraformaldehyde with 2-mercaptophenylacetamide W1 and 2-mercaptopropylacetamide W2, respectively. Monomeric complexes of these ligands, of general formula K2[CrIII(Ln)Cl2], K3[M′II(Ln)Cl2] and K[M(Ln)] (M′ = Mn(II) or Fe(II); M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) or Hg(II); n = 1, 2) are reported. The structures of new ligands, mode of bonding and overall geometry of the complexes were determined through IR, UV–Vis, NMR, and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II) and Fe(II) complexes, square planar for Ni(II) and Cu(II) complexes and tetrahedral for the Co(II), Zn(II), Cd(II) and Hg(II) complexes. Complex formation studies via molar ratio in DMF solution were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1).  相似文献   

10.
The paper discusses biosorption of Cr(III), Cu(II), Mn(II), Zn(II) and Co(II) to the biomass of Chlorella vulgaris, to produce a biologically bound, concentrated form of microelements. The kinetics of biosorption was described with a pseudo-second order equation and equilibrium with the Langmuir isotherm. The mechanism of biosorption was identified as cation-exchange with alkaline metals. Cation-exchange capacity was evaluated as 4.07 meq g−1. The effect of operation conditions, pH and temperature, on biosorption performance was investigated and the best operation conditions for biosorption were selected (pH 5, temperature 25 °C). The maximum sorption capacity of microelements was determined in single-metal system at pH 5 and 25 °C: Zn(II) 3.30 meq g−1, Cu(II) 1.77 meq g−1, Co(II) 1.75 meq g−1, Cr(III) 1.74 meq g−1, Mn(II) 0.764 meq g−1. Biosorption experiments were also carried out in multi-metal system. The biomass of C. vulgaris enriched with microelements via the process of biosorption in both single- and multi-metal system was discussed in terms of preparation of feed supplement for laying hens and piglets. The experiments showed that 1 kg of conventional feed for laying hens can be supplemented with 0.20 g of the biomass enriched with microelements and for piglets with 0.15 g of the preparation.  相似文献   

11.
Mikoyan  V. D.  Burgova  E. N.  Borodulin  R. R.  Vanin  A. F. 《Biophysics》2020,65(6):972-980

The levels of the mononitrosyl iron complex with diethyldithiocarbamate that form in the liver of mice in vivo and in vitro after intraperitoneal injection of binuclear dinitrosyl iron complexes with N-acetyl-L-cysteine or glutathione, S-nitrosoglutathione, sodium nitrite, or the vasodilating drug isosorbide dinitrate (Isoket®) have been assessed by electron paramagnetic resonance (EPR). The levels of the complex in mice that received binuclear dinitrosyl iron complexes with thiol-containing ligands or S-nitrosoglutathione do not change after the treatment of liver preparations with the strong reducing agent dithionite, in contrast to those formed after nitrite or isosorbide dinitrate administration, whose levels sharply increase after the same treatment. It is inferred that in the latter case an EPR-active mononitrosyl iron complex with diethyldithiocarbamate is produced with the absence or presence of dithionite in the reaction of NO formed from nitrite with Fe2+-diethyldithiocarbamate and Fe3+-diethyldithiocarbamate complexes, respectively. In the former case, the mononitrosyl iron complex with diethyldithiocarbamate is produced by transition of iron-mononitrosyl fragments from already present iron-dinitrosyl groups of binuclear dinitrosyl complexes, whose content is three to four times higher than the content of the mononuclear form of these complexes in the tissue. The results we obtained indicate that when dinitrosyl iron complexes with thiol-containing ligands, either introduced into the body or produced with the participation of endogenous NO, appear in animal tissues in vivo, these complexes are presented in these tissues mainly in their diamagnetic, EPR-silent binuclear form.

  相似文献   

12.
Anaerobically prepared cell extracts of Clostridium kluyveri grown on succinate plus ethanol contained high amounts of 4-hydroxybutyryl-CoA dehydratase, which catalyzes the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA. The enzyme was purified 12-fold under strictly anaerobic conditions to over 95% homogeneity and had a specific activity of 123 nkat mg-1. The finding of this dehydratase means that all of the enzymes necessary for fermentation of succinate plus ethanol by C. kluyveri have now been demonstrated to exist in this organism and confirms the proposed pathway involving a reduction of succinate via 4-hydroxybutyrate to butyrate. Interestingly, the enzyme is almost identical to the previously isolated 4-hydroxybutyryl-CoA dehydratase from Clostridium aminobutyricum. The dehydratase was revealed as being a homotetramer (m=59 kDa/subunit), containing 2±0.2 mol FAD, 13.6±0.8 mol Fe and 10.8±1.2 mol inorganic sulfur. The enzyme was irreversibly inactivated after exposure to air. Reduction by sodium dithionite also yielded an inactive enzyme which could be reactivated, however, up to 84% by oxidation with potassium hexacyanoferrate(III). The enzyme possesses an intrinsic vinylacetyl-CoA isomerase activity which was also found in 4-hydroxybutyryl-CoA dehydratase from C. aminobutyricum. Moreover, the N-terminal sequences of the dehydratases from both organisms were found to be 63% identical.  相似文献   

13.
Electron paramagnetic resonance (EPR) and absorption spectroscopy have been used to study the low temperature photochemical behavior of the Photosystem II D-1/D-2/ cytochrome b559 reaction center complex. The reaction center displays large triplet state EPR signals which are attenuated after actinic illumination at low temperatures in the presence of sodium dithionite. Concomitant with the triplet attenuation is the buildup of a structured radical signal with an effective g value of 2.0046 and a peak-to-peak width of 11.9 G. The structure in the signal is suggestive of it being comprised in part of the anion radical of pheophytin a. This assignment is corroborated by low temperature optical absorbance measurements carried out after actinic illumination at the low temperatures which show absorption bleachings at 681 nm, 544 nm and 422 nm and an absorbance buildup at 446 nm indicating the formation of reduced pheophytin.Abbreviations EPR electron paramagnetic resonance  相似文献   

14.
Summary Females of the digger wasp Liris niger Fabr. hunt crickets to provide food for their offspring by running with high velocity on the ground (>20–50 cm/s). Crickets are able to detect the running wasps by the air particle movement generated by the predator. We measured signals produced by running wasps using a microphone sensitive to air particle velocity. The wasps generated single air puffs with peak air particle velocities of 1–2 cm/s measured close to the running wasp. We measured frequency spectra of the signals containing only components below 50 Hz, with increasing intensities towards lower frequencies, especially below 10 Hz.We measured the air particle movement generated by artificially moved wasps, crickets or a styrofoam dummy of similar size to investigate the effect of velocity and shape of the moving object upon the composition of the signal. The velocity of movement appeared to be important for the intensity and frequency composition of the air particle movement. The shape of the moved body had an influence on the intensity but only little effect on the frequency spectrum. Measurements with a thermistor anemometer showed that a moving object caused air currents lasting longer than 100 ms after passing or approaching the probe. The air particle movements generated by hunting wasps are entirely sufficient with respect to intensity and frequency range to be registered by the filiform hair sensilla upon the cerci of crickets.  相似文献   

15.
The S2 state of the oxygen-evolving Mn-cluster of Photosystem II (PS II) is known to have different forms that exhibit the g =2 multiline and g = 4.1 EPR signals. These two spin forms are interconvertible at > 200 K and the relative amplitudes of the two signals are dependent on the species of cryoprotectant and alcohol contained in the medium. Also, it was recently found that the mutiline form can be converted to the g = 4.1 form by absorption of near-infrared light by the Mn-cluster itself at around 150 K [Boussac et al. (1996) Biochemistry 35: 6984–6989]. We have used light-induced Fourier transform infrared (FTIR) difference spectroscopy to study the structural difference in these two S2 forms. FTIR difference spectra for S2/S1 as well as for S2QA -/S1QA measured at cryogenic temperatures using PS II membranes in the presence of various cryoprotectants, and monohydric alcohols did not show any specific differences except for intensities of amide I bands, which were larger when ethylene glycol or glycerol was present in addition to sucrose. This result was interpreted due to more flexible movement of the protein backbones upon S2 formation with a higher cryoprotectant content. Light-induced difference spectra measured at 150 K using either blue light without near-infrared light or red plus near-infrared light also did not show any detectable difference. In addition, a different spectrum upon near-infrared illumination at 150 K of the PS II sample in which the S2 state had been photogenerated at 200 K exhibited no meaningful signals. These results indicate that the two S2 forms that give rise to the multiline and g = 4.1 signals have only minor differences, if any, in the structures of amino-acid ligands and polypeptide backbones. This conclusion suggests that conversion between the two spin states is caused by a spin-state transition in the Mn(III) ion rather than valence swapping within the Mn-cluster that would considerably affect the vibrations of ligands.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

16.
Nitrite oxidoreductase was isolated from mixotrophically grown cells of Nitrobacter hamburgensis. The enzyme purified from heat treated membranes was homogeneous by the criteria of polyacrylamide gel electrophoresis and size exclusion chromatography. The monomeric form consisted of two subunits with Mr 115000 and 65000, respectively. The dimeric form of the enzyme contained 0.70 molybdenum, 23.0 iron, 1.76 zinc, and 0.89 copper. The catalytically active enzyme was investigated by visible and electron paramagnetic resonance spectroscopy (EPR) under oxidizing (as isolated), reducing (dithionite), and turnover (nitrite) conditions. As isolated the enzyme exhibited a complex set of EPR signals between 5–75 K, originating from several ironsulfur and molybdenum (V) centers. Addition of the substrate nitrite, or the reducing agent dithionite resulted in a set of new resonances. The molybdenum and the iron-sulfur centers of nitrite oxidoreductase from Nitrobacter hamburgensis were involved in the transformation of nitrite to nitrate.Abbreviations EPR electron paramagnetic resonance - ICP-AES inductively coupled plasma-atomic emission spectrometry - NaPi sodium phosphate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

17.
Pyridine-2,6-bis(monothiocarboxylic acid) (pdtc),a natural metal chelator produced by Pseudomonas stutzeri and Pseudomonas putidathat promotes the degradation of carbon tetrachloride, was synthesized and studiedby potentiometric and spectrophotometric techniques. The first two stepwise protonationconstants (pK) for successive proton addition to pdtc were found to be 5.48 and2.58. The third stepwise protonation constant was estimated to be 1.3. The stability (affinity)constants for iron(III), nickel(II), and cobalt(III) were determined by potentiometric orspectrophotometric titration. The results show that pdtc has strong affinity for Fe(III)and comparable affinities for various other metals. The stability constants (log K) are 33.93 for Co(pdtc)2 1-; 33.36 for Fe(pdtc)2 1-; and 33.28 for Ni(pdtc)2 2-. These protonationconstants and high affinity constants show that over a physiological pH range theferric pdtc complex has one of the highest effective stability constants for ironbinding among known bacterial chelators.  相似文献   

18.
Exposure of cobalt (II) carboxypeptidase Aα, [(CPD)Co(II)], to small molar excesses of the oxidizing agent m-chloroperbenzoate rapidly destroys (< 30 sec) both its peptidase and esterase activities in parallel. Concomitantly, the characteristic Co(II) electron paramagentic resonance (EPR) signal is abolished. [(CPD)Co(III)], isolated from the reaction mixture, has the same molecular weight and amino acid composition as [(CPD)Co(II)], contains 0.95 g-atom of Co and 0.01 g-atom of Zn per mole of protein, does not exhibit an EPR spectrum and is catalytically completely inactive towards both peptide and ester substrates. Identical treatment of the native zinc enzyme affects neither its catalytic activity nor its metal content. The reaction of m-chloroperbenzoate with [(CPD)Co(II)] follows saturation kinetics and is prevented by the inhibitor β-phenylpropionate. Furthermore, under the conditions found to oxidize [(CPD)Co(II)] effectively, there is no reaction with Co(II) E. coli alkaline phosphatase. Thus, m-chloroperbenzoate has the characteristics of an active-site directed oxidizing reagent for [(CPD)Co(II)].  相似文献   

19.
In the present paper, the possibility of the application of marine macroalga Ulva (Enteromorpha) prolifera, as microelemental feed supplement for livestock, was evaluated. The concept was based on two facts: the natural macroalga contains high concentrations of microelements and there is a possibility to greatly increase this content via biosorption. In order to characterize the biosorption process of metal ions by U. prolifera, preliminary experiments were conducted with Cr(III) ions. The effect of temperature, pH and the biomass concentration on the equilibrium of biosorption was investigated. For further experiments (biosorption of Mn(II), Zn(II), Cu(II), Co(II)), the following experimental conditions were chosen: pH 5, 25°C, the biomass concentration 1.0 g l−1. Equilibrium of the biosorption process could be described by the Langmuir equation. The theoretical maximum biosorption capacity was also determined by potentiometric titration of the biomass. The investigation of the external structure of the macroalga and atomic concentration of elements on the surface of the biomass was analyzed using scanning electron microscopy. The content of microelements in the biomass after biosorption increased 110,555; 44,228; 21,177; 2,281 and 1,458 times for Co(II), Cr(III),Cu(II), Zn(II), Mn(II), respectively. Therefore, biomass of U. prolifera enriched with individual microelements, mixed in the proper proportion could be used as feed supplement in animal feeding to cover the nutrient requirements for microelements.  相似文献   

20.
The number of electrons transferred per molecule of the Fe protein of nitrogenase from Clostridium pasteurianum was determined. The Fe protein was enzymically oxidized in the presence of MgATP and a small amount of MoFe protein, and dithionite was introduced to reduce part of the Fe protein. From the decrease in absorbance at 430 nm upon addition of dithionite and the amount of dithionite added, we conclude that one oxidized Fe protein molecule (dimer of 55,000 dalton) accepts one electron from dithionite. These calculations were based on our value of 6,600 M?1cm?1 for the extinction coefficient at 430 nm of the difference spectrum between oxidized and reduced Fe protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号