首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Exposure to benzo(a)pyrene (B(a)P) for health risk was studied in soils from the Delhi region, India. The mean and median concentrations of benzo(a)pyrene were 0.031 and 0.029 (±0.002) mg/kg, respectively. The lifetime average daily dose (LADD) for adults and children was 1.7 × 10?8 mg kg?1 d?1 and 7.5 × 10?8 mg kg?1 d?1, respectively, with incremental life time cancer risk (ILCR) of 1.2 × 10?7 and 5.5 × 10?7, respectively. The Index of Additive Cancer Risk (IACR) was 0.084. Our screening-level risk assessment shows that the observed ILCR and IACR values are much lower than the guideline values of 10?6 ? 10?4 (ILCR) and <1 (IACR), respectively, and therefore the measured B(a)P levels in soil may not portend environmental and human health risks.  相似文献   

2.
The purposes of this study were to quantify the time-weighted, lifetime average, daily intake (LADI) of polycyclic aromatic hydrocarbons (PAHs) through food ingestion and to estimate the excess cancer risk based on lifetime dietary PAH intake. Twenty-seven different food commodities were selected from the 2001 Korean National Health and Nutrition survey based on their frequent consumption and high PAH level. The foods were analyzed for the profile of 14 PAH congeners using high performance liquid chromatography (HPLC) and fluorescence detector. Considering the toxic equivalent (TEQ) level converted with the toxic equivalent factors (TEFs), the highest total TEQ level of PAHs in foods was detected from roasted laver at 1.2 ug TEQ/kg. For the PAH exposure assessment according to ingested foods, the average body weight was separated according to the following age groups, 1–6, 7–19, 20–64 and over 64 years, and the daily food ingestion rates from the National Health and Nutrition survey were used. The estimated Lifetime Average Daily Intake (LADI) of PAHs was 3.22 × 10–3 ug/kg/day for carcinogenic effects and was higher in the younger age groups under 20 years old than in the older groups. The dietary excess cancer risk estimated using the cancer potency of benzo(a)pyrene (7.3(mg/kg/day)?1) was 2.3 × 10?5, which is equivalent to a probability of tumor eruption in the upper gastrointestinal tract of two per hundred thousand persons.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are of global concern due to their ubiquitous presence, toxicity, and carcinogenicity. No data on PAHs in soils from South Africa have been published, even though it has the largest economy and industrial base in Africa. During this initial assessment, the levels of PAHs were determined in soils and sediments collected from central South Africa, specifically targeting industrial, residential, and agricultural areas. Analysis was performed by gas chromatography/mass spectrometry (GC/MS). The total concentration of PAHs (Σt-PAH) ranged between 44 and 39,000 ng/g, dw and the concentration of carcinogenic PAHs (Σc-PAH) ranged between 19 and 19,000 ng/g, dw. Pyrogenic processes were the most likely sources, with minimal petrogenic contributions. PAH levels were in the same range as levels reported from other countries, and the majority of the sites did not exceed Canadian environmental quality guidelines. Based on assumptions for dermal contact and ingestion of PAH-contaminated soil, we provisionally calculated only a small increase in cancer risk, but additional PAH inhalation could add considerably to this risk. Our data indicates a need for more analysis in industrial and residential areas, and should include air.  相似文献   

4.
Sixteen polycyclic aromatic hydrocarbons (PAHs) were investigated in urban soils of Ahvaz metropolis to assess the contamination, distribution, potential sources, and related health risks for local residents. For this purpose, a total of 39 topsoil samples from different parts of the city were collected and analyzed for PAHs using gas chromatography–mass spectrometry. PAHs analysis revealed that 4 -rings PAHs are the dominant compounds. Distribution maps revealed that outlet roads of the city and an area in city center, particularly an industrial area at Southwest of the city, West Saheli street, Pasdaran Blvd, Ahvaz-Ramhormoz Police Station, Khorramshahr bus terminal, and Daneshgah Square, are the contamination hotspots. PAHs diagnostic ratios and principal component analysis (PCA) showed both petrogenic and pyrogenic sources for these compounds, although, the results indicated the dominance of pyrogenic (combustion) origin, particularly traffic emission, incomplete combustion of fossil fuels and gasoline emissions. Furthermore, calculation of toxic equivalents and cancer risk showed a high carcinogenic risk especially through dermal contact and ingestion pathways; however, compared with adults, children faced more cancer risk in their daily life through their unconscious ingestion and dermal contact pathway.  相似文献   

5.
In this research, carcinogenic and non-carcinogenic human health risks due to polycyclic aromatic hydrocarbons (PAHs) were investigated via three exposure pathways: accidental ingestion of soil, dermal contact of soils, and contaminated vegetable ingestion. To determine the contaminant concentrations in soil, samples were collected from areas adjacent to the Tehran oil refinery, located in Shahr-e-Ray city, Iran. Analyses of the samples indicated that the average of PAHs concentration in the soil samples were greater than clean-up level guidelines. Cancer risk of contaminants due to ingestion of cultivated vegetables that are sold in Tehran markets was significant in comparison with other exposure pathways. Moreover, the total cancer risk for 5th percentile, 95 upper confidence limit, and 95th percentile concentration of contaminants were 5.69E-04, 8.78E-02, and 2.13E-01, classifying the site as having a significant cancer risk potential. Furthermore, non-carcinogenic health risk analyses for the contaminants demonstrated hazard index of less than 1. Remediation of the soils is highly recommended to eliminate the potential cancer risks and prevent the contamination of the food chain for approximately 10 million Tehran residents.  相似文献   

6.
In order to use contaminated soil safely, risk and use planning of contaminated soils by 16 priority polycyclic aromatic hydrocarbons (PAHs) of the United States Environmental Protection Agency (USEPA) in Shenfu Irrigation Area (SIA) were investigated. The toxic equivalency factor (TEF) approach and the risk quotient (RQ) approach were used to assess the carcinogenic risk and ecological risk of PAHs in the current agricultural use, respectively, and the ecological risk of PAHs in SIA under residential, commercial, and industrial land uses which could be used in the future were also evaluated. The results were as follows: 95.9% of soils in SIA were heavily contaminated by PAHs; Benzo[a]pyrene (BaP), Benzo[a]anthrancene (BaA), Benzo[b]fluoranthene (BbF), Benzo[k]fluoranthen (BkF), Benzo[g,h,i]perylene, Chrysene, Dibenz[a,h]anthracene (Dba), and Indeno[1,2,3-c,d]pyrene (Ipy) were the dominated carcinogenic PAHs, and there were no carcinogenic concerns for 81.6% of SIA; Anthracene, BaP, Fluoranthene, Naphthalene, Phenanthrene, BaA, BbF, BkF, Dba, Ipyr and Pyrene were considered the major ecological risk drivers, and there were medium to high ecological risks in 56.3% of SIA under agricultural use. However, the ecological risk can be reduced markedly by changing the land use mode; under residential/parkland land use 65.1% of SIA faced low risk and the rest faced negligible risk, while all areas faced negligible risk under industrial/commercial usage. Based on the risk assessment results, an optimum land use model (both human health-based and eco-based in the SIA) was achieved and will be helpful for the local government to plan how to use the land under low risk in the SIA.  相似文献   

7.
Carcinogenic risk assessments of polycyclic aromatic hydrocarbons (PAHs) in four sites from the Central Himalayas (Bode, Lumbini, Pokhara, and Dhunche) were performed. Lifetime Average Daily Dose (LADD), Lifetime lung cancer risk (LLCR) and Incremental lifetime cancer risk (ILCR) were calculated in order to evaluate the cancer risk. PAHs levels were converted to BaP equivalent concentrations (B[a]Peq), and models of health risk assessment were applied. B[a]Peq concentrations exceeded the standard limited value (1 ng/m3) in all the four sites. The human health risk assessment (HHRA) demonstrated high carcinogenic risk on residents of Bode and Lumbini. Further, LLCR in all sites were over the acceptable range (1.15E-03, 7.90E-04, 1.40E-04 and 9.96E-05, respectively); however, ILCR ranking exhibited acceptable range in Lumbini, Pokhara, and Dhunche (7.10E-06, 1.26E-06, and 8.95E-07). The risk variation among the sites is due to the difference in pollution status. The study shows health risk due to atmospheric PAHs via inhalation prevails all the seasons throughout, differing only seasonally; nevertheless, the concentration and carcinogenic risk decreased remarkably from south-north transect of the central Himalaya. Keeping some uncertainties aside, this study provides noble insights and helps to formulate new advance assessment on the carcinogenic risk of atmospheric PAHs over the Central Himalayas.  相似文献   

8.
This study was conducted to investigate the occurrence, distribution, and source of 16 polycyclic aromatic hydrocarbons (PAHs) in the Hanjiang River Basin and the Danjiangkou (DJK) Reservoir. The concentrations of total PAHs in surface water, sediments, and bank soils ranged from 9.42 to 137.94 ng/l, 86.23 to 2514.93 ng/g, and 133.17 to 671.93 ng/g dry weight, respectively. The composition pattern of PAHs showed that 3-ring PAHs were dominated in all of the samples, while the proportion of high molecular weight PAHs (5- to 6-ring PAHs) in sediments and bank soil samples was almost three times higher than water. The source apportionment analysis showed that most of the PAHs in water were derived from sources of petroleum and combustion, while combustion was the predominant source of PAHs in sediments and bank soils. The methods based on toxic equivalency factors, risk quotient, and incremental lifetime cancer risk were used to assess the ecosystem risk and potential health risk of PAHs. The risk assessments showed that PAHs in the DJK Reservoir were out of potential health risk, but the ecological risk for majority of 16 PAHs was in the moderate level.  相似文献   

9.
A case study of the cancer risk to humans posed by persistent organic pollutants (POPs) in an industrial area of China, which has a long history of contamination from many sources, is presented. Relatively great concentrations of POPs around the chemical industrial parks have the potential to be chronically carcinogenic to local people. Sixteen individual PAHs listed for priory control by the U.S. Environmental Protection Agency (USEPA), metabolites of DDTs, and isomers of HCHs were measured in soils and a human health risk assessment was conducted by use of USEPA exposure models for children and adults, respectively. Geostatistical methods were used to simulate the spatial diffusion of potential carcinogenic risk, and non-parametric Mann-Whitney U and Kruskal-Wallis tests were employed to analyze the impact of point sources on the surrounding area. The mean value of the sum of Excess Lifetime Cancer Risk (∑ELCR) exceeded the generally acceptable risk level of 1.0E-06 recommended by the USEPA for carcinogenic chemicals. The maximum ∑ELCR was 2.9E-04 for children, which was observed inside the chemical industrial parks. Contamination at the chemical industrial parks caused significant spatial diffusion of ELCR values caused by PAHs, DDT, and HCH.  相似文献   

10.
Dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and their isomers’ levels in residential soils were determined for the assessment of health risk in Korba, India. Observed concentrations of total HCH and total DDT in soils were more or less comparable with other parts of India and the world. ΣHCH and ΣDDT concentrations ranged between 0.9–20 μg kg?1 and 2–315 μg kg?1, respectively, which were lower than recommended soil quality guidelines indicating low ecotoxicological risk. Carcinogenic and non-carcinogenic impacts of HCH and DDT on human populations through soil ingestion were evaluated and presented. The incremental lifetime cancer risk (ILCR) for adults and children ranged between 7.8 × 10?10–1.6 × 10?7 and 4.1 × 10?9–8.2 × 10?7, respectively. Non-cancer health hazard quotient (HQ) ranged between 5.9 × 10?7–1.8 × 10?3 and 3.1 × 10?6–9.4 × 10?3, respectively, for adults and children. The estimated ILCR and HQ were within the safe acceptable limits of 10?6–10?4 and ≤1.0, respectively, indicating low risk to human populations from exposure to organochlorine pesticides (HCH and DDT) in the study area.  相似文献   

11.
Mahshahr has a strategic position and is considered as industrial hub of Iran. Selected heavy metals and polycyclic aromatic hydrocarbons (PAHs) contamination and health risk, and the mineralogical composition of street dust from Mahshahr were investigated. Results indicated that geology is the main determinant of the dust mineralogical composition. Calculated enrichment factor (EF) and principal component analysis (PCA) showed that Pb, Hg, Zn, and Cu accumulations are greatly influenced by anthropogenic sources including traffic and industry. High heavy metals content poses great ecological risk in the study area and exposure doses revealed that ingestion is the main exposure route to street dust, especially for children in residential/commercial areas. It was found that the total amount of PAHs (∑PAHs) varies from 161 to 1996 µg/kg, dominated by four-ring PAHs. Diagnostic ratios and PCA showed that both petrogenic and pyrogenic sources of PAHs in Mahshahr street dust and traffic play important roles in this respect. Furthermore, toxic equivalents and incremental lifetime cancer risk of PAHs in street dust indicated a high potential carcinogenic risk for inhabitants mainly via dermal contact and ingestion pathways particularly for outdoor workers in industrial use scenario. Finally, distribution maps of total hazard index of heavy metals and cancer risk of PAHs indicated the most impacted zones for different groups and use scenarios.  相似文献   

12.

Background  

Polycyclic aromatic hydrocarbons (PAHs) are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment.  相似文献   

13.
Soil ingestion is an important pathway for human exposure to polycyclic aromatic hydrocarbon (PAH)-contaminated soils and dust for children (via ingesting hand residue) as well as for adults (via occupational exposure). An appropriate selection of exposure parameter values is essential for having an accurate risk assessment. This review addresses key parameters for estimating oral exposure to PAH-contaminated soils/dust, discusses their variability and uncertainty, and provides recommendations for value selection. Bioaccessibility (contaminant fraction solubilized in gastro-intestinal tract, available for entering bloodstream and reaching target organs) and soil ingestion rate are two key parameters for exposure assessment (usually characterized by large variability and/or uncertainty), followed by exposure frequency/duration and body weight.  相似文献   

14.
This study investigated heavy metals concentration in groundwater in six coastal communities in Gokana, Rivers State, namely, Gbe, K-Dere, B-Dere, Mogho, Kpor and Bodo City and the human health risk posed to the local populace via ingestion and dermal contact using non-carcinogenic and carcinogenic health risk assessment. The mean values of the heavy metals ranged between 0.02–0.86, 0.16–0.19, 0.03–0.10, 0.02–0.03 and 0.01–0.17 for Mn, Ni, Pb, Cd and Cr, respectively. The heavy metals were above the drinking water quality recommended limits in all the study sites. Estimations of average daily dose (ADD) and dermal absorbed dose (DAD) health risk indicates that Mn, Ni and Pb posed human health risk via ingestion contact pathway. However, hazard index (HI) values of Cd and Cr for ingestion pathway were >1.0 and the estimated Lifetime of Carcinogenic Risks (LTCR) for Ni, Cd and Cr exceeded the predicted lifetime risk for carcinogens of 10?6 from ingestion pathway. Furthermore, there were more appreciable risk from Ni and Cr in the study sites as LTCR value in most sites were >10?4. This study indicates possible non-carcinogenic and carcinogenic human health hazard from groundwater consumption in Gokana via oral ingestion.  相似文献   

15.
Coking is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in China. Investigation of the contamination, distribution, and sources of PAHs in agricultural soils around Rong Xin coking plant, China, was conducted, and the potential human health risks were addressed. The total concentration of the 16 PAHs (∑16PAHs) on the United States Environmental Protection Agency priority list had a range from 1774 to 4621 µg/kg (mean 3016 µg/kg). Meanwhile, seven carcinogenic PAHs (∑PAH7c) owned the total concentrations of 684–2105 µg/kg, and they had the benzo[a]pyrene equivalent (BaPeq) concentrations at 139.616–1672.850 µg/kg. All soil samples were dominated by PAHs with two to four rings. Data analyses for the potential sources of PAHs showed that the PAHs in soils were principally from pyrogenic sources. Ecological risk assessment of soil PAHs showed that the BaPeq concentrations of ∑PAH7c accounted for 99% of the total ∑16PAHs, being a major carcinogenic contributors of ∑16PAHs. Higher levels of PAHs and higher total BaPeq concentrations in this study indicate a potential carcinogenic risk for humans. Therefore, long-term exposure to coking plants may increase the PAH concentrations in the environment and further raise a potential risk to human health.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) are a large class of organic chemicals typically found as mixtures in the aquatic environment from natural, petrogenic, and pyrogenic sources. People can be exposed to PAHs through ingestion or dermal contact with contaminated sediments or through ingestion of finfish and shellfish exposed to contaminated sediments. Although more than 100 PAHs have been identified, human exposure and risk are commonly evaluated for 18 individual PAHs. Other PAHs, such as alkylated PAHs, likely contribute to biological activity of environmental PAH mixtures; however, insufficient toxicity data are available to quantify their potential risk. This article presents an initial evaluation of the potential for human health risk from exposure to alkylated PAHs in sediment and fish. Individual alkylated PAHs have been observed to have potentially mutagenic, tumor-promoting, or carcinogenic activity. However, except for 1-and 2-methylnaphthalene, insufficient toxicity data are available to quantify toxicity or cancer risk from exposure to individual alkylated PAHs or mixtures of alkylated PAHs. This article describes a proposed strategy to better understand the potential human health risk from exposure to alkylated PAHs. Implementation of this strategy will contribute to evaluations of human exposure to complex PAH mixtures in the environment.  相似文献   

17.
Exposure to soil‐borne contaminants can occur through ingestion, inhalation and/or dermal absorption. A study was undertaken to assess the relative frequency with which dermal exposures are predicted to pose the greatest risk attributable to contaminated soils in Superfund risk assessments. Screening of over 200 risk assessments from the period 1989–1992 resulted in identification of 37 sites at which projected lifetime excess cancer risks attributed to dermal contact with soil were greater than the nominal regulatory threshold of 1.10‐4. At 19 of these sites, the dermal/soil pathway is estimated to contribute the largest carcinogenic risk associated with surface soil contamination, and may therefore drive cleanup of that medium. At 9 of the sites, the dermal/soil pathway is predicted to present a higher carcinogenic risk than any other pathway. Chemical contaminant type and estimates of soil adherence and surface area exposed appear to be the primary factors that distinguish sites at which dermal/soil pathway carcinogenic risk estimates are elevated relative to other exposure pathways. Quantification of exposure parameters, especially those related to behavior, remains a significant need.  相似文献   

18.
Abstract

High levels of arsenic (As) contamination in soils from thermal power plants pose a great threat to human health. This study aimed to evaluate the As contamination levels and assess the possible health risk of As in soils from three typical thermal power plants in Southwest China. The concentration of As was detected by using novel collision/reaction cell technology (CCT) with inductively coupled plasma mass spectrometry (ICP-MS, collectively ICP-CCT-MS) after aseptic digestion of soil samples. The carcinogenic risk and hazard quotient were estimated for health risk to workers in the study area by using “Chinese Technical Guidelines for Risk Assessment of Contaminated Sites (HJ 25.3-2014)”. Results showed that the concentration of As was between 3.65 and 33.80?mg/kg, and the comprehensive carcinogenic risk level of As was 3–28 times over the maximum acceptable level (10?6), indicating that workers in the study area are facing serious threat of As. Oral ingestion (76.65%) was the main exposure pathway to carcinogenic risk, followed by skin contact (13.15%) and inhalation of soil particles (10.20%). After calculating the safety threshold values under three different exposure pathways (oral ingestion, skin contact and inhalation of soil particles), the minimum safety threshold value (1.59?mg/kg) was selected as the reference safety threshold value of As in the study area. These results provide basic information of health risk assessment of As and environmental management in thermal power plant areas.  相似文献   

19.
Abstract

Increasing levels of heavy metals in soil have become a serious concern for human health because they can be easily transferred into the human body through contaminated food web. It is imperative to evaluate pollution levels, origin and ecological risks of heavy metals. The geoaccumaualtion (Igeo), contamination factor (CF), pollution load index (PLI) and human health risk were estimated to determine the soil pollution in Faisalabad, a heavily-populated and industrialized city of Pakistan. The maximum CF (1.58) and PLI (1.22) values were estimated for Cd and Pb, respectively, and maximum Igeo (?0.19) value was observed for Cd. Correlation analysis and principal component analysis suggested that common industrial sources for Cd and Pb were identified in the study sites. It clearly indicates that the significant levels of heavy metals pollution arise from local industries, busy commercial centers and heavy traffic load in the last few decades in heavily-populated and industrialized city. Further, soil heavy metals concentration were used to evaluate the human health risk such as chronic or non-carcinogenic including hazard indexes HIexP (ingestion, inhalation and dermal and carcinogenic) and cancer risk (CR). The HIexP values of Pb (10.30) and Cd (4.56) were found above the permissible limit (HI = 1) for children. The CR due to carcinogenic metals (Co, Cr and Cd) are within the safe limit (1E-06 to 1E-04). However, CR was comparatively higher in adults as compared to children. The results from the current investigation can help to develop a sustainable strategy in the study region to minimize the entry of heavy metals in food chain through source identification and pollution abatement techniques.  相似文献   

20.
Due to accelerated urbanization and reform of industrial structure in China, polluting industries in major cities have been closed or relocated. Consequently, large numbers of industrial sites were generated and the contaminated soils on and around these sites may pose risks to humans. This case study presents an estimation of human health risks for an area that is mainly impacted through air dispersion and deposition from a large-scale metallurgical refinery complex in Zhuzhou city, Hunan Province, China. Carcinogenic and non-carcinogenic risks posed by the contaminants were estimated under future industrial and residential land use scenarios. The result shows that adverse health effects may occur primarily through ingestion of soils contaminated with As, Cd, and Pb. The total carcinogenic risks of multiple contaminants for a large area exceed the acceptable risk level of 1 × 10?5, and several localized hotspots, where the total hazard index exceeds 1 were identified. Soils in the Tongda site pose the highest carcinogenic risks and non-carcinogenic hazards. It is concluded that potential human health risks exist under the proposed redevelopment scenarios, and development of risk-based remediation strategies is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号