首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The relationship between Na entry and the activity of the Na-K pump has been investigated in a variety of cell types by testing the effect of the Naionophore monensin, mitogenic stimulation with serum and oncogenic transformation by SV40 and polyoma virus. We found that addition of monensin increases intracellular Na in quiescent cultures of murine, hamster, and human cells. In each case, the rise in intracellular Na by monensin is associated with an increase in the activity of the Na-K pump, which was measured as ouabain-inhibitable 86Rb uptake. The addition of serum to quiescent cultures stimulates 86Rb uptake in all cell types studied. Serum alone causes an increase in intracellular potassium with no consistent change in intracellular Na. In the presence of the Na-K pump inhibitor ouabain, serum causes a marked increase in intracellular Na, with little change in intracellular K. This pattern is interpreted as indicating that the primary effect of serum is to increase Na entry into the cells. A low concentration of monensin (0.2 μg/ml) mimics the effect of serum on ion fluxes and content, which supports the conclusion that serum and monensin stimulate 86Rb uptake in the same manner, namely by increasing Na entry into the cells. In addition, a partially purified platelet extract stimulates Na entry and 86Rb uptake in quiescent 3T3 cells. Finally 3T3 cells transformed by SV40 or polyoma virus exhibit a higher rate of Na entry and of Na-K pump activity than their untransformed 3T3 counterparts. All these results indicate that the rate of Na entry plays an important role in the regulation of the activity of the Na-K pump and that an increase in Na and K movements is a rapid response elicited by serum in a variety of cell types.  相似文献   

2.
Addition of (Arg) vasopressin to quiescent cultures of Swiss 3T3 cells rapidly stimulates an ouabain-sensitive 86Rb uptake. In contrast the hormone has no significant effect on the rate of efflux of this cation from preloaded cells. The stimulation of 86Rb uptake is cycloheximide-insensitive, occurs within minutes of hormone addition and results from an increase in the Vmax of the uptake system. Vasopressin stimulates ion uptake in a concentration-dependent fashion (1-100 ng/ml); oxytocin also stimulated the Na-K pump but at significantly higher concentrations. The stimulation of the Na-K pump by vasopressin is apparently mediated by an increase in Na entry into the cells, since the hormone (1) strikingly shifts the concentration dependence on Na+ of the Na-K pump, (2) increases 22Na uptake, and (3) increases intracellular Na contents when the efflux of this ion is blocked by ouabain. Since vasopressin is a potent mitogen for Swiss 3T3 cells, the results provide further evidence in support of a possible role of monovalent ion fluxes in signalling the initiation of growth stimulation.  相似文献   

3.
Cyclic AMP stimulation of Na-K pump activity in quiescent swiss 3T3 cells   总被引:3,自引:0,他引:3  
Recently, we have found that an increase in the intracellular level of cAMP acts as a mitogenic signal for Swiss 3T3 cells (Rozengurt et al., Proc. Natl. Acad, Sci. USA, 78:4392, 1981). The results presented in this paper demonstrate that addition of cAMP-elevating agents to confluent and quiescent cultures of Swiss 3T# causes a marked increase in the rate of 86Rb+ uptake but has no effect on the rate of cation efflux. The stimulation of ion uptake is mediated by the Na-K pump as shown by the ouabain sensitivity of the 86Rb+ fluxes. The increase in Na-K pump activity occurs whether cAMP is generated endogenously by stimulation of adenylate cyclase activity by cholera toxin, adenosine agonists, or PGE1 or added exogenously as 8BrcAMP. The stimulatory effect of these compounds on 86Rb+ uptake is potentiated by inhibitors of cyclic nucleotide phosphodiesterase activity. Cholera toxin stimulates the Na-K pump in a dose-dependent manner; half-maximal effect is achieved at 0.7 ng/ml. The stimulation of ouabain-sensitive 86Rb+ uptake by cAMP-elevating agents reaches a maximum after 2-3 h of incubation. This contrasts with the rapid (within minutes) stimulation of the Na-K pump caused by serum and other mitogenic agents. Further, cAMP-elevating agents fail to increase Na+ influx into 3T3 cells whereas serum causes a marked increase in Na+ influx, under identical experimental conditions. These findings suggest that the stimulation of Na-K pump activity caused by increased cAMP levels contrasts mechanistically with the rapid control of pump activity by serum which is primarily mediated by increased Na+ entry into the cells.  相似文献   

4.
Melittin, an amphipatic polypeptide, increases several fold the activity of Na-K pump in quiescent Swiss 3T3 cells. As with other growth factors, melittin increases the activity of the pump by increasing Na entry into the cell. In contrast, other early responses are not elicited by the toxin. At concentrations that promote ion fluxes, melittin stimulates DNA synthesis in quiescent mouse cells acting synergistically with insulin, epidermal growth factor and with the growth factor released by SV40 BHK cells. In contrast, melittin does not interact synergistically with either phorbol esters or vasopressin. The cellular effects of melittin are consistent with the proposal that ion fluxes signal the initiation of mitogenesis in quiescent cells.  相似文献   

5.
Melittin at subtoxic concentrations stimulates monovalent ion fluxes and, together with insulin, synergistically increases DNA synthesis, but has little effect on phospholipase activity. The Na+ ionophore monensin increases Na-K pump activity without affecting phospholipase activity; whereas, the divalent cation ionophore A23187 has reciprocal effects. Finally, vasopressin and insulin potently stimulate ion fluxes and DNA synthesis but have no effect on phospholipase activity. Thus, the polypeptide mitogens melittin, vasopressin, and insulin alter membrane function and subsequently stimulate DNA synthesis in quiescent 3T3 cells by mechanisms independent of phospholipid deacylation.  相似文献   

6.
The amphibian tetradecapeptide, bombesin, and structurally related peptides caused a marked increase in ouabain-sensitive 86Rb+ uptake (a measure of Na+/K+ pump activity) in quiescent Swiss 3T3 cells. This effect occurred within seconds after the addition of the peptide and appeared to be mediated by an increase in Na+ entry into the cells. The effect of bombesin on Na+ entry and Na+/K+ pump activity was concentration dependent with half-maximal stimulation occurring at 0.3-0.4 nM. The structurally related peptides litorin, gastrin-releasing peptide, and neuromedin B also stimulated ouabain-sensitive 86Rb+ uptake; the relative potencies of these peptides in stimulating the Na+/K+ pump were comparable to their potencies in increasing DNA synthesis (Zachary, I., and E. Rozengurt, 1985, Proc. Natl. Acad. Sci. USA., 82:7616-7620). Bombesin increased Na+ influx, at least in part, through an Na+/H+ antiport. The peptide augmented intracellular pH and this effect was abolished in the absence of extracellular Na+. In addition to monovalent ion transport, bombesin and the structurally related peptides rapidly increased the efflux of 45Ca2+ from quiescent Swiss 3T3 cells. This Ca2+ came from an intracellular pool and the efflux was associated with a 50% decrease in total intracellular Ca2+. The peptides also caused a rapid increase in cytosolic free calcium concentration. Prolonged pretreatment of Swiss 3T3 cells with phorbol dibutyrate, which causes a loss of protein kinase C activity (Rodriguez-Pena, A., and E. Rozengurt, 1984, Biochem. Biophys. Res. Commun., 120:1053-1059), greatly decreased the stimulation of 86Rb+ uptake and Na+ entry by bombesin implicating this phosphotransferase system in the mediation of part of these responses to bombesin. Since some activation of monovalent ion transport by bombesin was seen in phorbol dibutyrate-pretreated cells, it is likely that the peptide also stimulates monovalent ion transport by a second mechanism.  相似文献   

7.
MDCK kidney epithelial cell cultures exposed to the differentiation inducer hexamethylene bisacetamide (HMBA) for 24 hours exhibited a 50% decrease in transport activity per (Na+,K+)-ATPase molecule (turnover number) but an unchanged number of pump sites (Kennedy and Lever, 1984). Inhibition of protein synthesis by either 10 microM cycloheximide or 2 microM emetine blocked the inhibitory effects of HMBA on Na+/K+ pump efficiency assessed by measurements of [3H]-ouabain binding to intact cells, (Na+,K+) ATPase activity of detergent-activated cell extracts, and ouabain-sensitive Rb+ uptake. In the absence of inducer treatment, inhibition of protein synthesis increased Na+/K+ pump turnover number by twofold while maintaining Na+/K+ pump activity per cell at a constant level. Intracellular Na+ levels were decreased after cycloheximide treatment; therefore, pump stimulation was not due to substrate effects. Furthermore, cycloheximide effects of Rb+ uptake could be dissociated from effects on tight junctions. These observations suggest that the transport activity of the (Na+,K+) ATPase is tightly regulated by factors dependent on protein synthesis.  相似文献   

8.
Rapidly growing Swiss 3T3 fibroblasts possess a bumetanide-sensitive K+ transport system that is dependent on both Na+ and Cl- ions; a smaller bumetanide-insensitive component of K+ transport is also present. In cells brought to the quiescent state by 8-11 days of incubation without a medium change, the bumetanide-sensitive rate of transport was reduced by 63%; the bumetanide-insensitive rate did not change. Removal of dialyzed fetal calf serum from the uptake medium resulted in a substantial reduction in bumetanide-sensitive uptake in both rapidly growing cells (33% reduction) and quiescent cells (68% reduction) but had no effect on bumetanide-insensitive uptake. Insulin was almost as effective as dialyzed fetal calf serum in stimulating bumetanide-sensitive uptake; insulin was maximally stimulatory at 2.5 micrograms/ml. The combination of insulin, epidermal growth factor, and arginine-vasopressin was maximally effective in stimulating both bumetanide-sensitive K+ uptake and 3H-thymidine incorporation in quiescent cells; bumetanide, however, did not interfere with the hormonal stimulation of DNA synthesis. Thus, the bumetanide-sensitive K+ transport system is not necessary for such stimulation to occur. Furthermore, concentrations of hormones which stimulated significant levels of DNA synthesis produced no elevation in the intracellular concentration of K+. We conclude that the bumetanide-sensitive pathway of K+ transport is modulated by serum and by mitogenic hormones, but does not play a role in the stimulation of DNA synthesis by these factors.  相似文献   

9.
This review updates our current knowledge on the regulation of Na+/H+ exchanger, Na+,K+,Cl- cotransporter, Na+,Pi cotransporter, and Na+,K+ pump in isolated epithelial cells from mammalian kidney by protein kinase C (PKC). In cells derived from different tubule segments, an activator of PKC, 4beta-phorbol 12-myristate 13-acetate (PMA), inhibits apical Na+/H+ exchanger (NHE3), Na+,Pi cotransport, and basolateral Na+,K+ cotransport (NKCCl) and augments Na+,K+ pump. In PMA-treated proximal tubules, activation of Na+,K+ pump probably plays a major role in increased reabsorption of salt and osmotically obliged water. In Madin-Darby canine kidney (MDCK) cells, which are highly abundant with intercalated cells from the collecting duct, PMA completely blocks Na+,K+,Cl- cotransport and decreases the activity of Na+,Pi cotransport by 30-40%. In these cells, agonists of P2 purinoceptors inhibit Na+,K+,Cl- and Na+,Pi cotransport by 50-70% via a PKC-independent pathway. In contrast with MDCK cells, in epithelial cells derived from proximal and distal tubules of the rabbit kidney, Na+,K+,Cl- cotransport is inhibited by PMA but is insensitive to P2 receptor activation. In proximal tubules, PKC-induced inhibition of NHE3 and Na+,Pi cotransporter can be triggered by parathyroid hormone. Both PKC and cAMP signaling contribute to dopaminergic inhibition of NHE3 and Na+,K+ pump. The receptors triggering PKC-mediated activation of Na+,K+ pump remain unknown. Recent data suggest that the PKC signaling system is involved in abnormalities of dopaminergic regulation of renal ion transport in hypertension and in the development of diabetic complications. The physiological and pathophysiological implications of PKC-independent regulation of renal ion transporters by P2 purinoceptors has not yet been examined.  相似文献   

10.
11.
Monensin rapidly tripled the initial rate and extent of α-aminoisobutyric acid accumulation by Swiss 3T3 cells. This ionophore catalyzes the electroneutral exchange of external Na for cellular protons and stimulates the NaK pump by suppling it with more Na. The stimulation of the NaK pump and α-aminoisobutyric acid uptake exhibited a similar dependence on monensin concentration. Ouabain prevented monensin from increasing α-aminoisobutyric acid transport. Aminoisobutryic acid transport was more than doubled at low doses of monensin that activated the NaK pump by elevating cell Na without significantly changing cell K. The rapid activation of α-aminoisobutyric acid transport is probably due to the hyperpolarizing effect of stimulating the electrogenic NaK pump. The stimulation of the NaK pump is quiescent fibroblasts by serum or growth factors may be sufficient to activate the Na-dependent amino acid transport systems.  相似文献   

12.
A biochemical model of active Na-K transport in cardiac cells was studied in conjunction with a representation of the passive membrane currents and ion concentration changes. The active transport model is based on the thermodynamic and kinetic properties of a six-step reaction scheme for the Na,K-ATPase. It has a fixed Na:K stoechiometry of 3:2, and its activation is governed by three parameters: membrane potential intracellular Na+ concentration, and interstitial K+ concentration. The Na-K pump current is directly proportional to the density of Na,K-ATPase molecules. The passive membrane currents and ion concentration changes involve only Na+ and K+ ions, and no attempt was made to provide a precise representation of Ca2+ currents or Ca2+ concentration changes. The surface-to-volume ratio of the interstitial compartment is 55 times larger than that of the intracellular compartment. The flux balance conditions are such that the original equilibrium concentration values are re-established at each stimulation cycle. The underlying assumptions of the model were checked against experimental measurements on Na-K pump activity in a variety of preparations. In addition, the qualitative validation of the model was carried out by comparing its behavior following sudden frequency shifts to corresponding experimental observations. The overall behavior of the model is quite satisfactory and it is used to provide the following indications: (1) when the intracellular and interstitial volumes are relatively large, the ion concentration transients are small and the pumping rate depends essentially on average concentration levels. (2) An increase in internal Na+ concentration potentiates the response of the Na-K pump to rapid membrane depolarizations. (3) When the internal Na+ concentration is large enough, the Na-K pump current transient plays an important role in shaping the plateau and repolarization phase of the action potential. (4) A rapid increase in external K+ concentration during voltage clamp in multicellular preparations could saturate the Na-K pump response and lead to a fairly linear dependence of the pump activity on the internal Na+ concentration.  相似文献   

13.
Serum stimulates embryonic avian skeletal muscle growth in vitro and the growth-related processes of amino acid transport and protein synthesis. Serum also stimulates myotube Na pump activity (measured as ouabain-sensitive rubidium-86 uptake) for at least 2 h after serum addition. Serum-stimulated growth depends on this Na pump activity since ouabain added at the same time as serum totally inhibits the growth responses. The relationship of myotube growth, Na pump activity, and transmembrane potential was studied to determine whether serum-stimulated Na pump activation and growth are coupled by long-term membrane hyperpolarization. When myotube amino acid transport and protein synthesis are prestimulated by serum, ouabain was found to have little inhibitory effect, indicating that the already stimulated growth-related processes are not tightly coupled to continued Na pump activity. Serum-stimulated protein synthesis is tightly coupled to Na pump activity, but only during the first 5-10 min after serum addition. When myotube transmembrane potentials were measured using the lipophilic cation tetraphenylphosphonium, serum at concentrations that stimulate myotube growth and Na pump activity was found to have little effect on the cell's transmembrane potential. Furthermore, partial depolarization of the myotubes with 12- to 55-mM extracellular potassium does not prevent serum stimulation of myotube growth. Monensin was found to hyperpolarize the myotubes, but causes myotube atrophy. These results indicate that although Na pump activity is associated with initiation of serum-stimulated myotube growth, continued Na pump activity is not essential, and there is little relationship between myotube growth and the myotube's transmembrane potential.  相似文献   

14.
The properties of the Na-K pump and some of the factors controlling its amount and function were studied in rat myotubes in culture. The number of Na-K pump sites was quantified by measuring the amount of [3H]ouabain bound to whole-cell preparations. Activity of the pump was determined by measurement of ouabain-sensitive 86Rb-uptake and component of membrane potential. Chronic treatment of myotubes with tetrodotoxin (TTX), which lowers [Na]i, decreased the number of Na-K pumps, the ouabain-sensitive 86Rb uptake, and the size of the electrogenic pump component of Em. In contrast, chronic treatment with either ouabain or veratridine, which increases [Na+]i, resulted in an elevated level of Na-K pump sites. This effect was blocked by inhibitors of protein synthesis. Neither rates of degradation nor affinity of pump sites in cells treated with TTX, veratridine, or ouabain differred from those in control cells. The number and activity of Na-K pump sites were unaffected by chronic elevation in [Ca]i or chronic depolarization. We conclude that alterations in the level in intracellular Na ions play the major role in regulation of Na-K pump synthesis in cultured mammalian skeletal muscle.  相似文献   

15.
LLC-PK1 cells can be brought into a classical quiescent state by depriving them of serum for 6 days. At this time, pulse-labeling with [3H]-thymidine shows that only 3% of the cells are synthesizing DNA, but the quiescent cells can be stimulated with serum to re-enter the cell cycle at a point early in G1. The rate of amiloride-sensitive 22Na+ uptake (as a measure of the Na+/H+ antiporter) is relatively low during quiescence; it rises 2- to 3-fold within 4 h after serum addition. This increase in antiporter activity appears to be required for the resumption of DNA synthesis in the absence of bicarbonate, because ethylisopropylamiloride (EIPA) blocks [3H]-thymidine incorporation when serum is added to cells in bicarbonate-free medium. In the presence of bicarbonate, however, EIPA has no effect on [3H]-thymidine incorporation, indicating that another (bicarbonate-dependent) transport system can substitute for the antiporter under these conditions.  相似文献   

16.
The role of Na + transport systems in the mitogenic signal induced by growth factors was studied, and it was shown that two Na + transport systems contribute to the early increase in cytoplasmic Na + in response to serum growth factors, namely the amiloride-sensitive Na+/H+ antiport and the bumetanide-sensitive Na+/K+/Cl- cotransport. Bumetanide or amiloride, when added separately, inhibited part of the increase in cytoplasmic Na +, as a response to the addition of serum to quiescent BALB/c mouse 3T3 fibroblasts. Each drug also suppressed part of the stimulation of the ouabain-sensitive Rb + influx, which was controlled by intracellular Na +. However, when both drugs were added together with serum growth factors, a complete inhibition of the early increase in [Na +], and subsequently a complete blockage of Na+/K+ pump stimulation was obtained. Amiloride or bumetanide, when added separately, only partially inhibited DNA synthesis induced by serum, 24% and 8% respectively. However, when both drugs were added together, at the time of serum addition to the quiescent cells, cell entry into S-phase was completely inhibited. To investigate the mode of cell-cycle inhibition, analysis was done of the possible role of early Na + fluxes in the mitogenic signal transduced from cell membrane receptors to the nucleus. The effects of the two drugs amiloride and bumetanide on induction of three genes--c-fos, c-myc, and ornithin decarboxylase (ODC)--was measured during cell transition through the G1-phase. Amiloride and bumetanide, when added separately or in combination, did not inhibit the induction of c-fos, c-myc, and ODC mRNAs. These results suggest that stimulation of Na + fluxes by serum growth factors is essential for cell transition into the S-phase of cell cycle, but it plays no apparent role in the growth factor signal transduced from the cell surface to the interior of the cell, as manifested by c-fos, c-myc, and ODC genes induction.  相似文献   

17.
Hexose uptake and control of fibroblast proliferation   总被引:1,自引:0,他引:1  
The role of glucose uptake in control of cell growth was studied by experimentally varying the rate of glucose uptake and examining the subsequent effect on initiation and cessation of cell proliferation. The rate of glucose uptake was varied by adjusting the concentration of glucose in the culture medium. This permitted analysis of two changes in rate of glucose uptake which are closely related to the regulation of cell growth: (1) the rapid increase in glucose uptake that can be detected within several minutes after mitogenic stimulation of quiescent fibroblasts and (2) the decrease in glucose uptake which accompanies growth to a quiescent state. Quiescent cultures of mouse 3T3, human diploid foreskin and secondary chick embryo cells were switched to fresh serum-containing medium with either the normal amount of glucose or a reduced level that lowered the rate of glucose uptake below the rate characteristic of quiescent control cells. The subsequent increases in cell number were equal in both media, demonstrating that the increase in glucose uptake, commonly observed after mitogenic stimulation, was not necessary for initiation of cell division. Measurements of intracellular D-glucose pools after serum stimulation of quiescent cells revealed that the increase in glucose uptake was not accompanied by a detectable change in the intracellular concentration of glucose. Nonconfluent growing cultures of mouse 3T3, human diploid foreskin and secondary chick embryo cells were switched to low glucose media, lowering the rate of glucose uptake below levels observed for quiescent cells. This did not affect rates of DNA synthesis or cell division over a several-day period. Thus, the decrease in glucose uptake, which usually occurs at about the same time as the decrease in DNA synthesis as cells grow to quiescence, does not cause the decline in cell proliferation. Experiments indicated that there was no set temporal relationship between the decline in glucose uptake and DNA synthesis as cells grew to quiescence. The sequence was variable and probably depended on the cell type as well as culture conditions. Measurements of intracellular D-glucose pools in secondary chick embryo cells demonstrated that the internal concentration of glucose in these cells did not significantly vary during growth to quiescence. Taken together, our results show that these fluctuations in the rate of glucose uptake do not lead to detectable changes in the intracellular concentration of glucose and that they do not control cell proliferation rates under usual culture conditions.  相似文献   

18.
The expressions of mRNAs of hepatocyte growth factor (HGF) and its receptor (c-met) and its effects were examined in cultured renal epithelial cell lines (OK, LLCPK1, and MDCK cells) and rat mesangial cells in primary culture. Northern blot analysis revealed the presence of HGF mRNA in mesangial cells, but not in epithelial cells. c-met mRNA was detected in epithelial cells, but not in mesangial cells. HGF stimulated [3H]-thymidine incorporation (DNA synthesis) dose-dependently in OK and LLCPK1 cells, but not in MDCK and mesangial cells. Ouabaine sensitive rubidium uptake (Na,K-ATPase activity) was stimulated by 63% with HGF (10 ng/ml) treatment for 16hr in MDCK cells. The results suggest that HGF is produced in the kidney, at least in mesangial cells and works on epithelial cells to stimulate the proliferation and/or to modify cell functions in a paracrine manner.  相似文献   

19.
The ionic environment of retinal photoreceptors is partially controlled by potassium transporters on retinal glial and retinal pigment epithelial cells (RPE). In this study, serum and epidermal growth factor (EGF) were examined as modulators of potassium transport in confluent cultures of human RPE and rabbit retinal glia. EGF is a known mitogen for confluent RPE cultures and was shown here to also stimulate [3H]thymidine incorporation in cultures of retinal glia. For potassium transport studies 86Rb was used as a tracer during a 17-min incubation. For both retinal cell types the mean total 86Rb uptake in 10% serum was approximately 60% above basal, serum-free controls. For EGF, tested in several experiments in a concentration range from 1 to 100 ng/ml, maximal total uptake was 33 and 24% above controls for RPE and glia, respectively. Inhibitor studies suggested that basal and serum-stimulated uptake for both cell types occurred by the ouabain-sensitive Na-K ATPase pump and by the furosemide- or bumetanide-sensitive Na-K-Cl cotransporter. EGF-stimulated uptake appeared to be due predominantly to the cotransporter. The data suggest that serum components and EGF, which may be available to retina-derived cells under pathologic conditions, may not only stimulate proliferation but may also act as short-term modulators of potassium ion movement and thus affect physiologic processes that are sensitive to ion homeostasis.  相似文献   

20.
This study involves the use of fibroblast growth factor (FGF) as a substitute for exogenous serum to examine the early transport changes which occur when quiescent 3T3 cells re-initiate active growth. FGF, in nanogram amounts, together with insulin and dexamethasone, can induce mitogenesis and mitosis in 3T3 cells GO-arrested by holding in growth medium containing 0.8% calf serum. In terms of quiescent cell transport activity enhancement, FGF is 300,000-fold more effective than fresh serum, on a protein basis. In addition, very short exposure of serum-depleted cells to FGF indicates that a distinct temporal or time sequence exists in the transport system activation process. For example, uptake of α-aminoisobutyric acid (AIB) and uridine are stimulated very rapidly, whereas hypoxanthine uptake does not respond until much later. Closer analysis shows that AIB uptake is maximally enhanced within zero to two minutes after FGF addition to cells. Finally, the stimulatory effect of FGF on transport system activities is specific in terms of the proliferative state of the cells to which it is added, and in terms of the uptake systems which respond to it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号