首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lignocellulosic materials are considered promising renewable resources for ethanol production, but improvements in the processes should be studied to reduce operating costs. Thus, the appropriate enzyme loading for cellulose saccharification is critical for process economics. This study aimed at evaluating the concentration of cellulase and β-glucosidase in the production of bioethanol by simultaneous saccharification and fermentation (SSF) of sunflower meal biomass. The sunflower biomass was pretreated with 6 % H2SO4 (w/v), at 121 °C, for 20 min, for hemicellulose removal and delignificated with 1 % NaOH. SSF was performed with Kluyveromyces marxianus ATCC 36907, at 38 °C, 150 rpm, for 72 h, with different enzyme concentrations (Cellulase Complex NS22086-10, 15 and 20 FPU/gsubstrate and β-Glucosidase NS22118, with a cellulase to β-glucosidase ratio of 1.5:1; 2:1 and 3:1). The best condition for ethanol production was cellulase 20 FPU/gsubstrate and β-glucosidase 13.3 CBU/gsubstrate, resulting in 27.88 g/L ethanol, yield of 0.47 g/g and productivity of 0.38 g/L h. Under this condition the highest enzymatic conversion of cellulose to glucose was attained (87.06 %).  相似文献   

2.
Apple pomace as a substrate for bioethanol production is interesting due to its abundance and sustainable availability in varied states like Himachal Pradesh (H.P.), Jammu and Kashmir, Uttarakhand and Arunachal Pradesh, India. In the current study, apple pomace which is the main fruit industrial waste of H.P. was evaluated as feedstock for bioethanol production by the process of enzymatic saccharification using multiple carbohydrases. Microwave pretreatment of the apple pomace resulted in the efficient removal of lignin and crystalline structure of cellulose fibre. The enzymatic saccharification of the pretreated biomass was done by optimizing parameters for maximal saccharification leads to production of 27.50?mg/g of reduce, ng sugar. An enhanced ethanol yield of 44.46?g/l and fermentation efficiency of 58% by immobilized co-culture of Saccharomyces cerevisiae MTCC 3089 and Scheffersomyces stipitis NCIM 3498 under SHF as compared to fermentation performed with free yeast cells, i.e. 34.46?g/l of ethanol and 45% of fermentation efficiency.  相似文献   

3.
Enzymatic hydrolysis of cellulosic material is an essential step in the bioethanol production process. However, complete cellulose hydrolysis by cellulase is difficult due to the irreversible adsorption of cellulase onto cellulose. Thus, part of the cellulose remains in crystalline form after hydrolysis. In this study, after 96-h hydrolysis of Avicel crystalline cellulose, 47.1 % of the cellulase was adsorbed on the cellulose surface with 10.8 % crystalline cellulose remaining. In simultaneous saccharification and fermentation of 100 g/L Avicel with 1.0 filter paper unit/mL cellulase, a wild-type yeast strain produced 44.7 g/L ethanol after 96 h. The yield of ethanol was 79.7 % of the theoretical yield. On the other hand, a recombinant yeast strain displaying various cellulases, such as β-glucosidase, cellobiohydrolase, and endoglucanase, produced 48.9 g/L ethanol, which corresponds to 87.3 % of the theoretical yield. Higher ethanol production appears to be attributable to higher efficiency of cellulase displayed on the cell surface. These results suggest that cellulases displayed on the yeast cell surface improve hydrolysis of Avicel crystalline cellulose. Indeed, after the 96-h simultaneous saccharification and fermentation using the cellulase-displaying yeast, the amount of residual cellulose was 1.5 g/L, one quarter of the cellulose remaining using the wild-type strain, a result of the alleviation of irreversible adsorption of cellulases on the crystalline cellulose.  相似文献   

4.
We developed a new pretreatment process for producing high-efficiency bioethanol from a lignocellulosic biomass. Barley straw was pretreated with sodium hydroxide in a twin-screw extruder for continuous pretreatment. The biomass to ethanol ratio (BTER) for optimal pretreatment conditions was evaluated by response surface methodology. Simultaneous saccharification and fermentation (SSF) was conducted to investigate the BTER with 30 FPU/g cellulose of enzyme and 7% (v/v) yeast (Saccharomyces cerevisiae CHY 1011) using 10% (w/v) pretreated biomass under various pretreatment conditions. The maximum BTER was 73.00% under optimal pretreatment conditions (86.61 °C, 0.58 M, and 84.79 mL/min for temperature, sodium hydroxide concentration, and solution flow rate, respectively) and the experimental BTER was 70.01 ± 0.59%. SSF was performed to investigate the optimal enzyme and biomass dosage. As a result, maximum ethanol concentration and ethanol yield were 46.00 g/L and 77.36% at a loading pretreated biomass of 20% with 30 FPU/g cellulose of the enzyme dosage for barley straw to bioethanol. These results are a significant contribution to the production of bioethanol from barley straw.  相似文献   

5.
Geopolitical concerns (unstable supply of gasoline, environmental pollution, and regular price hikes), economic, and employment concerns have been prompting researchers, entrepreneurs, and policy makers to focus on harnessing the potential of lignocellulosic feedstock for fuel ethanol production and its commercialization. The carbohydrate skeleton of plant cell walls needs to be depolymerised into simpler sugars for their application in fermentation reactions as a chief carbon source of suitable ethnologic strains for ethanol production. The role of cellulolytic enzymes in the degradation of structural carbohydrates of the plant cell wall into ready-to-fermentable sugar stream is inevitable. Cellulase synergistically acts upon plant cell wall polysaccharides to release glucose into the liquid media. Cellulase predominantly dominates all the plant cell wall degrading enzymes due to their vast and diverse range of applications. Apart from the major applications of cellulases such as in detergent formulations, textile desizing, and development of monogastric feed for ruminants, their role in biorefinery is truly remarkable. This is a major area where new research tools based upon fermentation based formulations, biochemistry, and system biology to expedite the structure-function relationships of cellulases including cellulosomes and new designer enzymatic cocktails are required. In the last two decades, a considerable amount of research work has been performed on cellulases and their application in biomass saccharification. However, there are still technical and economic impediments to the development of an inexpensive commercial cellulase production process. Advancements in biotechnology such as screening of microorganisms, manipulation of novel cellulase encoding traits, site-specific mutagenesis, and modifications to the fermentation process could enhance the production of cellulases. Commercially, cheaper sources of carbohydrates and modified fermentation conditions could lead to more cost-effective production of cellulases with the goal to reduce the cost of ethanol production from lignocellulosics. Implementation of integrated steps like cellulase production and cellulase mediated saccharification of biomass in conjunction with the fermentation of released sugars in ethanol in a single step so called consolidated bio-processing (CBP) is very important to reduce the cost of bioethanol. This paper aims to explore and review the important findings in cellulase biotechnology and the forward path for new cutting edge opportunities in the success of biorefineries.  相似文献   

6.
Alkaline-oxidative (A/O) pretreatment and enzymatic saccharification were optimized for bioethanol fermentation from water hyacinth by Saccharomyces cerevisiae. Water hyacinth was subjected to A/O pretreatment at various NaOH and H(2)O(2) concentrations and reaction temperatures for the optimization of bioethanol fermentation by S. cerevisiae. The most effective condition for A/O pretreatment was 7% (w/v) NaOH at 100 °C and 2% (w/v) H(2)O(2). The carbohydrate content was analyzed after reaction at various enzyme concentrations and enzyme ratios using Celluclast 1.5 L and Viscozyme L to determine the effective conditions for enzymatic saccharification. After ethanol fermentation using S. cerevisiae KCTC 7928, the concentration of glucose, ethanol and glycerol was analyzed by HPLC using a RI detector. The yield of ethanol in batch fermentation was 0.35 g ethanol/g biomass. Continuous fermentation was carried out at a dilution rate of 0.11 (per h) and the ethanol productivity was 0.77 [g/(l h)].  相似文献   

7.
Geopolitical concerns (unstable supply of gasoline, environmental pollution, and regular price hikes), economic, and employment concerns have been prompting researchers, entrepreneurs, and policy makers to focus on harnessing the potential of lignocellulosic feedstock for fuel ethanol production and its commercialization. The carbohydrate skeleton of plant cell walls needs to be depolymerised into simpler sugars for their application in fermentation reactions as a chief carbon source of suitable ethnologic strains for ethanol production. The role of cellulolytic enzymes in the degradation of structural carbodydrates of the plant cell wall into ready-to-fermentable sugar stream is inevitable. Cellulase synergistically acts upon plant cell wall polysaccharides to release glucose into the liquid media. Cellulase predominantly dominates all the plant cell wall degrading enzymes due to their vast and diverse range of applications. Apart from the major applications of cellulases such as in detergent formulations, textile desizing, and development of monogastric feed for ruminants, their role in biorefinery is truly remarkable. This is a major area where new research tools based upon fermentation based formulations, biochemistry, and system biology to expedite the structure–function relationships of cellulases including cellulosomes and new designer enzymatic cocktails are required. In the last two decades, a considerable amount of research work has been performed on cellulases and their application in biomass saccharification. However, there are still technical and economic impediments to the development of an inexpensive commercial cellulase production process. Advancements in biotechnology such as screening of microorganisms, manipulation of novel cellulase encoding traits, site-specific mutagenesis, and modifications to the fermentation process could enhance the production of cellulases. Commercially, cheaper sources of carbohydrates and modified fermentation conditions could lead to more cost-effective production of cellulases with the goal to reduce the cost of ethanol production from lignocellulosics. Implementation of integrated steps like cellulase production and cellulase mediated saccharification of biomass in conjunction with the fermentation of released sugars in ethanol in a single step so called consolidated bio-processing (CBP) is very important to reduce the cost of bioethanol. This paper aims to explore and review the important findings in cellulase biotechnology and the forward path for new cutting edge opportunities in the success of biorefineries.  相似文献   

8.
Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1?s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).  相似文献   

9.
Eastern gamagrass (Trypsacum dactyloides) is a C4 perennial grass, native to the USA with desirable characteristics that warrants further investigation as a new lignocellulosic crop for bioethanol production. Chemical composition assays showed that eastern gamagrass had comparable cellulose, hemicellulose and lignin compositions to those of switchgrass (Panicum virgatum). With the cellulose solvent-based lignocellulose fractionation (CSLF) pretreatment and subsequent enzymatic saccharification, 80.5–99.8% of cellulosic glucose was released from the gamagrass biomass, which was 10–17% greater than the glucose release efficiency from switchgrass (73.5–87.1%). Furthermore, the hydrolysate of gamagrass supported greater ethanol fermentation yield (up to 0.496 g/g glucose) than the hydrolysates of switchgrass. As such, in the whole process of biomass-to-ethanol conversion, gamagrass could yield 13–35% more ethanol per gram of biomass than switchgrass, indicating that gamagrass has high potential as an alternative energy feedstock for lignocellulosic ethanol production.  相似文献   

10.
The purpose of this study was to enhance the economic efficiency of producing bioethanol. Pretreatment solution recycling is expected to increase economic efficiency by reducing the cost of pretreatment and the amount of wastewater. In addition, the production of high-concentration bioethanol could increase economic efficiency by reducing the energy cost of distillation. The pretreatment conditions were 95 °C, 0.72 M NaOH, 80 rpm twin-screw speed, and flow rate of 90 mL/min at 18 g/min of raw biomass feeding for pretreatment solution recycling. The pretreatment with NaOH solution recycling was conducted five times. All of the components and the pretreatment efficiency were similar, despite reuse. In addition, we developed a continuous biomass feeding system for production of high-concentration bioethanol. Using this reactor, the bioethanol productivity was investigated using various pretreated biomass feeding rates in a simultaneous saccharification and fermentation (SSF) process. The maximum ethanol concentration, yield, and productivity were 74.5 g/L, 89.5 %, and 1.4 g/L h, respectively, at a pretreated biomass loading of approximately 25 % (w/v) with an enzyme dosage of 30 FPU g/cellulose. The results presented here constitute an important contribution toward the production of bioethanol from Miscanthus.  相似文献   

11.
A continuous process was employed to improve the volumetric productivity of bioethanol production from cassava mash containing sludge and to simplify the process of ethanol production from cassava. After raw cassava powder was liquefied, it was used directly in a continuous process without sludge filtration or saccharification. A fermentor consisting of four linked stirrer tanks was used for simultaneous saccharification and continuous fermentation (SSCF). Although the mash contained sludge, continuous fermentation was successfully achieved. We chose the dilution rate on the basis of the maximum saccharification time; the highest volumetric productivity and ethanol yield were observed at a dilution rate of 0.028 h?1. The volumetric productivity, final ethanol concentration, and % of theoretical ethanol yield were 2.41 g/Lh, 86.1g/L, and 91%, respectively. This SSCF process using the self-flocculating yeast Saccharomyces cerevisiae CHFY0321 illustrates the possibility of realizing cost-effective bioethanol production by eliminating additional saccharification and filtration processes. In addition, flocculent CHFY0321, which our group developed, showed excellent fermentation results under continuous ethanol production.  相似文献   

12.
The gene mel1, encoding alpha-galactosidase in Schizosaccharomyces pombe, and the gene bgl2, encoding and beta-glucosidase in Trichoderma reesei, were isolated and co-expressed in the industrial ethanol-producing strain of Saccharomyces cerevisiae. The resulting strains were able to grow on cellobiose and melibiose through simultaneous production of sufficient extracellular alpha-galactosidase and beta-glucosidase activity. Under aerobic conditions, the growth rate of the recombinant strain GC 1 co-expressing 2 genes could achieve 0.29 OD600 h(-1) and a biomass yield up to 7.8 g l(-1) dry cell weight on medium containing 10.0 g l(-1) cellobiose and 10.0 g l(-1) melibiose as sole carbohydrate source. Meanwhile, the new strain of S. cerevisiae CG 1 demonstrated the ability to directly produce ethanol from microcrystalline cellulose during simultaneous saccharification and fermentation process. Approximately 36.5 g l(-1) ethanol was produced from 100 g of cellulose supplied with 5 g l(-1) melibose within 60 h. The yield (g of ethanol produced/g of carbohydrate consumed) was 0.44 g/g, which corresponds to 88.0% of the theoretical yield.  相似文献   

13.
Simultaneous saccharification and fermentation of cellulose to lactic acid   总被引:3,自引:0,他引:3  
Recent interest in the industrial manufacture of ethanol and other organic chemicals from biomass has led to the utilization of surplus grain and cane juice as a fermentation feedstock. Since those starting materials are also foods, they are expensive. As an alternative, cellulosic substances-the most abundant renewable resources on earth(1)-have long been considered for conversion to readily utilizable hydrolyzates.(2, 3)For the production of ethanol from cellulose, we have proposed the simultaneous saccharification and fermentation (SSF) process.(4) In SSF, enzymatic cellulose hydrolysis and glucose fermentation to ethanol by yeast proceed simultaneously within one vessel. The process advantages-reduced reactor volume and faster saccharification rates-have been confirmed by many researchers.(5-8) During SSF, the faster saccharification rates result because the glucose product is immediately removed, considerably diminishing its inhibitory effect on the cellulase system.(9)To effectively apply the SSF method to produce substances fermented from glucose, several conditions should be satisfied. One is coincident enzymatic hydrolysis and fermentation conditions, such as pH and temperature. The other is that cellulase inhibition by the final product is less than that by glucose and/or cellobiose. One of us has reported that acetic acid, citric acid, itaconic acid, alpha-ketoglutaric acid, lactic acid, and succinic acid scarcely inhibit cellulase.(10) This suggests that if the microorganisms which produce these organic acids were compatible with cellulase reaction conditions, the organic acids could be produced efficiently from cellulosic substrates by SSF.In this article, the successful application of SSF to lactic acid production from cellulose is reported. Though there have been several reports of direct cellulose conversion to organic acids by anaerobes such as Clostridium, only trace amounts of lactic acid were detected in the fermentation medium among the low-molecular-weight fatty acid components.(11-13) Lactic acid is one of the most important organic acids and has a wide range of food-related and industrial applications.  相似文献   

14.
Cellulase production was investigated in a culture of a strain of Acremonium cellulolyticus. The medium components were optimized for the improvement of cellulase production. The maximum production of cellulolytic enzymes was obtained in a medium containing (grams per liter) 50 Solka Floc, 5 (NH4)2SO4, 24 KH2PO4, 4.7 potassium tartrate hemihydrate, 1.2 MgSO4.7H2O, 1 Tween 80, 4 urea, 0.01 ZnSO4.7H2O, 0.01 MnSO4.6H2O, and 0.01 CuSO4.7H2O, with a pH of 4.0. In the flask culture, 15.5 filter paper units (FPU)/mL of maximum cellulase activity was obtained, 17.42 FPU/mL in a 7-L bioreactor, and 13.08 FPU/mL in a 50-L scale bioreactor for 4-8 d at 30 degrees C. Average production rates were 1.94 FPU/mL.d in flasks, 2.86 FPU/mL.d in the 7-L bioreactor, and 2.56 FPU/mL.d in the 50-L bioreactor. Cellulase production on a small scale was successfully reproduced in the 50-L pilot scale bioreactor. Saccharification activity from A. cellulolyticus was compared with cellulolytic enzymes produced by other strains. The A. cellulolyticus culture broth had a comparable saccharification yield in comparison with those of other Trichoderma enzymes (GC220 or Cellulosin T2) under the same total cellulase activity. Its saccharification yield (percent of released reducing sugar to used dried substrate) was 60%, and its glucose content was 83%.  相似文献   

15.
Fermentation modes and microorganisms related to two typical free-floating aquatic plants, water hyacinth and water lettuce, were investigated for their use in ethanol production. Except for arabinose, sugar contents in water lettuce resembled those in water hyacinth leaves. Water lettuce had slightly higher starch contents and lower contents of cellulose and hemicellulose. A traditional strain, Saccharomyces cerevisiae NBRC 2346, produced 14.4 and 14.9 g l(-1) ethanol, respectively, from water hyacinth and water lettuce. Moreover, a recombinant strain, Escherichia coli KO11, produced 16.9 and 16.2 g l(-1) ethanol in the simultaneous saccharification and fermentation mode (SSF), which was more effective than the separated hydrolysis and fermentation mode (SHF). The ethanol yield per unit biomass was comparable to those reported for other agricultural biomasses: 0.14-0.17 g g-dry(-1) for water hyacinth and 0.15-0.16 g g-dry(-1) for water lettuce.  相似文献   

16.
An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).  相似文献   

17.
Cellulase was produced by Acremonium cellulolyticus using untreated waste paper sludge (PS) as the carbon source. The clay present in PS did not show any inhibitory effect on cellulase production but did alter the pH during fermentation. On the flask scale, the maleate buffer concentration and pH were key factors that affected the efficiency of cellulase production from PS cellulose. Optimum cellulase production in a 3-L fermentor of working volume 1.5 L was achieved by controlling the pH value at 6.0 using 2 M NaOH and 2 M maleic acid, and the productivity reached 8.18 FPU/mL. When 40.89 g/L PS cellulose, 2.2 g/L (NH(4) )(2) SO(4) , and 4.4 g/L urea were added to a 48-h culture, the cellulase activity was 9.31 FPU/mL at the flask scale and 10.96 FPU/mL in the 3-L fermentor. These values are ~80% of those obtained when pure cellulose is used as the carbon source. The method developed here presents a new route for the utilization of PS.  相似文献   

18.
19.
Bioethanol production from ammonia percolated wheat straw   总被引:2,自引:0,他引:2  
This study examined the effectiveness of ammonia percolation pretreatment of wheat straw for ethanol production. Ground wheat straw at a 10% (w/v) loading was pretreated with a 15% (v/v) ammonia solution. The experiments were performed at treatment temperature of 50∼170°C and residence time of 10∼150 min. The solids treated with the ammonia solution showed high lignin degradation and sugar availability. The pretreated wheat straw was hydrolyzed by a cellulase complex (NS50013) and β-glucosidase (NS50010) at 45°C. After saccharification, Saccharomyces cerevisiae was added for fermentation. The incubator was rotated at 120 rpm at 35°C. As a result of the pretreatment, the delignification efficiency was > 70% (170°C, 30 min) and temperature was found to be a significant factor in the removal of lignin than the reaction time. In addition, the saccharification results showed an enzymatic digestibility of > 90% when 40 FPU/g cellulose was used. The ethanol concentration reached 24.15 g/L in 24 h. This paper reports a total process for bioethanol production from agricultural biomass and an efficient pretreatment of lignocellulosic material.  相似文献   

20.
In cellulosic ethanol production, use of simultaneous saccharification and fermentation (SSF) has been suggested as the favorable strategy to reduce process costs. Although SSF has many advantages, a significant discrepancy still exists between the appropriate temperature for saccharification (45-50 °C) and fermentation (30-35 °C). In the present study, the potential of temperature-shift as a tool for SSF optimization for bioethanol production from cellulosic biomass was examined. Cellulosic ethanol production of the temperature-shift SSF (TS-SSF) from 16 w/v% biomass increased from 22.2 g/L to 34.3 g/L following a temperature shift from 45 to 35 °C compared with the constant temperature of 45 °C. The glucose conversion yield and ethanol production yield in the TS-SSF were 89.3% and 90.6%, respectively. At higher biomass loading (18 w/v%), ethanol production increased to 40.2 g/L with temperature-shift time within 24 h. These results demonstrated that the temperature-shift process enhances the saccharification ratio and the ethanol production yield in SSF, and the temperature-shift time for TS-SSF process can be changed according to the fermentation condition within 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号