首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The positions of the interchain and intrachain disulfide bonds and the glycosylation site in a lectin of the acorn barnacle Megabalanus rosa were determined. The lectin (Mr 140,000) is composed of the same subunit (Mr 22,000) which is cross-linked by disulfide bonds to form a dimer. Intact lectin yielded two fragments, CB1 and CB2, by cleavage with cyanogen bromide. One intrachain and two interchain disulfide bonds were identified as Cys-53-Cys-61, Cys-14-Cys-50' and Cys-50-Cys-14', respectively, by enzymatic digestion and Edman degradation of CB1. Two intrachain disulfide bonds were determined as Cys-78-Cys-168 and Cys-144-Cys-160 by enzymatic digestion of CB2. The two intrachain disulfide bonds are well conserved through all invertebrate lectins and calcium-dependent animal lectins. S-Carboxamidomethylated lectin was digested with Staphylococcus aureus V8 proteinase and separated by reversed-phase HPLC. Glycopeptides were detected by the 4-N,N-dimethylamino-4'-azobenzene sulfonyl hyrazide method. Sequence analyses of the glycopeptides showed that a carbohydrate chain attached to Asn-39.  相似文献   

2.
The positions of the inter- and intra-chain disulfide bonds of human plasma α2HS-glycoprotein were determined. α2HS-glycoprotein was digested with acid proteinase and then with thermolysin. The disulfide bonds containing peptides were separated by reversed-phase HPLC and detected by SBD-F (7-fluorobenzo-2-oxa-1,3-diasole-4-sulfonic acid ammonium salt) method. One inter-disulfide bond containing peptide and five intra-disulfide bond containing peptides (A-chain) were purified and identified as Cys-18 (B-chain)-Cys-14 (A-chain), Cys-71-Cys-82, Cys-96-Cys-114, Cys-128-Cys-131, Cys-190-Cys-201 and Cys-212-Cys-229, respectively. The location of the intra-disulfide bonds revealed that the A-chain of α2HS-glycoprotein is composed of three domains. Two domains were shown to possess intramolecular homology judging from the total chain length of the domains, size of the loops formed by the SS bonds, the location of two disulfide loops near the C-terminal end of domains A and B, the distance between two SS bonds of each domain, the amino acid sequence homology between these two domains (22.6%), number of amino acid residues between the second SS loops and the end of domains A and B, and the positions of the ordered structures.  相似文献   

3.
The taste-modifying protein, miraculin (Theerasilp, S. et al. (1989) J. Biol. Chem. 264, 6655-6659) has seven cysteine residues in a molecule composed of 191 amino acid residues. The formation of three intrachain disulfide bridges at Cys-47-Cys-92, Cys-148-Cys-159 and Cys-152-Cys-155 and one interchain disulfide bridge at Cys-138 was determined by amino acid sequencing and composition analysis of cystine-containing peptides isolated by HPLC. The presence of an interchain disulfide bridge was also supported by the fact that the cystine peptide containing Cys-138 showed a negative color test for the free sulfhydryl group and a positive test after reduction with dithiothreitol. The molecular mass of non-reduced miraculin (43 kDa) in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was nearly twice the calculated molecular mass based on the amino acid sequence and the carbohydrate content of reduced miraculin (25 kDa). The molecular mass of native miraculin determined by low-angle laser light scattering was 90 kDa. Application of a crude extract of miraculin to a Sephadex G-75 column indicated that the taste-modifying activity appears at 52 kDa. It was concluded that native miraculin in pure form is a tetramer of the 25 kDa-peptide and native miraculin in crude state or denatured, non-reduced miraculin in pure form is a dimer of the peptide. Both tetramer miraculin and native dimer miraculin in crude state had the taste-modifying activity.  相似文献   

4.
Omega-Conotoxin GVIA (GVIA), an N-type calcium channel blocker from the cone shell Conus geographus, is a 27 residue polypeptide cross-linked by three disulfide bonds. Here, we report the synthesis, structural analysis by (1)H NMR and bioassay of analogues of GVIA with disulfide bridge deletions and N- and C-terminal truncations. Two analogues that retain the crucial Lys-2 and Tyr-13 residues in loops constrained by two native disulfide bridges were synthesised using orthogonal protection of cysteine residues. In the first analogue, the Cys-15-Cys-26 disulfide bridge was deleted (by replacing the appropriate Cys residues with Ser), while in the second, this disulfide bridge and the eight C-terminal residues were deleted. No activity was detected for either analogue in a rat vas deferens assay, which measures N-type calcium channel activity in sympathetic nerve, and NMR studies showed that this was due to a gross loss of secondary and tertiary structure. Five inactive analogues that were synthesised without orthogonal protection of Cys residues as part of a previous study (Flinn et al. (1995) J. Pept. Sci. 1, 379-384) were also investigated. Three had single disulfide deletions (via Ser substitutions) and two had N- or C-terminal deletions in addition to the disulfide deletion. Peptide mapping and NMR analyses demonstrated that at least four of these analogues had non-native disulfide pairings, which presumably accounts for their lack of activity. The NMR studies also showed that all five analogues had substantially altered tertiary structures, although the backbone chemical shifts and nuclear Overhauser enhancements (NOEs) implied that native-like turn structures persisted in some of these analogues despite the non-native disulfide pairings. This work demonstrates the importance of the disulfides in omega-conotoxin folding and shows that the Cys-15-Cys-26 disulfide is essential for activity in GVIA. The NMR analyses also emphasise that backbone chemical shifts and short- and medium-range NOEs are dictated largely by local secondary structure elements and are not necessarily reliable monitors of the tertiary fold.  相似文献   

5.
Crotalidae and Viperidae snake venoms contains several kinds of metalloproteinases which cause localized hemorrhage by direct action on blood vessel walls. We report here the entire amino acid sequence and the disulfide bridge locations of HT-2, one of the hemorrhagic toxins isolated from the venom of Crotalus ruber ruber (red rattlesnake). The non-reduced protein was first cleaved at methionine residues to provide a set of 8 fragments, which covered the entire sequence of HT-2. The disulfide bridge locations of HT-2 were also determined by using these primary fragments. The unambiguous sequence for the whole protein was then established by conventional methods using lysyl endopeptidase and thermolysin digests. HT-2 consisted of 202 amino acid residues with two disulfide bridges, which were assigned to Cys-117-Cys-197 and Cys-157-Cys-164. HT-2 had a typical zinc-chelating sequence His-Glu-X-X-His (residues 142-146) found in thermolysin, and its overall sequence showed, respectively, 50, 52, and 53% identities to those of HR2a, H2-proteinase, and the metalloproteinase domain of HR1B. However, the disulfide bridge locations of HT-2 were different from those in the other metalloproteinases. The primary structure of HT-2 was more closely related to that of Ht-d from Crotalus atrox recently determined (81% identity). From the structural comparison with five metalloproteinases so far elucidated, six conservative amino acid residues, which may possibly be related to the induction of the hemorrhagic activity, were suggested to be present in these toxins.  相似文献   

6.
MDNCF is a human monocyte-derived, 72-residue chemotactic peptide, which has sequence similarity with members of a family of pro-inflammatory cytokines. The peptide was synthesized by the solid-phase method, and is identical to the natural peptide in amino acid composition, sequence and chemotactic potency. MDNCF forms two loops via a neighboring pair of disulfide bridges, the probable locations of which are residues 7-34 and 9-50. Reduction and alkylation eliminated chemotactic activity. MDNCF fragments 7-37, 30-72 and 17-72 were all biologically inactive. The data suggest that the region of the clustered pair of disulfide bridges is important for biological activity.  相似文献   

7.
Escherichia coli heat-stable enterotoxin II (STII) was purified to homogeneity by successive column chromatographies from the culture supernatant of a strain harboring the plasmid encoding the STII gene. The purified STII evoked a secretory response in the suckling mouse assay and ligated rat intestinal loop assay in the presence of protease inhibitor, but the response was not observed in the absence of the inhibitor. Analyses of the peptide by the Edman degradation method and fast atom bombardment mass spectrometry revealed that purified STII is composed of 48 amino acid residues and that its amino acid sequence was identical to the 48 carboxy-terminal amino acids of STII predicted from the DNA sequence (C. H. Lee, S. L. Mosely, H. W. Moon, S. C. Whipp, C. L. Gyles, and M. So, Infect. Immun. 42:264-268, 1983). STII has four cysteine residues which form two intramolecular disulfide bonds. Two disulfide bonds were determined to be formed between Cys-10-Cys-48 and Cys-21-Cys-36 by analyzing tryptic hydrolysates of STII.  相似文献   

8.
Disulfide bond exchange among cysteine residues in epidermal growth factor (EGF)-like domains of beta3 was suggested to be involved in activation of alphaIIbbeta3. To investigate the role of specific beta3 cysteines in alphaIIbbeta3 expression and activation, we expressed in baby hamster kidney cells normal alphaIIb with normal beta3 or beta3 with single or double cysteine substitutions of nine disulfide bonds in EGF-3, EGF-4, and beta-tail domains and assessed alphaIIbbeta3 surface expression and activation state by flow cytometry using P2 or PAC-1 antibodies, respectively. Most mutants displayed reduced surface expression of alphaIIbbeta3. Disruptions of disulfide bonds in EGF-3 yielded constitutively active alphaIIbbeta3, implying that these bonds stabilize the inactive alphaIIbbeta3 conformer. Mutants of the Cys-567-Cys-581 bond in EGF-4 were inactive even after exposure to alphaIIbbeta3-activating antibodies, indicating that this bond is necessary for activating alphaIIbbeta3. Disrupting Cys-560-Cys-583 in the EGF-3/EGF-4 or Cys-608-Cys-655 in beta-tail domain resulted in alphaIIbbeta3 activation only when Cys-560 or Cys-655 of each pair was mutated but not when their partners (Cys-583, Cys-608) or both cysteines were mutated, suggesting that free sulfhydryls of Cys-583 and Cys-608 participate in alphaIIbbeta3 activation by a disulfide bond exchange-dependent mechanism. The free sulfhydryl blocker dithiobisnitrobenzoic acid inhibited 70% of anti-LIBS6 antibody-induced activation of wild-type alphaIIbbeta3 and had a smaller effect on mutants, implicating disulfide bond exchange-dependent and -independent mechanisms in alphaIIbbeta3 activation. These data suggest that different disulfide bonds in beta3 EGF and beta-tail domains play variable structural and regulatory roles in alphaIIbbeta3.  相似文献   

9.
High-performance liquid chromatography on an Asahipak GS-320 column using isocratic elution with 0.1 M acetic acid has proven effective for fractionation of peptides of molecular weights lower than 3000. This technique enabled the separation of the peptides derived from digestion of native ribonuclease F1 by trypsin and chymotrypsin in combination with conventional gel filtration through Sephadex G-25 and reversed-phase HPLC. Amino acid analysis of the cystine-containing peptides thus obtained revealed the disulfide linkages Cys-6-Cys-102 and Cys-24-Cys-84 in this protein. The behavior of a number of peptides in the HPLC on an Asahipak GS-320 column is described and the separation mechanism is discussed.  相似文献   

10.
TRPA1 (transient receptor potential ankyrin 1) is an ion channel expressed in the termini of sensory neurons and is activated in response to a broad array of noxious exogenous and endogenous thiol-reactive compounds, making it a crucial player in chemical nociception. A number of conserved cysteine residues on the N-terminal domain of the channel have been identified as critical for sensing these electrophilic pungent chemicals, and our recent EM structure with modeled domains predicts that these cysteines form a ligand-binding pocket, allowing for the possibility of disulfide bonding between the cysteine residues. Here, we present a comprehensive mass spectrometry investigation of the in vivo disulfide bonding conformation and in vitro reactivity of 30 of the 31 cysteine residues in the TRPA1 ion channel. Four disulfide bonds were detected in the in vivo TRPA1 structure: Cys-666-Cys-622, Cys-666-Cys-463, Cys-622-Cys-609, and Cys-666-Cys-193. All of the cysteines detected were reactive to N-methylmaleimide (NMM) in vitro, with varying degrees of labeling efficiency. Comparison of the ratio of the labeling efficiency at 300 μM versus 2 mM NMM identified a number of cysteine residues that were outliers from the mean labeling ratio, suggesting that protein conformation changes rendered these cysteines either more or less protected from labeling at the higher NMM concentrations. These results indicate that the activation mechanism of TRPA1 may involve N-terminal conformation changes and disulfide bonding between critical cysteine residues.  相似文献   

11.
The isolation of the 26 CNBr fragments from the identical Mr = 180,000 subunits of human alpha 2-macroglobulin is described. The fragments have been purified by combinations of gel chromatography, ion-exchange chromatography, high voltage paper electrophoresis, paper chromatography, and high performance liquid chromatography. The complete amino acid sequences of 13 small CNBr fragments have been determined. These fragments include CB1 (residues 1-9), CB3 (residues 79-98), CB4 (residues 99-128), CB9 (residues 442-477), CB10 (residues 478-497), CB13 (residues 644-650), CB14 (residues 651-665), CB15 (residues 666-674), CB16 (residues 675-690), CB19 (residues 937-945), CB20 (residues 946-954), CB24 (residues 1356-1362), and CB25 (residues 1363-1375). The fragments determined account for 200 of the 1451 residues of the subunits of alpha 2-macroglobulin. Most likely, Cys-6 of CB9 is bound to the corresponding residue in CB9 from another subunit, thus forming an interchain disulfide bridge in alpha 2-macroglobulin. Cys-1 of CB15 is bound to Cys-35 of CB12. CB15 contains a pair of Gln residues that can react covalently with amines in a factor XIIIa-catalyzed process (Gln-5 and Gln-6). CB16 contains the primary cleavage sites for proteinases in the bait region of alpha 2-macroglobulin (-Arg7-Val-Gly-Phe-Tyr-Glu-). CB20 contains the residues which in native alpha 2-macroglobulin presumably form an internal reactive beta-cysteinyl-gamma-glutamyl thiol ester (Cys-4 and Glx-7). Partial NH2- and COOH-terminal sequence data are given for the 13 large CNBr fragments. Complete or partial sequence determination of 19 methionine-containing peptides or variants thereof allow the alignment of all the CNBr fragments.  相似文献   

12.
I Bj?rk  K Ylinenj?rvi 《Biochemistry》1992,31(36):8597-8602
The Cys-71-Cys-81 disulfide bond of the cysteine proteinase inhibitor, chicken cystatin, was specifically reduced by thioredoxin or low concentrations of dithiothreitol. This cleavage, followed by S-carbamoylmethylation, induced a conformational change of the protein, as evidenced by changes in isoelectric point and circular dichroism spectra and by an increased susceptibility to digestion by nontarget proteinases. The proteinase binding ability and the immunological properties of the inhibitor, however, were not detectably altered, indicating that the conformational change was limited to the region around the disrupted bond. In contrast, reduction of both disulfide bonds of cystatin by higher concentrations of dithiothreitol and subsequent alkylation led to the slow conversion of the inhibitor into two forms lacking proteinase binding ability, indicative of more extensive conformational changes. Together, these results suggest that the less accessible Cys-95-Cys-115 disulfide bond of chicken cystatin, but not the more accessible Cys-71-Cys-81 bond, is of importance for maintaining the conformation of the inhibitor required for binding of target proteinases.  相似文献   

13.
IL-2R on activated lymphocytes contain the Tac protein. As part of an effort to characterize this molecule, we examined the structure-activity relationship for each of its 12 Cys residues. A preliminary map of intramolecular disulfide bonding was derived by analysis of cystine-linked enzymatic fragments of the Tac protein. The results indicated that disulfide bonds linked Cys-3 with Cys-147, Cys-131 with Cys-163, and Cys-28,30 with Cys-59,61. The contribution of the Cys residues to an active protein conformation was tested by site-specific mutagenesis, followed by expression of the modified molecules in murine L cells. The results indicated that Cys-192 and -225 could be replaced without affecting ligand binding. In contrast, modification of any of the other 10 Cys residues, either singly or in combinations corresponding to the predicted disulfide bonds, greatly reduced the ability of the corresponding protein to bind IL-2 or either of two mAb (anti-Tac and 7G7/B6) which recognize the Tac protein. Each of the latter mutations also interfered with the molecule's post-translational modification and cell-surface expression. Consistent with these findings, transfection of the L cells with vectors containing truncated Tac cDNA inserts resulted in secretion of Tac fragments capable of ligand binding when the polypeptide chains terminated after Cys-163 (the 10th Cys residue in the full length molecule), but resulted in inactive fragments of Tac which were poorly secreted when they terminated before Cys-163. These findings emphasize the remarkable sensitivity of the active conformation of the Tac molecule to each of the postulated intramolecular disulfide bonds.  相似文献   

14.
C H Park  A Tulinsky 《Biochemistry》1986,25(14):3977-3982
The three-dimensional structure of bovine prothrombin fragment 1 has been solved at 2.8-A resolution. The electron density clearly reveals four disulfide bridges along with more than 80% of the side chains completely in density, which correspond faithfully to the kringle sequence, its preceding 30 residues, and the dodecapeptide carboxy terminal; the polysaccharide and the first 35 residues of the amino terminal of fragment 1 are disordered or about 40% of the structure. The folding of the kringle sequence is based upon close disulfide van der Waals contacts between Cys-87-Cys-127 and Cys-115-Cys-139 (4.1 A between midpoints of the bridges), two antiparallel strands of highly conserved (113-118, 124-129) beta-structure, and the stacking of some conserved aromatic residues, all near the center of the folded structure. Moreover, the overall folding appears to be duplicated as a pair of stacked duplex loops with an antiparallel open loop. The overall shape of the kringle structure approximates an eccentric oblate ellipsoid of dimensions 11 X 28 X 30 A. The residues immediately preceding the kringle are dominated by alpha-helical structure (Phe-41-Cys-48; Leu-56-Glu-63). Residues Phe-41-Trp-42 and Tyr-45, which are conserved in factor IX, factor X, protein C, and protein Z, form another aromatic stacked cluster while the Cys-48-Cys-61 disulfide loop corresponds to the well-known alpha/beta structural unit. The dodecapeptide carboxy-terminal interkringle chain extends along the periphery of the kringle in its plane and forms a beta-structure with the kringle-closing Ser-140-Val-143 tetrapeptide.  相似文献   

15.
Disulphide bonds in human recombinant tissue inhibitor of metalloproteinases (TIMP) were assigned by resolving proteolytic digests of TIMP on reverse-phase h.p.l.c. and sequencing those peaks judged to contain disulphide bonds by virtue of a change in retention time on reduction. This procedure allowed the direct assignment of Cys-145-Cys-166 and the isolation of two other peptides containing two disulphide bonds each. Further peptide cleavage in conjunction with fast-atom-bombardment m.s. analysis permitted the assignments Cys-1-Cys-70, Cys-3-Cys-99, Cys-13-Cys-124 and Cys-127-Cys-174 from these peptides. The sixth bond Cys-132-Cys-137 was assigned by inference, as the native protein has no detectable free thiol groups.  相似文献   

16.
Recombinant human interleukin-2 (rIL-2) produced in Escherichia coli possesses a free thiol group at Cys-125 and a disulfide linkage between Cys-58 and Cys-105, as in the case for natural human interleukin-2. Treatment of rIL-2 with 200 mM dithiothreitol resulted in the cleavage of the Cys-58-Cys-105 disulfide bond. The reduced form of rIL-2 thus obtained retained only 10% of the in vitro biological activity of the native form, as measured by the ability to stimulate the growth of an IL-2-dependent mouse natural killer cell line, NKC3. Far-uv circular dichroism studies indicated that the cleavage of the disulfide bond results in a decrease of alpha-helix content. Near-uv circular dichroism studies suggested that the native molecule is folded into a rigid tertiary structure, while the reduced form showed a spectrum similar to that of rIL-2 denatured in the presence of 6 M guanidine.HCl. The once-reduced molecule was readily reoxidized in the presence of 10 microM Cu2+ to form the native molecule with full biological activity. These results strongly demonstrate that the Cys-58-Cys-105 disulfide linkage in the IL-2 molecule is essential for constructing a rigid and biologically active form of IL-2.  相似文献   

17.
M Fujioka  K Konishi  Y Takata 《Biochemistry》1988,27(20):7658-7664
Rat liver guanidinoacetate methyltransferase, produced in Escherichia coli by recombinant DNA technique, possesses five cysteine residues per molecule. No disulfide bond is present. Analysis of the chymotryptic peptides derived from the iodo[14C]acetate-modified enzyme shows that Cys-90, Cys-15, Cys-219, and Cys-207 are alkylated by the reagent in order of decreasing reactivity. Incubation of the enzyme with excess 5,5'-dithiobis(2-nitrobenzoate) (DTNB) in the absence and presence of cystamine [2,2'-dithiobis(ethylamine)] causes the appearance of 4 and 5 mol of 2-nitro-5-mercaptobenzoate/mol of enzyme, respectively. Reaction of the methyltransferase with an equimolar amount of DTNB results in an almost quantitative disulfide cross-linking of Cys-15 and Cys-90 with loss of a large portion of the activity. The methyltransferase is completely inactivated by iodoacetate following nonlinear kinetics. Comparison of the extent of inactivation with that of modification of cysteine residues and the experiment with the enzyme whose Cys-15 and Cys-90 are cross-linked suggest that alkylation of Cys-15 and Cys-90 results in a partially active enzyme and that carboxymethylation of Cys-219 completely eliminates enzyme activity. The inactivation of guanidinoacetate methyltransferase by iodoacetate or DTNB is not protected by substrates. Furthermore, disulfide cross-linking of Cys-15 and Cys-90 or carboxymethylation of Cys-219 does not impair the enzyme's capacity to bind S-adenosylmethionine. Thus, these cysteine residues appear to occur outside the active-site region, but their integrity is crucial for the expression of enzyme activity.  相似文献   

18.
Thioredoxin (Trx1) is a redox-active protein containing two active site cysteines (Cys-32 and Cys-35) that cycle between the dithiol and disulfide forms as Trx1 reduces target proteins. Examination of the redox characteristics of this active site dithiol/disulfide couple is complicated by the presence of three additional non-active site cysteines. Using the redox Western blot technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry mass spectrometry, we determined the midpoint potential (E0) of the Trx1 active site (-230 mV) and identified a second redox-active dithiol/disulfide (Cys-62 and Cys-69) in an alpha helix proximal to the active site, which formed under oxidizing conditions. This non-active site disulfide was not a substrate for reduction by thioredoxin reductase and delayed the reduction of the active site disulfide by thioredoxin reductase. Within actively growing THP1 cells, most of the active site of Trx1 was in the dithiol form, whereas the non-active site was totally in the dithiol form. The addition of increasing concentrations of diamide to these cells resulted in oxidation of the active site at fairly low concentrations and oxidation of the non-active site at higher concentrations. Taken together these results suggest that the Cys-62-Cys-69 disulfide could provide a means to transiently inhibit Trx1 activity under conditions of redox signaling or oxidative stress, allowing more time for the sensing and transmission of oxidative signals.  相似文献   

19.
T R Leary  D T Grahn  H Neurath  G M Hass 《Biochemistry》1979,18(11):2252-2256
The determination of the covalent structure of a carboxypeptidase inhibitor from potatoes containing 39 amino acid residues has been completed by analysis of the pairing of the six half-cystine residues. Since the native inhibitor is resistant to fragmentation by proteases, the protein was first subjected to cleavage at aspartic acid residues by exposure to 0.03 N HCl at 110 degrees C for 10h to yield a fragment containing two chains (residues 6-15 and residues 18-39)held together by three disulfide bonds. Digestion with subtilisin and Pronase, respectively, yielded sets of peptides from which, by diagonal electrophoresis and amino acid analysis, the paired cystinyl residues were identified as Cys-8 to Cys-24, Cys-12 to Cys-27, and Cys-18 to Cys-34. Charge-transfer titration of the native inhibitor with N-methylnicotinamide chloride suggests that one of the two tryptophan residues and the single tyrosine residue are exposed to the solvent.  相似文献   

20.
Vitamin K-dependent gamma-glutamyl carboxylase is a 758 amino acid integral membrane glycoprotein that catalyzes the post-translational conversion of certain protein glutamate residues to gamma-carboxyglutamate. Carboxylase has ten cysteine residues, but their form (sulfhydryl or disulfide) is largely unknown. Pudota et al. in Pudota, B. N., Miyagi, M., Hallgren, K. W., West, K. A., Crabb, J. W., Misono, K. S., and Berkner, K. L. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 13033-13038 reported that Cys-99 and Cys-450 are the carboxylase active site residues. We determined the form of all cysteines in carboxylase using in-gel protease digestion and matrix-assisted laser desorption/ionization mass spectrometry. The spectrum of non-reduced, trypsin-digested carboxylase revealed a peak at m/z 1991.9. Only this peak disappeared in the spectrum of the reduced sample. This peak's m/z is consistent with the mass of peptide 92-100 (Cys-99) disulfide-linked with peptide 446-453 (Cys-450). To confirm its identity, the m/z 1991.9 peak was isolated by a timed ion selector as the precursor ion for further MS analysis. The fragmentation pattern exhibited two groups of triplet ions characteristic of the symmetric and asymmetric cleavage of disulfide-linked tryptic peptides containing Cys-99 and Cys-450. Mutation of either Cys-99 or Cys-450 caused loss of enzymatic activity. We created a carboxylase variant with both C598A and C700A, leaving Cys-450 as the only remaining cysteine residue in the 60-kDa fragment created by limited trypsin digestion. Analysis of this fully active mutant enzyme showed a 30- and the 60-kDa fragment were joined under non-reducing conditions, thus confirming Cys-450 participates in a disulfide bond. Our results indicate that Cys-99 and Cys-450 form the only disulfide bond in carboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号