首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Knee ligamentous injuries persist in the sport of Alpine skiing. To better understand the load mechanisms which lead to injury, pure varus/valgus and pure axial moments were applied both singly and in combination to the right knees of six human test subjects. The corresponding relative knee rotations in three degrees of freedom were measured. Knee flexion angles for each test subject were 15 and 60 degrees for the individual moments and 60 degrees for the combination moments. For both knee flexion angles the hip flexion angle was 0 degrees. Leg muscles were quiescent and axial force was minimal during all tests. Tables of data include sample statistics for each of four flexibility parameters in each loading direction. Data were analyzed statistically to test for significant differences in flexibility parameters between the test conditions. In flexing the knee from 15 to 60 degrees, the resulting knee rotations under single moments depended upon flexion angle with varus, valgus, and internal rotations increasing significantly. Also, rotations were different depending on load direction; varus rotation was significantly different and greater than valgus rotation at both flexion angles. Also external rotation was significantly different and greater than internal at 15 degrees flexion, but not at 60 degrees flexion. Coupled rotations under single moments were also observed. Applying pure varus/valgus moments resulted in coupled external/internal rotations which were inconsistent and hence not significant. Applying pure axial moments resulted in consistent and hence significant varus/valgus rotations; an external axial moment induced varus rotation and an internal axial moment induced valgus rotation. For combination moments, varus/valgus rotations decreased significantly from those rotations at similar load levels in the single moment studies. Also, a varus moment significantly increased external rotation and a valgus moment significantly decreased internal rotation. These differences indicate significant interaction between corresponding load combinations. These results suggest that load interaction is a potentially important phenomenon in knee injury mechanics.  相似文献   

2.
In this paper we studied how subjects activate their muscles in response to static varus and valgus loads at the knee. The muscles' contributions to the external moments were estimated using an EMG driven biomechanical model of the knee. The individual muscle activation and loading patterns were examined to identify the strategies that the nervous system uses to support varus and valgus knee moments. It was found that the (1) co-contraction of the hamstrings and quadriceps, and (2) activation of the gracilis and tensor fascia lata increased with the increasing magnitude of the varus and valgus moments. These 2 activation patterns provided positive support of valgus and varus loads at the knee The sartorius appears to be activated to provide positive support of valgus loads at the knee, whereas during varus moments this muscle increases the varus load on the knee, i.e. provides negative support. Generally, the hamstrings and quadriceps co-contraction contributed to most of the muscular support of the varus and valgus moments. In addition, co-contraction supported 11-14% of the external moment in pure varus and pure valgus respectively. It appears that there are activation strategies with the specific purpose to support varus and valgus moments, albeit small, which suggest dual goals of the neuromotor system during the support of varus and valgus moments.  相似文献   

3.
Assessing the importance of non-driving intersegmental knee moments (i.e. varus/valgus and internal/external axial moments) on over-use knee injuries in cycling requires the use of a three-dimensional (3-D) model to compute these loads. The objectives of this study were: (1) to develop a complete, 3-D model of the lower limb to calculate the 3-D knee loads during pedaling for a sample of the competitive cycling population, and (2) to examine the effects of simplifying assumptions on the calculations of the non-driving knee moments. The non-driving knee moments were computed using a complete 3-D model that allowed three rotational degrees of freedom at the knee joint, included the 3-D inertial loads of the shank/foot, and computed knee loads in a shank-fixed coordinate system. All input data, which included the 3-D segment kinematics and the six pedal load components, were collected from the right limb of 15 competitive cyclists while pedaling at 225 W and 90 rpm. On average, the peak varus and internal axial moments of 7.8 and 1.5 N m respectively occurred during the power stroke whereas the peak valgus and external axial moments of 8.1 and 2.5 N m respectively occurred during the recovery stroke. However, the non-driving knee moments were highly variable between subjects; the coefficients of variability in the peak values ranged from 38.7% to 72.6%. When it was assumed that the inertial loads of the shank/foot for motion out of the sagittal plane were zero, the root-mean-squared difference (RMSD) in the non-driving knee moments relative to those for the complete model was 12% of the peak varus/valgus moment and 25% of the peak axial moment. When it was also assumed that the knee joint was revolute with the flexion/extension axis perpendicular to the sagittal plane, the RMSD increased to 24% of the peak varus/valgus moment and 204% of the peak axial moment. Thus, the 3-D orientation of the shank segment has a major affect on the computation of the non-driving knee moments, while the inertial contributions to these loads for motions out of the sagittal plane are less important.  相似文献   

4.
Although the contributions of passive structures to stability of the elbow have been well documented, the role of active muscular resistance of varus and valgus loads at the elbow remains unclear. We hypothesized that muscles: (1) can produce substantial varus and valgus moments about the elbow, and (2) are activated in response to sustained varus and valgus loading of the elbow. To test the first hypothesis, we developed a detailed musculoskeletal model to estimate the varus and valgus moment-generating capacity of the muscles about the elbow. To test the second hypothesis, we measured EMGs from 11 muscles in four subjects during a series of isometric tasks that included flexion, extension, varus, and valgus moments about the elbow. The EMG recordings were used as inputs to the elbow model to estimate the contributions of individual muscles to flexion-extension and varus-valgus moments. Analysis of the model revealed that nearly all of the muscles that cross the elbow are capable of producing varus or valgus moments; the capacity of the muscles to produce varus moment (34 Nm) and valgus moment (35 Nm) is roughly half of the maximum flexion moment (70 Nm). Analysis of the measured EMGs showed that the anconeus was the most significant contributor to valgus moments and the pronator teres was the largest contributor to varus moments. Although our results show that muscles were activated in response to static varus and valgus loads, their activations were modest and were not sufficient to balance the applied load.  相似文献   

5.
Nondriving intersegmental knee moment components (i.e., varus/valgus and internal/external axial moments) are thought to be primarily responsible for the etiology of overuse knee injuries such as patellofermoral pain syndrome in cycling because of their relationship to muscular imbalances. However the relationship between these moments and muscle activity has not been studied. Thus the four primary objectives of this study were to test whether manipulating the inversion/eversion foot angle alters the varus/valgus knee moment (Objective 1) and axial knee moment (Objective 2) and to determine whether activation patterns of the vastus medialis oblique (VMO), vastus lateralis (VL), and tensor fascia latae (TFL) were affected by changes in the varus/valgus (Objective 3) and axial knee moments (Objective 4). To fulfill these objectives, pedal loads and lower limb kinematic data were collected from 15 subjects who pedaled with five randomly assigned inversion/eversion angles: 10 deg and 5 deg everted and inverted and 0 deg (neutral). A previously described mathematical model was used to compute the nondriving intersegmental knee moments throughout the crank cycle. The excitations of the VMO, VL, and TFL muscles were measured with surface electromyography and the muscle activations were computed. On average, the 10-deg everted position decreased the peak varus moment by 55% and decreased the peak internal axial moment by 53% during the power stroke (crank cycle region where the knee moment is extensor). A correlation analysis revealed that the VMO/VL activation ratio increased significantly and the TFL activation decreased significantly as the varus moment decreased. For both the VMO/VL activation ratio and the TFL activation, a path analysis indicated that the varus/valgus moment was highly correlated to the axial moment but that the correlation between muscle activation and the varus moment was due primarily to the varus/valgus knee moment rather than the axial knee moment. The conclusion from these results is that everting the foot may be beneficial towards either preventing or ameliorating patellofemoral pain syndrome in cycling.  相似文献   

6.
The hypothesis which motivated the work reported in this article was that neglecting pure moments developed between the foot and pedal during cycling leads to a substantial error in computing axial and varus/valgus moments at the knee. To test this hypothesis, a mathematical procedure was developed for computing the three-dimensional knee loads using three-dimensional pedal forces and moments. In addition to data from a six-load-component pedal dynamometer, the model used pedal position and orientation and knee position in the frontal plane to determine the knee joint loads. Experimental data were collected from the right leg of 11 male subjects during steady-state cycling at 90 rpm and 225 W. The mean peak varus knee moment calculated was 15.3 N m and the mean peak valgus knee moment was 11.2 N m. Neglecting the pedal moment about the anterior/posterior axis resulted in an average absolute error of 2.6 N m and a maximum absolute error of 4.0 N m in the varus/valgus knee moment. The mean peak internal and external axial knee moments were 2.8 N m and 2.3 N m, respectively. The average and maximum absolute errors in the axial knee moment for not including the moment about an axis normal to the pedal were found to be 2.6 N m and 5.0 N m, respectively. The results strongly support the use of three-dimensional pedal loads in the computation of knee joint moments out of the sagittal plane.  相似文献   

7.
A six-degrees-of-freedom mechanical linkage device was designed and used to study the unconstrained motion of ten intact human cadaver knees. The knees were subjected to externally applied varus and valgus (V-V) moments up to 14 N-m as well as anterior and posterior (A-P) loads up to 100 N. Tests were done at four knee flexion angles; 0, 30, 45, and 90 deg. Significant coupled axial tibial rotation was found, up to 21.0 deg for V-V loading (at 90 deg of flexion) and 14.2 deg for A-P loading (at 45 deg of flexion). Subsequently, the knees were dissected and the locations of the insertion sites to the femur and tibia for the anteromedial (AM), posterolateral (PL), and intermediate (IM) portions of the ACL were identified. The distances between the insertion sites for all external loading conditions were calculated. In the case when the external load was zero, the AM portion of the ACL lengthened with knee flexion, while the PL portion shortened and the intermediate (IM) portion did not change in length. With the application of 14 N-m valgus moment, the PL and IM portions of the ACL lengthened significantly more than the AM portion (p less than 0.001). With the application of 100 N anterior load, the AM portion lengthened slightly less than the PL portion, which lengthened slightly less than the IM portion (p less than 0.005). In general, the amount of lengthening of the three portions of the ACL during valgus and anterior loading was observed to increase with knee flexion angle (p less than 0.001).  相似文献   

8.
An unconstrained loading system was developed to measure the passive envelope of joint motion in an animal model commonly used to study ligament healing and joint arthritis. The design of the five-degree-of-freedom system allowed for unconstrained knee joint loading throughout flexion with repeated removal and reapplication of the device to a specimen. Seven New Zealand White rabbit knees were subjected to varus, valgus, internal and external loads, and the resulting envelopes of motion were recorded using an electromagnetic tracking device. Intra-specimen reproducibility was excellent when measured in one specimen, with maximal rotational differences of 0.6 and 0.3 deg between the fourth and fifth testing cycles for the varus (VR) and valgus (VL) envelopes, respectively. Similarly, the maximal internal (INT) and external (EXT) envelope differences were 0.5 and 0.4 deg, respectively, between the fourth and fifth cycles. Good inter-animal envelope reproducibility was also observed with consistent motion pathways for each loading condition. A maximal VR-VL laxity of 17.9 +/- 2.3 deg was recorded at 95 deg flexion for the seven knees tested. The maximal INT-EXT laxity of 75.2 +/- 4.8 deg occurred at 50 deg flexion. Studies on measurement reproducibility of re-applying individual testing components demonstrated a maximal error of 1.2 +/- 0.7 deg. Serial removal and re-application (test-retest) of the complete measuring system to one cadaveric knee demonstrated maximal envelope differences of less than 0.7 deg for VR-VL rotation and 2.1 deg for INT-EXT rotation. Our results demonstrate that the measuring system is reproducible and capable of accurate evaluation of knee joint motion. Baseline in vitro data were generated on normal joint kinematics for future in-vivo studies with this system, evaluating ligament healing and disease progression in arthritis models.  相似文献   

9.
Knowledge of the coupled motions, which develop under compressive loading of the knee, is useful to determine which degrees of freedom should be included in the study of tibiofemoral contact and also to understand the role of the anterior cruciate ligament (ACL) in coupled motions. The objectives of this study were to measure the coupled motions of the intact knee and ACL-deficient knee under compression and to compare the coupled motions of the ACL-deficient knee with those of the intact knee. Ten intact cadaveric knees were tested by applying a 1600 N compressive load and measuring coupled internal-external and varus-valgus rotations and anterior-posterior and medial-lateral translations at 0 deg, 15 deg, and 30 deg of flexion. Compressive loads were applied along the functional axis of axial rotation, which coincides approximately with the mechanical axis of the tibia. The ACL was excised and the knees were tested again. In the intact knee, the peak coupled motions were 3.8 deg internal rotation at 0 deg flexion changing to -4.9 deg external rotation at 30 deg of flexion, 1.4 deg of varus rotation at 0 deg flexion changing to -1.9 deg valgus rotation at 30 deg of flexion, 1.4 mm of medial translation at 0 deg flexion increasing to 2.3 mm at 30 deg of flexion, and 5.3 mm of anterior translation at 0 deg flexion increasing to 10.2 mm at 30 deg of flexion. All changes in the peak coupled motions from 0 deg to 30 deg flexion were statistically significant (p<0.05). In ACL-deficient knees, there was a strong trend (marginally not significant, p=0.07) toward greater anterior translation (12.7 mm) than that in intact knees (8.0 mm), whereas coupled motions in the other degrees of freedom were comparable. Because the coupled motions in all four degrees of freedom in the intact knee and ACL-deficient knee are sufficiently large to substantially affect the tibiofemoral contact area, all degrees of freedom should be included when either developing mathematical models or designing mechanical testing equipment for study of tibiofemoral contact. The increase in coupled anterior translation in ACL-deficient knees indicates the important role played by the ACL in constraining anterior translation during compressive loading.  相似文献   

10.
This study determined which knee joint motions lead to anterior cruciate ligament (ACL) rupture with the knee at 25° of flexion. The knee was subjected to internal and external rotations, as well as varus and valgus motions. A failure locus representing the relationship between these motions and ACL rupture was established using finite element simulations. This study also considered possible concomitant injuries to the tibial articular cartilage prior to ACL injury. The posterolateral bundle of the ACL demonstrated higher rupture susceptibility than the anteromedial bundle. The average varus angular displacement required for ACL failure was 46.6% lower compared to the average valgus angular displacement. Femoral external rotation decreased the frontal plane angle required for ACL failure by 27.5% compared to internal rotation. Tibial articular cartilage damage initiated prior to ACL failure in all valgus simulations. The results from this investigation agreed well with other experimental and analytical investigations. This study provides a greater understanding of the various knee joint motion combinations leading to ACL injury and articular cartilage damage.  相似文献   

11.
Quantitative changes in valgus/varus knee stability with different levels of muscular activity were determined for five subjects. A specially designed machine was used to measure resistance to angulation in the frontal plane. This device held the thigh stationary, the knee straight, an cycled the leg from side to side at a constant rate between present moment limits. Resistance to this forced valgus/varus motion was measured simultaneously with torque about the knee in the sagittal plane. Muscle activity was monitored by electromyography (EMG). Direct comparison of moment-rotation characteristics allowed changes in stability to be quantified as a function of extension and flexion torque. Extension torques less than 20% of the maximum increased varus stability more than valgus stability. Flexion torques of the same relative magnitude increased valgus stability more than varus stability. Comparison with the literature suggested that prevention of opening of the lateral side of the joint under varus loading was responsible for increased varus stability with increasing torque, both with extension and flexion torques.  相似文献   

12.
Overuse knee joint injuries are the primary injuries to cyclists. Overuse injuries have been intuitively linked to the anatomic structure of the foot because external loads are applied to the foot in cycling. Thus, the structure and function of the foot should dictate in part how the loads are transmitted to the knee joint. Therefore, it was hypothesized that patterns in knee loads are related to the anatomic structure of the foot. To test this hypothesis, peak knee loads (dependent variables) were related to anatomical variables (independent variables) through statistical analyses. This required first the detailed evaluation (i.e. measurement) of the anatomical structure of the foot and leg for 23 subjects. Next, three-dimensional knee joint loads were determined for a standardized riding condition. The results of the statistical analyses indicated that a group of cyclists with the most extreme inversion of the forefoot relative to the transverse plane developed significantly greater average posterior knee force and extensive knee moment. In addition, a number of anatomical variables significantly accounted for the variability in peak values of the posterior force, the extensive moment, the varus/valgus moment and the external axial moment. Based on these results, the hypothesis is accepted.  相似文献   

13.
Anterior cruciate ligament (ACL) disruption is a common injury that is detrimental to an athlete's quality of life. Determining the mechanisms that cause ACL injury is important in order to develop proper interventions. A failure locus defined as various combinations of loadings and movements, internal/external rotation of femur and valgus and varus moments at a 25o knee flexion angle leading to ACL failure was obtained. The results indicated that varus and valgus movements were more dominant to the ACL injury than femoral rotation. Also, Von Mises stress in the lateral tibial cartilage during the valgus ACL injury mechanism was 83% greater than that of the medial cartilage during the varus mechanism of ACL injury. The results of this study could be used to develop training programmes focused on the avoidance of the described combination of movements which may lead to ACL injury.  相似文献   

14.
Anterior cruciate ligament (ACL) disruption is a common injury that is detrimental to an athlete's quality of life. Determining the mechanisms that cause ACL injury is important in order to develop proper interventions. A failure locus defined as various combinations of loadings and movements, internal/external rotation of femur and valgus and varus moments at a 25(o) knee flexion angle leading to ACL failure was obtained. The results indicated that varus and valgus movements were more dominant to the ACL injury than femoral rotation. Also, Von Mises stress in the lateral tibial cartilage during the valgus ACL injury mechanism was 83% greater than that of the medial cartilage during the varus mechanism of ACL injury. The results of this study could be used to develop training programmes focused on the avoidance of the described combination of movements which may lead to ACL injury.  相似文献   

15.

Background

In 3D gait analysis, the knee joint is usually described by the Eulerian way. It consists in breaking down the motion between the articulating bones of the knee into three rotations around three axes: flexion/extension, abduction/adduction and internal/external rotation. However, the definition of these axes is prone to error, such as the “cross-talk” effect, due to difficult positioning of anatomical landmarks. This paper proposes a correction method, principal component analysis (PCA), based on an objective kinematic criterion for standardization, in order to improve knee joint kinematic analysis.

Methods

The method was applied to the 3D gait data of two different groups (twenty healthy subjects and four with knee osteoarthritis). Then, this method was evaluated with respect to three main criteria: (1) the deletion of knee joint angle cross-talk (2) the reduction of variance in the varus/valgus kinematic profile (3) the posture trial varus/valgus deformation matching the X-ray value for patients with knee osteoarthritis. The effect of the correction method was tested statistically on variabilities and cross-talk during gait.

Results

Cross-talk was lower (p<0.05) after correction (the correlation between the flexion-extension and varus-valgus kinematic profiles being annihilated). Additionally, the variance in the kinematic profile for knee varus/valgus and knee flexion/extension was found to be lower and higher (p<0.05), respectively, after correction for both the left and right side. Moreover, after correction, the posture trial varus/valgus angles were much closer to x-ray grading.

Conclusion

The results show that the PCA correction applied to the knee joint eliminates the cross-talk effect, and does not alter the radiological varus/valgus deformation for patients with knee osteoarthritis. These findings suggest that the proposed correction method produces new rotational axes that better fit true knee motion.  相似文献   

16.
Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position–dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated finite element models of the tibiofemoral (TF) joint, one refined with depth-dependent fibril-reinforced cartilage and the other less refined with homogeneous isotropic cartilage, are used. The unconstrained TF joint response in sagittal and frontal planes is investigated at different flexion angles (0°, 15°, 30° and 45°) up to 1800 N compression preloads. The compression is applied at a novel joint mechanical balance point (MBP) identified as a point at which the compression does not cause any coupled rotations in sagittal and frontal planes. The MBP of the unconstrained joint is located at the lateral plateau in small compressions and shifts medially towards the inter-compartmental area at larger compression forces. The compression force substantially increases the joint moment-bearing capacities and instantaneous angular rigidities in both frontal and sagittal planes. The varus–valgus laxities diminish with compression preloads despite concomitant substantial reductions in collateral ligament forces. While the angular rigidity would enhance the joint stability, the augmented passive moment resistance under compression preloads plays a role in supporting external moments and should as such be considered in the knee joint musculoskeletal models.  相似文献   

17.
Valgus or varus malpositioning of the tibial component of a total knee implant may cause increased propensity for loosening or implant wear and eventually may lead to revision surgery. The aim of this study was to determine the effect of valgus/varus malalignment on tibio-femoral mechanics during surgical trial reduction and simulated gait loading. In seven cadaver legs, posterior cruciate sparing total knee replacements were implanted and tibial inserts representing a neutral alignment and 3 degrees and 5 degrees varus and valgus alignments were sequentially inserted. Each knee with each insert was loaded in a manner representative of a trial reduction performed during knee surgery and loaded in a physiological knee simulator. Simulated gait performed on the simulator demonstrated that internal/external and adduction/abduction rotations showed statistical changes with some of the angled inserts at different points in the walking cycle. Neither medial/lateral nor anterior/posterior translations changed statistically during simulated walking. The pressure distribution and total load in the medial and lateral compartments of the tibial component changed significantly with as little as a 3 degrees variation in angulation when loaded in a manner representative of a trial reduction or with a knee simulator. These results support the need for precise surgical reconstruction of the mechanical axis of the knee and proper alignment of the tibial component. These results further demonstrate that tibial contact pressures measured during a trial reduction method may be predictive of contact mechanics at the higher loading seen in the knee simulator.  相似文献   

18.
This paper examined the feasibility of using different optimization criteria in inverse dynamic optimization to predict antagonistic muscle forces and joint reaction forces during isokinetic flexion/extension and isometric extension exercises of the knee. Both quadriceps and hamstrings muscle groups were included in this study. The knee joint motion included flexion/extension, varus/valgus, and internal/external rotations. Four linear, nonlinear, and physiological optimization criteria were utilized in the optimization procedure. All optimization criteria adopted in this paper were shown to be able to predict antagonistic muscle contraction during flexion and extension of the knee. The predicted muscle forces were compared in temporal patterns with EMG activities (averaged data measured from five subjects). Joint reaction forces were predicted to be similar using all optimization criteria. In comparison with previous studies, these results suggested that the kinematic information involved in the inverse dynamic optimization plays an important role in prediction of the recruitment of antagonistic muscles rather than the selection of a particular optimization criterion. Therefore, it might be concluded that a properly formulated inverse dynamic optimization procedure should describe the knee joint rotation in three orthogonal planes.  相似文献   

19.
Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics—kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°–90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.  相似文献   

20.
The accuracy of a system of intramedullary alignment using 6 mm rods was assessed in 100 patients undergoing total knee replacements. Post-operative, full length weight-bearing X-rays were used; the mechanical axis from head was used as the reference axis. The method of calculating the errors produced by flexion and rotation of the limb in relation to the X-ray beam is described, the mean deviation from the mechanical axis in 100 cases being 0.67° valgus with a standard deviation of 2.47°. The maximum error was 6.68° valgus and 4.62° varus. The purpose of this study is twofold, first to assess the accuracy of this system of intramedullary alignment and, second, to develop a method of correcting for apparent radiological misalignment using standard radiographic equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号