首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
酿酒酵母纤维素乙醇统合加工(CBP)的策略及研究进展   总被引:2,自引:0,他引:2  
木质纤维素乙醇的统合生物加工过程(Consolidated bioprocessing,CBP)是将纤维素酶和半纤维素酶生产、纤维素水解和乙醇发酵过程组合或部分组合,通过一种微生物完成。统合生物加工过程有利于降低生物转化过程的成本,越来越受到研究者的普遍关注。酿酒酵母Saccharomyces cerevisiae是传统的乙醇发酵菌株。介绍了影响外源基因在酿酒酵母中表达水平的因素,纤维素酶和半纤维素酶在酿酒酵母中表达研究进展及利用酿酒酵母统合加工纤维素乙醇的策略。  相似文献   

2.
统合生物加工过程(Consolidated bioprocessing,CBP)具有应用于纤维素乙醇生产的潜力,而该技术的关键是构建能有效降解纤维素的工程菌株。酿酒酵母是传统的乙醇发酵菌株,作为CBP宿主菌株具有很多优势,因此在酿酒酵母中表达纤维素酶引起研究者的普遍关注。综述了纤维素酶基因在酿酒酵母中表达的影响因素,包括基因表达盒表达元件(启动子、信号肽和终止子等)、纤维素酶基因拷贝数及存在形式以及纤维素酶基因来源等,并对一种和多种纤维素酶基因在酿酒酵母中的表达及构建得到的CBP菌株研究进展做了简要介绍。  相似文献   

3.
纤维素乙醇的统合生物加工过程(consolidated bioprocessing,CBP)是将(半)纤维素酶生产、纤维素水解和乙醇发酵过程组合,通过一种微生物完成的生物加工过程。 CBP有利于降低生物转化过程的成本,受到研究者的普遍关注。酿酒酵母( Saccharomyces cerevisiae)作为传统的乙醇生产菌株,是极具潜力的CBP底盘细胞。纤维小体是某些厌氧微生物细胞表面由纤维素酶系与支架蛋白组成的大分子复合物,它能高效降解木质纤维,在酿酒酵母表面展示纤维小体已成为构建CBP细胞的研究热点。笔者综述了人造纤维小体在酿酒酵母细胞表面展示组装的研究进展,重点阐述了纤维小体各元件的设计和改造,并针对酿酒酵母分泌途径的改造,提出提高人造纤维小体分泌组装的可能性策略。  相似文献   

4.
酿酒酵母人造纤维小体的研究进展   总被引:1,自引:0,他引:1  
纤维素乙醇的统合生物加工过程(consolidated bioprocessing,CBP)是将(半)纤维素酶生产、纤维素水解和乙醇发酵过程组合,通过一种微生物完成的生物加工过程。CBP有利于降低生物转化过程的成本,受到研究者的普遍关注。酿酒酵母(Saccharomyces cerevisiae)作为传统的乙醇生产菌株,是极具潜力的CBP底盘细胞。纤维小体是某些厌氧微生物细胞表面由纤维素酶系与支架蛋白组成的大分子复合物,它能高效降解木质纤维,在酿酒酵母表面展示纤维小体已成为构建CBP细胞的研究热点。笔者综述了人造纤维小体在酿酒酵母细胞表面展示组装的研究进展,重点阐述了纤维小体各元件的设计和改造,并针对酿酒酵母分泌途径的改造,提出提高人造纤维小体分泌组装的可能性策略。  相似文献   

5.
利用统合生物加工过程(Consolidated bioprocessing,CBP)生产纤维素乙醇是目前国内外的研究热点。CBP需要一种“集成化”微生物,既能生产水解木质纤维素的多种酶类又能利用水解木质纤维素产生的糖类发酵产乙醇。以酿酒酵母表面展示技术为依托,建立CBP菌株多酶共展示体系的研究主要分为以下两个方向:一是直接将纤维素酶展示在细胞表面,即非复合型纤维素酶体系;另一种是通过表面展示纤维小体(Cellulosome)将纤维素酶间接地锚定在细胞表面,即复合型纤维素酶体系,本文主要从以上两个方向阐述了近几年对于纤维素乙醇生物统合加工过程的研究进展。因纤维小体对纤维素的降解能力比非复合型纤维素酶体系更强,所以其在酿酒酵母细胞表面的组装研究受到越来越多的关注,为了更深入透彻地了解纤维小体的酵母展示技术,文中对纤维小体的结构与功能及其在纤维素乙醇发酵中的应用研究进行重点论述,并对该领域的发展方向进行展望。  相似文献   

6.
【目的】在酿酒酵母体内设计代谢通路,使酿酒酵母能利用纤维素水解产物纤维二糖生产乙醇。【方法】首先,用大肠杆菌DH5α总DNA为模板克隆编码大肠杆菌乳糖透过酶的LacY基因。为过表达LacY基因,以质粒YEplac181作为载体,将酿酒酵母PGK1p强启动子加到LacY基因之前,CYC1t终止子加到LacY基因之后,构建质粒YEplac181-PGK1p-LacY-CYC1t。之后,将纤维二糖转运蛋白LacY表达质粒和β-葡萄糖苷酶(β-glucosidase,BGL)表达质粒pRS316-PGK1p-gh1-1-CYC1t依次转入野生型酿酒酵母W303-1A中,使野生型酿酒酵母W303-1A异源表达可转运纤维二糖的LacY蛋白和β-葡萄糖苷酶GH1-1,构建可利用纤维二糖的酿酒酵母工程菌W303-1A GL。最后,通过发酵测定酿酒酵母工程菌W303-1A GL的纤维二糖利用情况和乙醇产量,并对纤维二糖代谢通路中纤维二糖酶活力进行测定。【结果】本研究构建了纤维二糖转运蛋白LacY和β-葡萄糖苷酶GH1-1协同表达的酿酒酵母工程菌W303-1AGL。W303-1AGL可以有效利用纤维二糖发酵生产乙醇,W303-1A GL发酵24 h时乙醇产量达到3.25 g/L,得率为0.325 g乙醇/g纤维二糖,利用葡萄糖产乙醇理论得率为0.511 g乙醇/g纤维二糖,达到葡萄糖产乙醇理论得率的64%,细胞密度最高在第54 h达到OD600=10.84,胞内β-葡萄糖苷酶的酶活在72 h最高,可达到0.51 U/mg。【结论】本研究成功构建了能有效利用纤维二糖的重组酿酒酵母工程菌W303-1A GL,为提高纤维素乙醇生产效率、降低纤维素乙醇生产成本提供了新思路。  相似文献   

7.
以前期里氏木霉RNA-seq中发现的7个糖苷水解酶基因为对象,分析其不同条件下的表达特性,以期为寻找新的纤维素降解功能酶提供证据。运用生物信息学方法,分析了7个基因可能的编码产物和结构特征。以不同的产纤维素酶菌株(QM 9414、RUT C30)为材料,采用实时荧光定量PCR,对7个糖苷水解酶基因(编号4–10)在各种碳源条件下转录情况与主要的3个纤维素酶基因cbh1,cbh2,egl1(编号1–3)进行了比较分析。信息学分析表明,7个基因编码蛋白分属于GH47(4号、5号),GH92(6–8号),GH16(9号),GH31(10号)糖苷水解酶家族,具有典型的信号肽序列。cbh1,cbh2,egl1基因在纤维素酶诱导条件下,转录水平均表现显著的增加,上调倍数以QM 9414菌株表现的最高。QM 9414菌株中,cbh1,cbh2,egl1基因在纤维素条件下的上调倍数显著高于乳糖,3个基因在RUT C30菌株中的转录水平则显示乳糖条件下上调幅度更大。7个糖苷水解酶基因也存在类似的情况,而且编码α-甘露糖苷酶和内切β-葡聚糖酶的8号、9号基因上调倍数在纤维素酶诱导条件下仅次于纤维素酶基因,而以甘油为碳源条件下,8号、9号基因上调倍数高于纤维素酶基因。4号基因在上述碳源条件下,转录水平变化不大。结果表明:4号基因可能是组成型表达。基因5、6、7、8、9、10的表达呈现明显的菌株和碳源依赖性,且在纤维素酶诱导条件下基本上是和3个纤维素酶基因共转录的。  相似文献   

8.
【背景】纤维素是生物转化解决能源问题的主要原料之一,其水解物中存在严重影响抑制菌株生长的糠醛,需脱毒才可应用于发酵,提高菌株耐受性是解决纤维素水解液实际生产应用的关键。【目的】酿酒酵母(Saccharomyces cerevisiae)是主要的纤维素水解液发酵工业菌株,但糠醛耐受性较低,通过分子改造获得具有高糠醛耐受性的菌株。【方法】利用新获得的产甘油假丝酵母(Candidaglycerinogenes)的相关抗逆转录因子CgSTB5、CgSEF1和CgCAS5,通过分子技术进行S.cerevisiae改造,考察其对酿酒酵母糠醛耐受性的影响,并尝试应用于未脱毒纤维素乙醇发酵。【结果】单个表达CgSTB5和CgSEF1的酿酒酵母,通过菌株点板实验表明菌株的糠醛耐受性提高25%以上,并且摇瓶发酵结果显示糠醛降解性能明显提高,生长延滞期明显缩短,S.cerevisiae W303/p414-CgSTB5的未脱毒纤维素乙醇发酵生产效率提高12.5%左右。【结论】转录因子CgSTB5和CgSEF1均能对提高酿酒酵母糠醛耐受性起到重要作用,并且有助于提高酿酒酵母菌株未脱毒纤维素乙醇发酵性能。  相似文献   

9.
为了简化纤维素乙醇生产工艺,实现纤维素利用与乙醇发酵的同步进行,通过酵母细胞表面展示技术,以酿酒酵母菌株Saccharomyces cerevisiae Y5为受体,通过絮凝素(Flo1p)锚定方式,将来自丝状真菌里氏木霉Trichoderma reesei的内切葡聚糖酶Ⅱ(EGII)、纤维二糖水解酶Ⅱ(CBHII)以及来自棘孢曲霉Aspergillus aculeatus的β-葡糖苷酶Ⅰ(BGLI)展示在细胞表面,构建同时表达3种纤维素酶的酵母菌群系统。经过免疫荧光验证展示酶的细胞蛋白定位,酶活测定,乙醇发酵性能验证,结果表明:展示表达的3种纤维素酶具有良好的稳定性和功能活性;在EGII、CBHII和BGLI协同作用下重组酵母菌株能够水解溶胀磷酸纤维素(Phosphoric acid swollen cellulose,简称PASC)并产生乙醇,乙醇浓度达到最大值0.77 g/L,乙醇产量为0.35 g/g,相当于理论值的68.6%。本研究成功构建了利用Flo1p作为锚定蛋白的絮凝素展示系统,初步实现了纤维素利用与乙醇发酵的同步进行,为利用酿酒酵母表面展示技术固定并表达纤维素酶提供了一定的理论依据。  相似文献   

10.
【目的】构建可用于纤维素乙醇高效生产的混合糖发酵重组酿酒酵母菌株,并利用菊芋秸秆为原料进行乙醇发酵。【方法】筛选在木糖中生长较好的酿酒酵母YB-2625作为宿主菌,构建木糖共代谢菌株YB-2625 CCX。进一步通过r DNA位点多拷贝整合的方式,以YB-2625 CCX为出发菌株构建木糖脱氢酶过表达菌株,并筛选得到优势菌株YB-73。采用同步糖化发酵策略研究YB-73的菊芋秸秆发酵性能。【结果】YB-73菌株以90 g/L葡萄糖和30 g/L木糖为碳源进行混合糖发酵,乙醇产量比出发菌株YB-2625 CCX提高了13.9%,副产物木糖醇产率由0.89 g/g降低至0.31 g/g,下降了64.6%。利用重组菌YB-73对菊芋秸秆进行同步糖化发酵,48 h最高乙醇浓度达到6.10%(体积比)。【结论】通过转入木糖代谢途径以及r DNA位点多拷贝整合过表达木糖脱氢酶基因可有效提高菌株木糖发酵性能,并用于菊芋秸秆的纤维素乙醇生产。这是首次报道利用重组酿酒酵母进行菊芋秸秆原料的纤维素乙醇发酵。  相似文献   

11.
In the search for suitable cellulase combinations for industrial biofinishing of cotton, five different types of Trichoderma reesei strains were constructed for elevated cellobiohydrolase production: CBHI overproducers with and without endoglucanase I (EGI), CBHII overproducers with and without endoglucanase II (EGII) and strains overproducing both CBHI and CBHII without the major endoglucanases I and II. One additional copy of cbh1 gene increased production of CBHI protein 1.3-fold, and two copies 1.5-fold according to ELISA (enzyme-linked immunosorbent assay). The level of total secreted proteins was increased in CBHI transformants as compared to the host strain. One copy of the cbh2 expression cassette in which the cbh2 was expressed from the cbh1 promoter increased production of CBHII protein three- to four-fold when compared to the host strain. T. reesei strains producing elevated amounts of both CBHI and CBHII without EGI and EGII were constructed by replacing the egl1 locus with the coding region of the cbh1 gene and the egl2 locus with the coding region of cbh2. The cbh1 was expressed from its own promoter and the cbh2 gene using either the cbh1 or cbh2 promoter. Production of CBHI by the CBH-transformants was increased up to 1.6-fold and production of CBHII up to 3.4-fold as compared with the host strain. Approximately similar amounts of CBHII protein were produced by using cbh1 or cbh2 promoters. When the enzyme preparation with elevated CBHII content was used in biofinishing of cotton, better depilling and visual appearance were achieved than with the wild type preparation; however, the improvement was not as pronounced as with preparations with elevated levels of endoglucanases (EG).  相似文献   

12.
13.
Consolidated bioprocessing (CBP) is a promising technology for lignocellulosic ethanol production, and the key is the engineering of a microorganism that can efficiently utilize cellulose. Development of Saccharomyces cerevisiae for CBP requires high level expression of cellulases, particularly cellobiohydrolases (CBH). In this study, to construct a CBP-enabling yeast with enhanced CBH activity, three cassettes containing constitutively expressed CBH-encoding genes (cbh1 from Aspergillus aculeatus, cbh1 and cbh2 from Trichoderma reesei) were constructed. T. reesei eg2, A. aculeatus bgl1, and the three CBH-encoding genes were then sequentially integrated into the S. cerevisiae W303-1A chromosome via δ-sequence-mediated integration. The resultant strains W1, W2, and W3, expressing uni-, bi-, and trifunctional cellulases, respectively, exhibited corresponding cellulase activities. Furthermore, both the activities and glucose producing activity ascended. The growth test on cellulose containing plates indicated that CBH was a necessary component for successful utilization of crystalline cellulose. The three recombinant strains and the control strains W303-1A and AADY were evaluated in acid- and alkali-pretreated corncob containing media with 5 FPU exogenous cellulase/g biomass loading. The highest ethanol titer (g/l) within 7 days was 5.92 ± 0.51, 18.60 ± 0.81, 28.20 ± 0.84, 1.40 ± 0.12, and 2.12 ± 0.35, respectively. Compared with the control strains, W3 efficiently fermented pretreated corncob to ethanol. To our knowledge, this is the first study aimed at creating cellulolytic yeast with enhanced CBH activity by integrating three types of CBH-encoding gene with a strong constitutive promoter Ptpi.  相似文献   

14.
Four cellulase genes of Trichoderma reesei, cbh1, cbh2, egl1 and egl2, have been replaced by the amdS marker gene. When linear DNA fragments and flanking regions of the corresponding cellulase locus of more than 1 kb were used, the replacement frequencies were high, ranging from 32 to 52%. Deletion of the major cellobiohydrolase 1 gene led to a 2-fold increase in the production of cellobiohydrolase II; however, replacement of the cbh2 gene did not affect the final cellulase levels and deletion of egl1 or egl2, slightly increased production of both cellobiohydrolases. Based on our results, endoglucanase II accounts for most of the endoglucanase activity produced by the hypercellulolytic host strain. Furthermore, loss of the egl2, gene causes a significant drop in the filter paper-hydrolysing activity, indicating that endoglucanase II has an important role in the total hydrolysis of cellulose.  相似文献   

15.
Four cellulase genes of Trichoderma reesei, cbh1, cbh2, egl1 and egl2, have been replaced by the amdS marker gene. When linear DNA fragments and flanking regions of the corresponding cellulase locus of more than 1 kb were used, the replacement frequencies were high, ranging from 32 to 52%. Deletion of the major cellobiohydrolase 1 gene led to a 2-fold increase in the production of cellobiohydrolase II; however, replacement of the cbh2 gene did not affect the final cellulase levels and deletion of egl1 or egl2, slightly increased production of both cellobiohydrolases. Based on our results, endoglucanase II accounts for most of the endoglucanase activity produced by the hypercellulolytic host strain. Furthermore, loss of the egl2, gene causes a significant drop in the filter paper-hydrolysing activity, indicating that endoglucanase II has an important role in the total hydrolysis of cellulose.  相似文献   

16.

Background

For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work was to combine inhibitor degradation, xylitol fermentation, and ethanol production using a single yeast strain.

Results

A new process of integrated aerobic xylitol production and anaerobic ethanol fermentation using non-detoxified acid pretreated corncob by Candida tropicalis W103 was proposed. C. tropicalis W103 is able to degrade acetate, furfural, and 5-hydromethylfurfural and metabolite xylose to xylitol under aerobic conditions, and the aerobic fermentation residue was used as the substrate for ethanol production by anaerobic simultaneous saccharification and fermentation. With 20% substrate loading, furfural and 5-hydroxymethylfurfural were degraded totally after 60 h aerobic incubation. A maximal xylitol concentration of 17.1 g l-1 was obtained with a yield of 0.32 g g-1 xylose. Then under anaerobic conditions with the addition of cellulase, 25.3 g l-1 ethanol was produced after 72 h anaerobic fermentation, corresponding to 82% of the theoretical yield.

Conclusions

Xylitol and ethanol were produced in Candida tropicalis W103 using dual-phase fermentations, which comprise a changing from aerobic conditions (inhibitor degradation and xylitol production) to anaerobic simultaneous saccharification and ethanol fermentation. This is the first report of integrated xylitol and ethanol production from non-detoxified acid pretreated corncob using a single microorganism.
  相似文献   

17.
The combined effect of simultaneous saccharification and fermentation and separate hydrolysis and fermentation (SHF) for ethanol production by Kluyveromyces marxianus 6556 was studied using two lignocellulosic feedstocks viz., corncob and soybean cake. The ethanologenic efficiency of K. marxianus 6556 was observed as 28% (theoretical yield) in a fermentation medium containing glucose, but, there was no ethanol production by cells grown on xylose. A maximum sugar release of 888 mg/g corncob and 552 mg/g soybean cake was achieved through acid hydrolysis pretreatment. Furthermore, corncob and soybean cake treated with commercial cellulase (100 IU for 48 h) from Trichoderma reesei yielded reducing sugars of 205 and 100 mg/g, respectively. Simultaneous saccharification and fermentation resulted in highest ethanol production of 5.68 g/l on corncob and 2.14 g/l on soybean cake after 48 h of incubation. On the contrary, the presence of inhibitors decreased the overall ethanol yield in the hydrolysates obtained through SHF of corncob and soybean cake.  相似文献   

18.
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a single process, is a promising strategy for effective ethanol production from lignocellulosic materials because of the resulting reduction in utilities, the substrate and other raw materials and simplification of operation. CBP requires a highly engineered microbial strain capable of hydrolyzing biomass with enzymes produced on its own and producing high-titer ethanol. Recently, heterologous production of cellulolytic enzymes has been pursued with yeast hosts, which has realized direct conversion of cellulose to ethanol. Specifically, the development of cell surface engineering, which provides a display of cellulolytic enzymes on the yeast cell surface, facilitates effective biomass hydrolysis concomitantly with ethanol production. On the other hand, the difference in optimum temperature between saccharification and fermentation is a drawback of efficient ethanol production in the simultaneous saccharification and fermentation (SSF). The application of thermotolerant yeast strains engineered to the SSF process would overcome the drawback by performing hydrolysis and fermentation at elevated temperature. In this review, we focus on the recent advances in the application of thermotolerant yeast to CBP and SSF of lignocellulosic material to ethanol. The development of thermotolerant and ethanologenic yeast strains with the ability to hydrolyze lignocellulosic materials is emphasized for high-temperature CBP.  相似文献   

19.
ABSTRACT: BACKGROUND: While the ethanol production from biomass by consolidated bioprocess (CBP) is considered to be the most ideal process, simultaneous saccharification and fermentation (SSF) is the most appropriate strategy in practice. In this study, one-pot bioethanol production, including cellulase production, saccharification of cellulose, and ethanol production, was investigated for the conversion of biomass to biofuel by co-culture of two different microorganisms such as a hyper cellulase producer, Acremonium cellulolyticus C-1 and an ethanol producer Saccharomyces cerevisiae. Furthermore, the operational conditions of the one-pot process were evaluated for maximizing ethanol concentration from cellulose in a single reactor. RESULTS: Ethanol production from cellulose was carried out in one-pot bioethanol production process. A. cellulolyticus C-1 and S. cerevisiae were co-cultured in a single reactor. Cellulase producing-medium supplemented with 2.5 g/l of yeast extract was used for productions of both cellulase and ethanol. Cellulase production was achieved by A. cellulolyticus C-1 using Solka-Floc (SF) as a cellulase-inducing substrate. Subsequently, ethanol was produced with addition of both 10%(v/v) of S. cerevisiae inoculum and SF at the culture time of 60 h. Dissolved oxygen levels were adjusted at higher than 20% during cellulase producing phase and at lower than 10% during ethanol producing phase. Cellulase activity remained 8--12 FPU/ml throughout the one-pot process. When 50--300 g SF/l was used in 500 ml Erlenmeyer flask scale, the ethanol concentration and yield based on initial SF were as 8.7--46.3 g/l and 0.15--0.18 (g ethanol/g SF), respectively. In 3-l fermentor with 50--300 g SF/l, the ethanol concentration and yield were 9.5--35.1 g/l with their yields of 0.12--0.19 (g/g) respectively, demonstrating that the one-pot bioethanol production is a reproducible process in a scale-up bioconversion of cellulose to ethanol. CONCLUSION: A. cellulolyticus cells produce cellulase using SF. Subsequently, the produced cellulase saccharifies the SF, and then liberated reducing sugars are converted to ethanol by S. cerevisiae. These reactions were carried out in the one-pot process with two different microorganisms in a single reactor, which does require neither an addition of extraneous cellulase nor any pretreatment of cellulose. Collectively, the one-pot bioethanol production process with two different microorganisms could be an alternative strategy for a practical bioethanol production using biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号