首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A novel mitochondrial and chloroplast peptidasome, the Presequence Protease (PreP) degrades organellar targeting peptides as well as other unstructured peptides up to 65 amino acid residues in length. PreP belongs to the pitrilysin oligopeptidase family (M16C) containing an inverted zinc-binding motif. The crystal structure of Arabidopsis thaliana PreP, AtPreP, refined at 2.1 ?, revealed a novel mechanism of proteolysis in which two halves of the enzyme connected by a hinge region enclose a large catalytic chamber opening and closing in response to peptide binding. Double knock-out mutant of AtPreP1 and AtPreP2 results in a severe phenotype, including decreased size and growth rate, chlorosis and organellar abnormalities, such as altered chloroplast starch content, partial loss of the integrity of the inner mitochondrial membrane and reduced mitochondrial respiration. PreP homologues are also present in yeast and humans. Interestingly, human PreP has been associated with Alzheimer's disease as it is responsible for degradation of amyloid-β peptide in brain mitochondria.  相似文献   

2.
We have recently isolated and identified a novel mitochondrial metalloprotease, pre-sequence protease (PreP) from potato and shown that it degrades mitochondrial pre-sequences. PreP belongs to the pitrilysin protease family and contains an inverted zinc-binding motif. To further investigate the degradation of targeting peptides, we have overexpressed the Arabidopsis thaliana homologue of PreP, zinc metalloprotease (Zn-MP), in Escherichia coli . We have characterized the recombinant Zn-MP with respect to its catalytic site, substrate specificity and intracellular localization. Mutagenesis studies of the residues involved in metal binding identified the histidines and the proximal glutamate as essential residues for the proteolytic activity. Substrate specificity studies showed that the Zn-MP has the ability to degrade both mitochondrial pre-sequences and chloroplastic transit peptides, as well as other unstructured peptides. The Zn-MP does not recognize an amino acid sequence per se . Immunological studies and proteolytic activity measurements in isolated mitochondria and chloroplasts revealed the presence of the Zn-MP in both organelles. Furthermore, the Zn-MP was found to be dually imported to both mitochondria and chloroplasts in vitro . In summary, our data show that the Zn-MP is present and serves the same function in chloroplasts as in mitochondria – degradation of targeting peptides.  相似文献   

3.
Elzbieta Glaser  Nyosha Alikhani 《BBA》2010,1797(6-7):1076-1080
The novel peptidasome, called presequence protease, PreP, was originally identified and characterized in Arabidopsis thaliana as a mitochondrial matrix and chloroplast stroma localized metalloprotease. PreP has a function as the organellar peptide clearing protease and is responsible for degrading free targeting peptides and also other unstructured peptides up to 65 amino acid residues that might be toxic to organellar functions. PreP contains an inverted Zn-binding motif and belongs to the pitrilysin protease family. The crystal structure of AtPreP refined at 2.1 Å demonstrated a unique totally enclosed large cavity of 10 000 Å3 that opens and closes in response to peptide binding, revealing a novel catalytic mechanism for proteolysis. Homologues of PreP have been found in yeast and human mitochondria. Interestingly, the human PreP, hPreP, is the protease that is responsible for clearing the human brain mitochondria from the toxic amyloid-β peptide (Aβ) associated with Alzheimer's disease (AD). Accumulation of Aβ has been shown in the brain mitochondria from AD patients and mutant transgenic mice overexpressing Aβ. Here, we present a review of our present knowledge on structural and functional characteristics of PreP and discuss its mitochondrial Aβ-degrading activity in the human brain mitochondria in relation to AD.  相似文献   

4.
The mitochondrial presequence protease (PreP) is a member of the pitrilysin class of metalloproteases. It degrades the mitochondrial targeting presequences of mitochondria-localized proteins as well as unstructured peptides such as amyloid-β peptide. The specific activity of PreP is reduced in Alzheimer patients and animal models of Alzheimer disease. The loss of activity can be mimicked in vitro by exposure to oxidizing conditions, and indirect evidence suggested that inactivation was due to methionine oxidation. We performed peptide mapping analyses to elucidate the mechanism of inactivation. None of the 24 methionine residues in recombinant human PreP was oxidized. We present evidence that inactivation is due to oxidation of cysteine residues and consequent oligomerization through intermolecular disulfide bonds. The most susceptible cysteine residues to oxidation are Cys34, Cys112, and Cys119. Most, but not all, of the activity loss is restored by the reducing agent dithiothreitol. These findings elucidate a redox mechanism for regulation of PreP and also provide a rational basis for therapeutic intervention in conditions characterized by excessive oxidation of PreP.  相似文献   

5.
The 2.2 Angstroms resolution crystal structure of the enzyme phosphoenolpyruvate carboxykinase (PCK) from the bacterium Anaerobiospirillum succiniciproducens complexed with ATP, Mg(2+), Mn(2+) and the transition state analogue oxalate has been solved. The 2.4 Angstroms resolution native structure of A. succiniciproducens PCK has also been determined. It has been found that upon binding of substrate, PCK undergoes a conformational change. Two domains of the molecule fold towards each other, with the substrates and metal ions held in a cleft formed between the two domains. This domain movement is believed to accelerate the reaction PCK catalyzes by forcing bulk solvent molecules out of the active site. Although the crystal structure of A. succiniciproducens PCK with bound substrate and metal ions is related to the structures of PCK from Escherichia coli and Trypanosoma cruzi, it is the first crystal structure from this class of enzymes that clearly shows an important surface loop (residues 383-397) from the C-terminal domain, hydrogen bonding with the peptide backbone of the active site residue Arg60. The interaction between the surface loop and the active site backbone, which is a parallel beta-sheet, seems to be a feature unique of A. succiniciproducens PCK. The association between the loop and the active site is the third type of interaction found in PCK that is thought to play a part in the domain closure. This loop also appears to help accelerate catalysis by functioning as a 'lid' that shields water molecules from the active site.  相似文献   

6.
Factor VIIa (FVIIa) is a crucial haemostatic protease consisting of four distinct domains termed the Gla, epidermal growth factor-1 (EGF-1), EGF-2, and protease domains (from N- to C-terminus). The crystal structure of human FVIIa inhibited at the active site with 1, 5-dansyl-Glu-Gly-Arg-chloromethyl ketone and lacking the Gla domain has been solved to a resolution of 2.28 A. The EGF-2 and protease domains were well resolved, whereas no electron density for the EGF-1 domain was observed, suggesting a flexible arrangement or disorder within the crystal. Superposition of the protease domain of the present structure with that previously resolved in the tissue factor (TF)/FVIIai complex revealed that although overall the domain structures are similar, the EGF-2 domain is rotated by 7.5 degrees relative to the protease domain on binding TF. A single cleavage in the protease domain was found, between Arg315 and Lys316 (chymotrypsin numbering 170C-170D) in a FVII-specific insertion loop: this cleavage appeared to be essential for crystallisation. Insertion of the heavy chain N-terminal Ile153 is essentially identical in the two structures, as is the geometry of the active site residues and the inhibitor C-terminal arginine residue. Some differences are seen in the cleaved loop, but changes in TF-contact residues are generally minor. This structure supports the hypothesis that TF binding enables spatial domain arrangements in the flexible FVIIa molecule necessary for procoagulant function and furthermore that active site occupancy induces FVIIa active conformation via N-terminal insertion.  相似文献   

7.
Factor B is a key component of the alternative pathway of the complement system. During complement activation, factor B complexed with activated C3 is cleaved into the Ba and Bb fragments by the protease factor D to form the C3 convertase from the complex between C3b and Bb. The Ba fragment contains three short consensus/complement repeat (SCR) domains, and the Bb fragment contains a von Willebrand factor type A (vWF-A) domain and a serine protease (SP) domain. Surface-enhanced laser desorption-ionization affinity mass spectrometry (SELDIAMS) was used to investigate the reaction of factor B with immobilised activated C3(NH3) in the presence of Mg(2+). A recombinant vWF-A domain (residues G229-Q448), the native Ba and Bb fragments and native factor B all demonstrated specific interactions with C3(NH3), while no interactions were detected using bovine serum albumin as a control. A mass analysis of the proteolysis of the vWF-A domain when this was bound to immobilised C3(NH3) identified two peptides (residues G229-K265 and T355-R381) that were involved with vWF-A binding to C3(NH3). A homology model for the vWF-A domain was constructed using the vWF-A crystal structure in complement receptor type 3. Comparisons with five different vWF-A crystal structures showed that large surface insertions were present close to the carboxyl and amino edges of the central beta-sheet of the factor B vWF-A structure. The peptides G229-K265 and T355-R381 corresponded to the two sides of the active site cleft at the carboxyl edge of the vWF-A structure. The vWF-A connections with the SCR and SP domains were close to the amino edge of this vWF-A beta-sheet, and shows that the vWF-A domain can be involved in both C3b binding and the regulation of factor B activity. These results show that (i) a major function of the vWF-A domain is to bind to activated C3 during the formation of the C3 convertase, which it does at its active site cleft; and that (ii) SELDIAMS provides an efficient means of identifying residues involved in protein-protein interactions.  相似文献   

8.
The helper-component proteinase (HC-Pro) of potyvirus is involved in polyprotein processing, aphid transmission, and suppression of antiviral RNA silencing. There is no high resolution structure reported for any part of HC-Pro, hindering mechanistic understanding of its multiple functions. We have determined the crystal structure of the cysteine protease domain of HC-Pro from turnip mosaic virus at 2.0 Å resolution. As a protease, HC-Pro only cleaves a Gly-Gly dipeptide at its own C terminus. The structure represents a postcleavage state in which the cleaved C terminus remains tightly bound at the active site cleft to prevent trans activity. The structure adopts a compact α/β-fold, which differs from papain-like cysteine proteases and shows weak similarity to nsP2 protease from Venezuelan equine encephalitis alphavirus. Nevertheless, the catalytic cysteine and histidine residues constitute an active site that is highly similar to these in papain-like and nsP2 proteases. HC-Pro recognizes a consensus sequence YXVGG around the cleavage site between the two glycine residues. The structure delineates the sequence specificity at sites P1–P4. Structural modeling and covariation analysis across the Potyviridae family suggest a tryptophan residue accounting for the glycine specificity at site P1′. Moreover, a surface of the protease domain is conserved in potyvirus but not in other genera of the Potyviridae family, likely due to extra functional constrain. The structure provides insight into the catalysis mechanism, cis-acting mode, cleavage site specificity, and other functions of the HC-Pro protease domain.  相似文献   

9.
C Y Yang  W Y Huang  S Chirala  S J Wakil 《Biochemistry》1988,27(20):7773-7777
The complete amino acid sequence of thioesterase domain of chicken liver fatty acid synthase has been determined by sequencing peptides produced by trypsin, Staphylococcus aureus V8 protease, and cyanogen bromide cleavage. The thioesterase domain consists of 300 amino acid residues. All of the tryptic peptides of the thioesterase domain were isolated and sequenced, except the segment covered from position 109 to position 124. Peptides resulting from digestion by Staphylococcus aureus V8 protease and cyanogen bromide cleavage filled the missing part and overlapped the complete sequence of the entire thioesterase domain. The NH2 terminus of the thioesterase domain was determined to be lysine by sequencing the whole domain up to 20 residues while the COOH terminus was identified as serine through carboxyl peptidase Y cleavage. The active site of the thioesterase domain of chicken fatty acid synthase was suggested to be the serine on position 101 according to its homology with other serine-type esterases and proteases which have a common structure of -Gly-X-Ser-Y-Gly- with the variable amino acids X and Y disrupting the homology.  相似文献   

10.
Polyprotein processing is a major strategy used by many plant and animal viruses to maximize the number of protein products obtainable from a single open reading frame. In Sesbania mosaic virus, open reading frame-2 codes for a polyprotein that is cleaved into different functional proteins in cis by the N-terminal serine protease domain. The soluble protease domain lacking 70-amino-acid residues from the N terminus (deltaN70Pro, where Pro is protease) was not active in trans. Interestingly, the protease domain exhibited trans-catalytic activity when VPg (viral protein genome-linked) was present at the C terminus. Bioinformatic analysis of VPg primary structure suggested that it could be a disordered protein. Biophysical studies validated this observation, and VPg resembled "natively unfolded" proteins. CD spectral analysis showed that the deltaN70Pro-VPg fusion protein had a characteristic secondary structure with a 230 nm positive CD peak. Mutation of Trp-43 in the VPg domain to phenylalanine abrogated the positive peak with concomitant loss in cis- and trans-proteolytic activity of the deltaN70Pro domain. Further, deletion of VPg domain from the polyprotein completely abolished proteolytic processing. The results suggested a novel mechanism of activation of the protease, wherein the interaction between the natively unfolded VPg and the protease domains via aromatic amino acid residues alters the conformation of the individual domains and the active site of the protease. Thus, VPg is an activator of protease in Sesbania mosaic virus, and probably by this mechanism, the polyprotein processing could be regulated in planta.  相似文献   

11.
Hans G. Bäckman 《FEBS letters》2009,583(17):2727-208
The dual-targeted mitochondrial and chloroplastic zinc metallooligopeptidase from Arabidopsis, AtPreP, functions as a peptidasome that degrades targeting peptides and other small unstructured peptides. In addition to Zn located in the catalytic site, AtPreP also contains two Mg-binding sites. We have investigated the role of Mg-binding using AtPreP variants, in which one or both sites were rendered unable to bind Mg2+. Our results show that metal binding besides that of the active site is crucial for AtPreP proteolysis, particularly the inner site appears essential for normal proteolytic function. This is also supported by its evolutionary conservation among all plant species of PreP.

Structured summary

MINT-7231937, MINT-7232017, MINT-7232035, MINT-7232051, MINT-7232070, MINT-7232090:AtPreP1 (uniprotkb:Q9LJL3) enzymaticly reacts (MI:0414) pF1 beta (uniprotkb:P17614) by protease assay (MI:0435)MINT-7232132:AtPreP1 (uniprotkb:Q9LJL3) enzymaticly reacts (MI:0414) galanin (uniprotkb:P22466) by protease assay (MI:0435)MINT-7232175:AtPreP1 (uniprotkb:Q9LJL3) enzymaticly reacts (MI:0414) Cecropin A (uniprotkb:P14954) by protease assay (MI:0435)MINT-7232163:AtPreP1 (uniprotkb:Q9LJL3) enzymaticly reacts (MI:0414) hPrPss (uniprotkb:P04156) by protease assay (MI:0435)  相似文献   

12.
beta-D-Xylosidases are glycoside hydrolases that catalyze the release of xylose units from short xylooligosaccharides and are engaged in the final breakdown of plant cell-wall hemicellulose. Here we describe the enzyme-substrate crystal structure of an inverting family 43 beta-xylosidase, from Geobacillus stearothermophilus T-6 (XynB3). Each XynB3 monomeric subunit is organized in two domains: an N-terminal five-bladed beta-propeller catalytic domain, and a beta-sandwich domain. The active site possesses a pocket topology, which is mainly constructed from the beta-propeller domain residues, and is closed on one side by a loop that originates from the beta-sandwich domain. This loop restricts the length of xylose units that can enter the active site, consistent with the exo mode of action of the enzyme. Structures of the enzyme-substrate (xylobiose) complex provide insights into the role of the three catalytic residues. The xylose moiety at the -1 subsite is held by a large number of hydrogen bonds, whereas only one hydroxyl of the xylose unit at the +1 subsite can create hydrogen bonds with the enzyme. The general base, Asp15, is located on the alpha-side of the -1 xylose sugar ring, 5.2 Angstroms from the anomeric carbon. This location enables it to activate a water molecule for a single-displacement attack on the anomeric carbon, resulting in inversion of the anomeric configuration. Glu187, the general acid, is 2.4 Angstroms from the glycosidic oxygen atom and can protonate the leaving aglycon. The third catalytic carboxylic acid, Asp128, is 4 Angstroms from the general acid; modulating its pK(a) and keeping it in the correct orientation relative to the substrate. In addition, Asp128 plays an important role in substrate binding via the 2-O of the glycon, which is important for the transition-state stabilization. Taken together, these key roles explain why Asp128 is an invariant among all five-bladed beta-propeller glycoside hydrolases.  相似文献   

13.
The structures of the MAP kinase p38 in complex with docking site peptides containing a phi(A)-X-phi(B) motif, derived from substrate MEF2A and activating enzyme MKK3b, have been solved. The peptides bind to the same site in the C-terminal domain of the kinase, which is both outside the active site and distinct from the "CD" domain previously implicated in docking site interactions. Mutational analysis on the interaction of p38 with the docking sites supports the crystallographic models and has uncovered two novel residues on the docking groove that are critical for binding. The two peptides induce similar large conformational changes local to the peptide binding groove. The peptides also induce unexpected and different conformational changes in the active site, as well as structural disorder in the phosphorylation lip.  相似文献   

14.
The RNA-dependent RNA polymerase (NS5B) from hepatitis C virus (HCV) is a key enzyme in HCV replication. NS5B is a major target for the development of antiviral compounds directed against HCV. Here we present the structures of three thiophene-based non-nucleoside inhibitors (NNIs) bound non-covalently to NS5B. Each of the inhibitors binds to NS5B non-competitively to a common binding site in the "thumb" domain that is approximately 35 Angstroms from the polymerase active site located in the "palm" domain. The three compounds exhibit IC(50) values in the range of 270 nM to 307 nM and have common binding features that result in relatively large conformational changes of residues that interact directly with the inhibitors as well as for other residues adjacent to the binding site. Detailed comparisons of the unbound NS5B structure with those having the bound inhibitors present show that residues Pro495 to Arg505 (the N terminus of the "T" helix) exhibit some of the largest changes. It has been reported that Pro495, Pro496, Val499 and Arg503 are part of the guanosine triphosphate (GTP) specific allosteric binding site located in close proximity to our binding site. It has also been reported that the introduction of mutations to key residues in this region (i.e. Val499Gly) ablate in vivo sub-genomic HCV RNA replication. The details of NS5B polymerase/inhibitor binding interactions coupled with the observed induced conformational changes provide new insights into the design of novel NNIs of HCV.  相似文献   

15.
Cathepsin L is a cysteine protease which degrades connective tissue proteins including collagen, elastin, and fibronectin. In this study, five well-characterized cathepsin L proteins from different arthropods were used as query sequences for the Drosophila genome database. The search yielded 10 cathepsin L-like sequences, of which eight putatively represent novel cathepsin L-like proteins. To understand the phylogenetic relationship among these cathepsin L-like proteins, a phylogenetic tree was constructed based on their sequences. In addition, models of the tertiary structures of cathepsin L were constructed using homology modeling methods and subjected to molecular dynamics simulations to obtain reasonable structure to understand its dynamical behavior. Our findings demonstrate that all of the potential Drosophila cathepsin L-like proteins contain at least one cathepsin propeptide inhibitor domain. Multiple sequence alignment and homology models clearly highlight the conservation of active site residues, disulfide bonds, and amino acid residues critical for inhibitor binding. Furthermore, comparative modeling indicates that the sequence/structure/function profiles and active site architectures are conserved.  相似文献   

16.
The mosquito-borne dengue viruses are widespread human pathogens causing dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, placing 40% of the world's population at risk with no effective treatment. The viral genome is a positive strand RNA that encodes a single polyprotein precursor. Processing of the polyprotein precursor into mature proteins is carried out by the host signal peptidase and by NS3 serine protease, which requires NS2B as a cofactor. We report here the crystal structure of the NS3 serine protease domain at 2.1 A resolution. This structure of the protease combined with modeling of peptide substrates into the active site suggests identities of residues involved in substrate recognition as well as providing a structural basis for several mutational effects on enzyme activity. This structure will be useful for development of specific inhibitors as therapeutics against dengue and other flaviviral proteases.  相似文献   

17.
Reversible modification of Atg8 with phosphatidylethanolamine is crucial for autophagy, the bulk degradation system conserved in eukaryotic cells. Atg4 is a novel cysteine protease that processes and deconjugates Atg8. Herein, we report the crystal structure of human Atg4B (HsAtg4B) at 1.9-A resolution. Despite no obvious sequence homology with known proteases, the structure of HsAtg4B shows a classical papain-like fold. In addition to the papain fold region, HsAtg4B has a small alpha/beta-fold domain. This domain is thought to be the binding site for Atg8 homologs. The active site cleft of HsAtg4B is masked by a loop (residues 259-262), implying a conformational change upon substrate binding. The structure and in vitro mutational analyses provide the basis for the specificity and catalysis of HsAtg4B. This will enable the design of Atg4-specific inhibitors that block autophagy.  相似文献   

18.
F1 is a 33.5 kDa serine peptidase of the alpha/beta-hydrolase family from the archaeon Thermoplasma acidophilum. Subsequent to proteasomal protein degradation, tricorn generates small peptides, which are cleaved by F1 to yield single amino acids. We have solved the crystal structure of F1 with multiwavelength anomalous dispersion (MAD) phasing at 1.8 A resolution. In addition to the conserved catalytic domain, the structure reveals a chiefly alpha-helical domain capping the catalytic triad. Thus, the active site is accessible only through a narrow opening from the protein surface. Two structures with molecules bound to the active serine, including the inhibitor phenylalanyl chloromethylketone, elucidate the N-terminal recognition of substrates and the catalytic activation switch mechanism of F1. The cap domain mainly confers the specificity for hydrophobic side chains by a novel cavity system, which, analogously to the tricorn protease, guides substrates to the buried active site and products away from it. Finally, the structure of F1 suggests a possible functional complex with tricorn that allows efficient processive degradation to free amino acids for cellular recycling.  相似文献   

19.
The monoclonal antibody 1696, directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme of both the HIV-1 and HIV-2 isolates. This antibody cross-reacts with peptides that include the N-terminus of the enzyme, a region that is well conserved in sequence among different viral strains and which, furthermore, is crucial for homodimerization to the active enzymatic form. This observation, as well as antigen-binding studies in the presence of an active site inhibitor, suggest that 1696 inhibits the HIV protease by destabilizing its active homodimeric form. To characterize further how the antibody 1696 inhibits the HIV-1 and HIV-2 proteases, we have solved the crystal structure of its Fab fragment by molecular replacement and refined it at 3.0 A resolution. The antigen binding site has a deep cavity at its center, which is lined mainly by acidic and hydrophobic residues, and is large enough to accommodate several antigen residues. The structure of the Fab 1696 could form a starting basis for the design of alternative HIV protease-inhibiting molecules of broad specificity.  相似文献   

20.
Wang D  Guo M  Liang Z  Fan J  Zhu Z  Zang J  Zhu Z  Li X  Teng M  Niu L  Dong Y  Liu P 《The Journal of biological chemistry》2005,280(24):22962-22967
Vacuolar protein sorting protein 29 (Vps29p), which is involved in retrograde trafficking from prevacuolar endosomes to the trans-Golgi network, performs its biological functions by participating in the formation of a "retromer complex." In human cells, this complex comprises four conserved proteins: hVps35p, hVps29p, hVps26p, and sorting nexin 1 protein (SNX1). Here, we report the crystal structure of hVps29p at 2.1 Angstroms resolution, the first three-dimensional structure of the retromer subunits. This novel structure adopts a four-layered alpha-beta-beta-alpha sandwich fold. hVps29p contains a metal-binding site that is very similar to the active sites of some proteins of the phosphodiesterase/nuclease protein family, indicating that hVps29p may carry out chemically similar functions. Structure and sequence conservation analysis suggests that hVps29p contains two protein-protein interaction sites. One site, which potentially serves as the interface between hVps29p and hVps35p, comprises 5 conserved hydrophobic and 8 hydrophilic residues. The other site is relatively more hydrophilic and may serve as a binding interface with hVps26p, SNX1, or other target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号