首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
During the first eight weeks after setting young citrus fruits gradually lose their ability to abscise at the abscission zone between the stem and the pedicel; in fruits older than eight weeks abscission occurs at the calyx area. The activity of cellulase and polygalacturonase in the two abscission zones was markedly increased before and during abscission, and was localized mainly in the abscission zone. Ethylene accelerated the increase in enzymic activity after an 8- to 10-h lag period; 2,4-D delayed abscission and enzymic activity when applied during the first 24 h after excision. During this period 2,4-D also partly suppressed the enhancing effect of ethylene. Early application of cyclo-heximide inhibited the formation of the enzymes and thus abscission was delayed to a certain extent. Although there are some indications that the relationship between enzymic activity and abscission is a complex one, the data presented indicate that cellulase and polygalacturonase play a significant role in abscission of citrus fruits at various developmental stages. Both enzymes act almost simultaneously and are equally controlled by ethylene and 2,4-D.  相似文献   

2.
The activity of cellulase, cellulase-isoenzymes and polygalacturonase (PG) in the shoot/peduncle and calyx abscission zones (AZ-A and AZ-C, respectively) of young and mature Shamouti orange (Citrus sinensis (L.) Osbeck) fruit explants was tested after extraction of total enzymes from either exo- or endo-cellular fractions from fruits treated with ethylene or 2,4-D. Ethylene enhanced and 2,4-D delayed both abscission and the activity of exo- and endo-cellular cellulase and PG. When tested separately in the exo- and endo-cellular fraction, the effects of both growth regulators on the activity of almost all cellulase isoenzymes were similar, irrespective of their location in the tissue. In mature fruits no abscission occurred in AZ-A, and yet the activity of cellulase and PG was regulated by the hormones as in abscising AZs. This was also true for total activity of exo- and endo-cellular cellulase and PG. Similar effects were observed when the activity of cellulase isoenzymes was tested in AZ-A of non-abscising mature fruits. It is suggested that whenever the increase in activity of the hydrolytic enzymes, and especially cellulase, is not followed by abscission, the substrate is either immune or not available to the enzymes.  相似文献   

3.
The role of uronic acid oxidase in abscission was studied in explants of citrus ( Citrus sinensis L. Osbeck; var. Shamouti) leaves and fruits. In leaf explants, activity of uronic acid oxidase prior to onset of abscission and the rate of abscission were markedly accelerated by ethylene and delayed by 2,4-dichlorophenoxyacetie acid. Similar results were obtained for uronic acid oxidase activity in the exocellular fraction of young fruit explants. In mature fruit explants, treated with ethylene, an immediate increase in activity was evidenty in the non-active shoot/peduncle abscission zone, whereas in the calyx abscission zone the rise in activity occurred after a prolonged exposure to ethylene, when most of the fruits had already abscised. Whenever ethylene enhanced uronic acid oxidase activity, 2,4-dichlorophenoxyacetic acid delayed it. A gradient of decreasing activity or uronic acid oxidase was recorded from both sides of the abscission zone in leaves and fruits toward the separation line, where activity was the lowest as compared with the activity found in adjacent tissues. It is suggested that uronic acid oxidase is involved in senescence and cell wall degradation. However, it is yet questionable whether this enzyme is directly related to the control mechanism of abscission.  相似文献   

4.
The physiological and molecular events of ethylene‐induced abscission in mature fruit calyx, laminar and floral abscission zones of cv. Valencia orange were examined. Continuous exposure of fruit explants to 5 µl 1−1 ethylene for 2 to 40 h resulted in marked increases in endo‐1,4‐β‐glucanase (cellulase) and polygalacturonase (PG) activities in calyx abscission zones. Two abscission‐related cellulases and one PG were found. The major peak of cellulase activity corresponded to a pI of 8.0 and molecular weight of 51 kDa, whereas the minor cellulase peak had a pI of 5.5. The abscission polygalacturonase had a pI of 5.5. Calyx abscission zone RNA was amplified with degenerate primers based on sequence of the purified Valencia orange calyx abscission cellulase, and cloned. The two partial cellulase cDNA clones were 59% identical at the nucleotide level. Genomic Southern analysis suggested that Valencia orange contained two groups of cellulase genes. A full‐length cDNA clone from each group was isolated from a cDNA library prepared from ethylene‐induced calyx abscission zone mRNA. Both genes were expressed in ethylene‐induced calyx, laminar and floral abscission zones, but were not expressed in non‐induced abscission zones or mature leaves treated with or without ethylene, young bark or young fruit of Valencia.  相似文献   

5.
Although mature citrus fruits [ Citrus sinensis (L.) Osbeck cv. Shamouti] did not abscise at the peduncle-shoot abscission zone (AZ–A) when incubated in ethylene environment, abscission processes did occur in a limited number of cell layers situated in the inner bark, the starch sheath region, and in the pith of AZ–A. These processes were regulated by 2,4-D and ethylene treatments. Cells responding to the "separation processes", particularly in the ethylene treatment, underwent either (a) cell wall swelling, dissolving and breakdown, or (b) growth and expansion in a radial plane. Further away from the dissolving area, the response of some cells of the mid and outer bark took the form of divisions or growth in a circumferential plane, while other cells remained unchanged. Non-responding tissues of the outer bark formed a "sleeve" of undissolved cells, and the vascular cylinder produced no abscission in AZ–A. It is concluded that the partial cell wall dissolution in AZ–A explains the increased activity of cellulase and polygalacturonase in the non-abscising AZ–A of the mature fruit (Greenberg et al. 1975. Physiol. Plant. 37: 1–7).  相似文献   

6.
Abscisic Acid, Auxin, and Ethylene in Explant Abscission   总被引:1,自引:0,他引:1  
Experiments with explants of Phaseolus vulgaris L., cv. CanadianWonder, show that abscission and the associated rise in oarboxymethyl-cellulaseactivity in the separation zone are initiated by a peak in ethyleneproduction during senescence of pulvinar tissue distal to thezone. Distal applications of abscisic acid (ABA) induce an earlierpeak in ethylene production, increase cellulase activity, andpromote abscission. ABA is more effective in these ways if treatmentis delayed from 0 to 24 h after excision. With increasing concentrations of ABA the maximum rate of ethylene production is achievedsooner. Indol-3yl-acetic acid (IAA) and ABA are antagonisticin this system and have opposing effects. IAA retards the timeof peak ethylene-production and delays abscission. Explantsmay be retained for long periods without abscinding if incubatedin an ethylene-free atmosphere: the addition of ethylene forany one 24-h period (except the first 24 h after excision) willinduce abscission. The initial period of insensitivity to ethyleneis extended by distal applications of IAA. Ethylene-inducedabscission can be inhibited by IAA applied up to 72 h afterexcision provided the ethylene is not applied first. It is proposedthat abscission in the explant is controlled at two levels:(1) an auxin-dependent stage determining the duration of insensitivityto ethylene; (2) the timing of a rise in ethylene productionin senescing tissue distal to the separation zone. An auxin-ethylenebalance-mechanism at the separation zone is discussed.  相似文献   

7.
8.
Ethylene-induced abscission in leaf and fruit explants of peach involves different enzymes. In leaves abscission is accompanied by increased occurrence of cellulase forms differing in isoelectric point (pI 6.5 and 9.5). A polypeptide with a molecular mass of 51 kDa gives in a western blot a strong cross-reaction with an antibody raised against a maturation cellulase from avocado fruit. Cellulase activity is also found in abscising fruit explants but the amount is very low compared to that of the leaf explants. A northern analysis with a cellulase clone from avocado reveals the presence of two hybridizing mRNAs with a size of 2.2 kb and 1.8 kb, respectively. The steady-state level of the 2.2 kb mRNA is significantly increased by treatment with ethylene.Polygalacturonases are not detected in abscising leaves, but are strongly induced by ethylene in fruit explants. Of the three forms found, two are exopolygalacturonases while the third is an endoenzyme. Ethylene activates preferentially the endoenzyme and the basic exoenzyme but depresses the acid exopolygalacturonases. A northern analysis carried out with a cDNA coding for tomato endopolygalacturonase shows hybridization only with one endopolygalacturonase mRNA from in the fruit abscission zone. Treatment with ethylene causes an increase in the steady-state level of this mRNA. The differences in the enzyme patterns observed in fruit and leaf abscission zones and a differential enzyme induction suggest the feasibility to regulate fruit abscission in peach with the aid of antisense RNA genes.  相似文献   

9.
Nitrocellulose tissue prints immunoblotted with 9.5 cellulase antibody were used to demonstrate areas of cellulase localization within Phaseolus vulgaris explants on exposure to ethylene. The 9.5 cellulase was induced in the distal and proximal abscission zone and in the stem. In both abscission zones, the 9.5 cellulase was found in the cortical cells of the separation layer, which develops as a narrow band of cells at the place where fracture occurs. The enzyme was also found associated with the vascular traces of the tissues adjacent to the separation layer extending through the first few millimeters at each side of the separation layer. The two abscission zones differed in the way that cellulase distributed through the separation layer as abscission proceeded. In the distal zone, cellulase appeared first in the cells of the separation layer adjacent to vascular traces and extended toward the periphery. In the proximal zone, 9.5 cellulase accumulated first in the cortical cells that lie in the adaxial side and then extended to the abaxial side. In response to ethylene, 9.5 cellulase was also induced in the vascular traces of the stem and the pulvinus without developing a separation layer. The role of 9.5 cellulase in the vascular traces is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting with 9.5 cellulase antibody identified the same 51-kilodalton protein in both abscising and nonabscising tissues. Therefore, the determinant characteristic of the abscission process is the induction of 9.5 cellulase by cortical cells in the separation layer, and this implies that these cells have a unique mechanism for initiating 9.5 cellulase synthesis.  相似文献   

10.
11.
The ripening of raspberry fruit (Rubus ideausL. cv Glen Clova)is associated with a climacteric rise in ethylene production.As the fruit pigments change from green to red there is a progressivesoftening, loss of skin strength and a breakdown of cell wallsin the mesocarp. An increase in cellulase (endo-1,4-ß-D-glucanase)in both drupelets and receptacles accompanies these changes.The localization of cellulase in the regions of the fruit associatedwith abscission zones suggest the enzyme may be involved infruit separation as well as softening. Rubus idaeusL; raspberry; fruit ripening; ethylene; abscission; cell wall breakdown; cellulase; endo-1,4-ß-D-glucanase  相似文献   

12.
Abscission of flowers and floral parts   总被引:21,自引:5,他引:16  
The abscission of inflorescences, flowers, petals, sepals, styles,and stamens is discussed, with emphasis on the anatomy and ultrastructureof the abscission zones, and the role of cell wall degradingenzymes and hormonal control. Shedding of these parts is usuallydue to cell wall dissolution, but abscission of petals, stamens,and styles in some species occurs due to the forces generatedby the growing fruit. Flower abscission is clearly regulatedby ethylene, whilst auxins apparently decrease the sensitivityto ethylene. Petal, style and stamen abscission also seems tobe controlled by endogenous ethylene. Auxin is apparently involvedin abscission of styles and stamens, but in petals its roleis at yet unclear. The ultrastructural data indicate high proteinsynthesis and high secretory activity of material toward cellwalls of abscission zone cells. The physiological evidence indicatesa role of both polygalacturonase and cellulase in cell walldissolution, whilst the role of other cell wall degrading enzymesis still unknown. The physiological processes occurring in thewalls of the separating cells should be distinguished from thoserelating to defence against microbial intrusion, such as depositionof lignin and suberin and tylose formation. Experimentationusing mutants and transgenic plants may aid in separating theseprocesses. Sequencing of the isoenzymes specific for the abscissionzone and a search for abscission zone-specific promoters seemsa requirement for the successful evaluation of the enzymes involvedin cell wall degradation. Key words: Abscission, anatomy, abscission zone, hormonal control, cell wall degrading enzymes, inflorescences  相似文献   

13.
14.
A single-gene recessive mutant (Abs-) of Lupinus angustifoliusL. ‘Danja’ that does not abscise any organs wascompared with its parent during continuous exposure of explantsfrom 14 d old seedlings to 10 µl l-1ethylene. Both endo-(1,4)-ß- D -glucanase (cellulase) and polygalacturonase(PGA) activities increased significantly and progressively inpetiole-stem abscission zones of the parent before the onsetof abscission, and were reflected in a rapid decline in breakstrengthfrom 300 to 70 g within 32 h. In the mutant there was negligibleincrease in hydrolytic enzyme activity, breakstrength declinedslowly (to 180–200 g by 72 h) and there was no abscission.Isoelectric focusing showed two cellulase isoforms (pI 5.0 andpI 8.5) expressed in abscission zones of the parent; these wereexpressed at much lower levels in the mutant. These data areinterpreted to indicate that expression of at least two formsof cellulase activity is enhanced by ethylene in normal petioleabscission zones of lupin. PGA activity also increased in theabscission zone tissue of the parent but to a lesser extentin that of the mutant. We attribute the Abs-phenotype to mutationof a gene regulating ethylene-responsive expression of abscission-specifichydrolytic enzymes. Copyright 2001 Annals of Botany Company Lupinus angustifolius, abscission, breakstrength, cellulase, ethylene, legume, lupin, mutant, polygalacturonase  相似文献   

15.
16.
The activity of pectin esterase and cellulase in abscission of citrus explants was studied. No relation was established between pectin esterase and abscission, while cellulase activity was markedly increased before abscission and for a certain period after excision. IAA and cycloheximide delay abscission and cellulase activity, while ethylene and, to a lesser extent, GA3 accelerate them. Application of cycloheximide during the lag period and before cellulase activity can be measured, inhibits to a certain extent the formation of cellulase. An escape from the inhibitory effect of cycloheximide is detected when inhibitor is supplied at the end of the lag period.  相似文献   

17.
Plants of tomato (Lycopersicon esculentum Mill. cv. T5) were transformed with an antisense endo-1,4--glucanase (cellulase, EC 3.2.1.4) Cel2 transgene under the control of the constitutive cauliflower mosaic virus 35S promoter in order to suppress mRNA accumulation of Cel2. In two independent transgenic lines, Cel2 mRNA abundance was reduced by >95% in ripe fruit pericarp and ca. 80% in fruit abscission zones relative to non-transgenic controls. In both transgenic lines the softening of antisense Cel2 fruit pericarp measured using stress-relaxation analysis was indistinguishable from control fruit. No differences in ethylene evolution were observed between fruit of control and antisense Cel2 genotypes. However, in fruit abscission zones the suppression of Cel2 mRNA accumulation caused a significant (P<0.001) increase in the force required to cause breakage of the abscission zone at 4 days post breaker, an increase of 27% in one transgenic line and of 46% in the other transgenic line. Thus the Cel2 gene product contributes to cell wall disassembly occurring in cell separation during fruit abscission, but its role, if any, in softening or textural changes occurring in fruit pericarp during ripening was not revealed by suppression of Cel2 gene expression.  相似文献   

18.
Only one form of membrane-associated cellulase was found previously in the lower petiolar pulvinus of Phaseolus vulgaris (cv Red Kidney). The cellulase has an isoelectric point (pI) of 4.5 (DE Koehler, LN Lewis 1979 Plant Physiol 63: 677-679). This enzyme was detected in abscission zones collected before the onset of abscission (control tissue), and was thought to represent a pre-secretory form of another cellulase, the abscission cellulase, which has a basic pI and is secreted during abscission. We now show that this acidic, membrane-associated cellulase is a glycoprotein, tightly bound to the membrane, with maximum activity at pH 5.1, and that it is not immunologically related to the abscission cellulase. Furthermore, when bean explants are induced to abscise with ethylene, the activity of the acidic cellulase declines rapidly to 50% of control levels in the first day. When abscission is fully developed, the membranes contain a basic form of cellulase with a pI of 8.0 to 9.0 and only trace levels of the acidic cellulase. The basic form is not a high mannose glycoprotein; it has maximum activity in a broad pH range (4.0-8.0) and is antigenically related to the abscission cellulase, which is induced during abscission and transported to the cell wall. Antibody raised against the abscission cellulase recognized two proteins in a crude membrane fraction from abscising tissue. One of those proteins comigrated with the abscission cellulase, and the other was 1 to 2 kilodaltons larger. Thus, during abscission, the acidic membrane-associated cellulase rapidly declines before the appearance of the abscission cellulase. We conclude that there is no conversion from the acidic cellulase to the basic cellulase and suggest that the acidic and basic cellulase isoenzymes are proteins derived from two different genes.  相似文献   

19.
Citrus fruits have two abscission zones (AZ), named A (in the pedicel) and C (in the calyx). Early fruitlet abscission takes place exclusively through AZ A, while at June drop it is progressively inactivated and AZ C begins to operate. In previous work, it has been demonstrated that carbohydrate and ethylene regulate fruit drop through abscission zone C. In this paper, we have analysed the effect of these two factors in developing fruitlets of Satsuma mandarins (Citrus unshiu [Mak.] Marc.) cv. Okitsu to elucidate their involvement on abscission through AZ A. The data indicated that ACC content and ethylene production of fruitlets paralleled abscission rates. Sucrose supplementation increased fruit set, although did not counteract the abscising effect induced by ACC. Branch girdling of terminal fruitlets carrying several leaves significatively reduced ethylene production and abscission rates, and increased sugar content. Pedicel girdling showed the opposite. Taken together, the results revealed that the carbohydrate content may be a biochemical signal involved in the mechanisms controlling abscission through AZ A. The evidence also showed parallelisms between ethylene and its activation. As the induction of higher ethylene levels after the period of AZ A activity, however, was not able to promote fruit drop, it is also concluded that solely ethylene is not sufficient to activate abscission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号