首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Addition of (Arg) vasopressin to quiescent cultures of Swiss 3T3 cells rapidly stimulates an ouabain-sensitive 86Rb uptake. In contrast the hormone has no significant effect on the rate of efflux of this cation from preloaded cells. The stimulation of 86Rb uptake is cycloheximide-insensitive, occurs within minutes of hormone addition and results from an increase in the Vmax of the uptake system. Vasopressin stimulates ion uptake in a concentration-dependent fashion (1-100 ng/ml); oxytocin also stimulated the Na-K pump but at significantly higher concentrations. The stimulation of the Na-K pump by vasopressin is apparently mediated by an increase in Na entry into the cells, since the hormone (1) strikingly shifts the concentration dependence on Na+ of the Na-K pump, (2) increases 22Na uptake, and (3) increases intracellular Na contents when the efflux of this ion is blocked by ouabain. Since vasopressin is a potent mitogen for Swiss 3T3 cells, the results provide further evidence in support of a possible role of monovalent ion fluxes in signalling the initiation of growth stimulation.  相似文献   

2.
Cyclic AMP stimulation of Na-K pump activity in quiescent swiss 3T3 cells   总被引:3,自引:0,他引:3  
Recently, we have found that an increase in the intracellular level of cAMP acts as a mitogenic signal for Swiss 3T3 cells (Rozengurt et al., Proc. Natl. Acad, Sci. USA, 78:4392, 1981). The results presented in this paper demonstrate that addition of cAMP-elevating agents to confluent and quiescent cultures of Swiss 3T# causes a marked increase in the rate of 86Rb+ uptake but has no effect on the rate of cation efflux. The stimulation of ion uptake is mediated by the Na-K pump as shown by the ouabain sensitivity of the 86Rb+ fluxes. The increase in Na-K pump activity occurs whether cAMP is generated endogenously by stimulation of adenylate cyclase activity by cholera toxin, adenosine agonists, or PGE1 or added exogenously as 8BrcAMP. The stimulatory effect of these compounds on 86Rb+ uptake is potentiated by inhibitors of cyclic nucleotide phosphodiesterase activity. Cholera toxin stimulates the Na-K pump in a dose-dependent manner; half-maximal effect is achieved at 0.7 ng/ml. The stimulation of ouabain-sensitive 86Rb+ uptake by cAMP-elevating agents reaches a maximum after 2-3 h of incubation. This contrasts with the rapid (within minutes) stimulation of the Na-K pump caused by serum and other mitogenic agents. Further, cAMP-elevating agents fail to increase Na+ influx into 3T3 cells whereas serum causes a marked increase in Na+ influx, under identical experimental conditions. These findings suggest that the stimulation of Na-K pump activity caused by increased cAMP levels contrasts mechanistically with the rapid control of pump activity by serum which is primarily mediated by increased Na+ entry into the cells.  相似文献   

3.
The growth of an epithelial canine kidney line (MDCK) was reversibly arrested by gradually lowering the serum concentration in the medium over a 3-day period. The cells were demonstrably quiescent by autoradiography after an additional 24 hours in serum-free media. Addition of fresh serum produced DNA synthesis after an 18-hour lag period. The quiescent cells then grew to confluency retaining their transport capacities as seen by the formation of “domes”. This system allows for measurement of monovalent ion fluxes and its relationship to growth regulation. The addition of fresh serum to quiescent MDCK cells increased the uptake of 86Rb, a measure of Na-K pump activity. This stimulation was mediated by increased uptake of Na into the cells. Serum-stimulated DNA synthesis was blocked by the addition of ouabain in concentrations that inhibit the Na-K pump. Serum appears to stimulate growth in epithelial cells by increasing the amount of intracellular Na available to the Na-K pump. Monovalent ion transport may play a role in the regulation of epithelial cell proliferation.  相似文献   

4.
1. Ouabain-sensitive 86Rb+ uptake by tissue preparations has been used as an estimate of Na+ pump activity. This uptake, however, may be a measure of the Na+ influx rate, rather than capacity of the Na+ pump, since intracellular Na+ concentration is a determinant of the active Na+/Rb+ exchange reaction under certain conditions. This aspect was examined by studying the effect of altered Na+ influx rate on ouabain-sensitive 86Rb+ uptake in atrial preparations of guinea pig hearts. 2. Electrical stimulation markedly enhanced ouabain-sensitive 86Rb+ uptake without affecting nonspecific, ouabain-insensitive uptake. Paired-pulse stimulation studies indicate that the stimulation-induced enhancement of 86Rb+ uptake is due to membrane depolarizations, and hence related to the rate of Na+ influx. 3. Alterations in the extracellular Ca2+ concentration failed to affect the 86Rb+ uptake indicating that the force of contraction does not influence 86Rb+ uptake. 4. Reduced Na+ influx by low extracellular Na+ concentration decreased 86Rb+ uptake, and an increased Na+ influx by a Na+-specific ionophore, monensin, enhanced 86Rb+ uptake in quiescent atria. 5. Grayanotoxins, agents that increase transmembrane Na+ influx, and high concentrations of monensin appear to have inhibitory effects on ouabain-sensitive 86Rb+ uptake in electrically stimulated and in quiescent atria. 6. Electrical stimulation or monensin enhanced ouabain binding to (Na+ + K+)-ATPase and also increased the potency of ouabain to inhibit 86Rb+ uptake indicating that the intracellular Na+ available to the Na+ pump is increased under these conditions. 7. The ouabain-sensitive 86Rb+ uptake in electrically stimulated atria was less sensitive to alterations in the extracellular Na+ concentration, temperature and monensin than that in quiescent atria. 8. These results indicate that the rate of Na+ influx is the primary determinant of ouabain-sensitive 86Rb+ uptake in isolated atria. Electrical stimulation most effectively increases the Na+ available to the Na+ pump system. The ouabain-sensitive 86Rb+ uptake by atrial preparations under electrical stimulation at a relatively high frequency seems to represent the maximal capacity of the Na+ pump in this tissue.  相似文献   

5.
The amphibian tetradecapeptide, bombesin, and structurally related peptides caused a marked increase in ouabain-sensitive 86Rb+ uptake (a measure of Na+/K+ pump activity) in quiescent Swiss 3T3 cells. This effect occurred within seconds after the addition of the peptide and appeared to be mediated by an increase in Na+ entry into the cells. The effect of bombesin on Na+ entry and Na+/K+ pump activity was concentration dependent with half-maximal stimulation occurring at 0.3-0.4 nM. The structurally related peptides litorin, gastrin-releasing peptide, and neuromedin B also stimulated ouabain-sensitive 86Rb+ uptake; the relative potencies of these peptides in stimulating the Na+/K+ pump were comparable to their potencies in increasing DNA synthesis (Zachary, I., and E. Rozengurt, 1985, Proc. Natl. Acad. Sci. USA., 82:7616-7620). Bombesin increased Na+ influx, at least in part, through an Na+/H+ antiport. The peptide augmented intracellular pH and this effect was abolished in the absence of extracellular Na+. In addition to monovalent ion transport, bombesin and the structurally related peptides rapidly increased the efflux of 45Ca2+ from quiescent Swiss 3T3 cells. This Ca2+ came from an intracellular pool and the efflux was associated with a 50% decrease in total intracellular Ca2+. The peptides also caused a rapid increase in cytosolic free calcium concentration. Prolonged pretreatment of Swiss 3T3 cells with phorbol dibutyrate, which causes a loss of protein kinase C activity (Rodriguez-Pena, A., and E. Rozengurt, 1984, Biochem. Biophys. Res. Commun., 120:1053-1059), greatly decreased the stimulation of 86Rb+ uptake and Na+ entry by bombesin implicating this phosphotransferase system in the mediation of part of these responses to bombesin. Since some activation of monovalent ion transport by bombesin was seen in phorbol dibutyrate-pretreated cells, it is likely that the peptide also stimulates monovalent ion transport by a second mechanism.  相似文献   

6.
Myocardial sodium-pump activity was examined from ouabain-sensitive 86Rb+ uptake using myocytes isolated from guinea-pig heart. Either sodium loading or the sodium ionophore, monensin, increased 86Rb+ uptake by over 400%, indicating that the amount of Na+ available to the pump is the primary determinant of its activity, and that the sodium pump has a substantial reserve capacity in quiescent myocytes. Moreover, the degree of the above stimulation is markedly higher than corresponding values reported with multicellular preparations, suggesting that diffusion barriers make it impossible to observe the capacity of the sodium pump in the latter preparations. Removal of extracellular Ca2+ increased ouabain-sensitive 86Rb+ uptake, probably by enhancing turnover of the sodium pump rather than increasing availability of Na+ to the pump.  相似文献   

7.
Uptake of 86Rb was measured in dispersed rat exorbital lacrimal gland cells. The uptake was inhibited by ouabain (0.9 mM) and stimulated by carbachol (10?5M). In the presence of quabain, in the absence of Ca, or in the presence of decreased extracellular Na, carbachol failed to stimulate 86Rb uptake. Cellular concentrations of Na and K were also determined. Cells treated with carbachol had elevated Na content and decreased K content. Omission of external Ca prevented both the K loss and Na gain. Decreasing extracellular Na prevented the Na gain but only partially inhibited the loss of cellular K. The conclusions to be reached from these data are: (1) in the resting lacrimal cell, a quabain sensitive pump actively maintains the intracellular concentration of K high and that of Na low, (2) carbachol acts, through Ca, to increase the passive membrane permeability to Na and K as well as the activity of the pump, and (3) the stimulus for the activation of the pump may be a rise in the intracellular concentration of Na.  相似文献   

8.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

9.
The properties of the Na-K pump and some of the factors controlling its amount and function were studied in rat myotubes in culture. The number of Na-K pump sites was quantified by measuring the amount of [3H]ouabain bound to whole-cell preparations. Activity of the pump was determined by measurement of ouabain-sensitive 86Rb-uptake and component of membrane potential. Chronic treatment of myotubes with tetrodotoxin (TTX), which lowers [Na]i, decreased the number of Na-K pumps, the ouabain-sensitive 86Rb uptake, and the size of the electrogenic pump component of Em. In contrast, chronic treatment with either ouabain or veratridine, which increases [Na+]i, resulted in an elevated level of Na-K pump sites. This effect was blocked by inhibitors of protein synthesis. Neither rates of degradation nor affinity of pump sites in cells treated with TTX, veratridine, or ouabain differred from those in control cells. The number and activity of Na-K pump sites were unaffected by chronic elevation in [Ca]i or chronic depolarization. We conclude that alterations in the level in intracellular Na ions play the major role in regulation of Na-K pump synthesis in cultured mammalian skeletal muscle.  相似文献   

10.
11.
Two ionophores, monensin and salinomycin, increased total cell Na+ and ouabain-sensitive 86Rb+ uptake in cultures of smooth muscle cells from rat aorta. Monensin was used to produced graded increases in cell Na+ in order to assess the Na+ dependence of the Na+/K+ pump in the intact cell. The relationship between internal Na+ and ouabain-sensitive 86Rb+ uptake was hyperbolic (K1Na = 3 mM). Monensin did not stimulate 86Rb+ uptake in the absence of external Na+. Loading the cells with Na+ by exposing cultures to a K+-free medium for 3 hr maximally increased cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as monensin. Total cell Na+ and pump activity in monensin-treated cells returned to the initial values after removing the ionophore. Monensin was then able to increase total cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as the initial treatment with the ionophore.  相似文献   

12.
Potassium influx has been investigated in XTH-2 cells, a line derived from tadpole heart endothelia. In this line, the density at which the cultures become confluent is clearly separated from the density at which growth arrest takes place. Density-related changes in K+ influx were monitored by determining the uptake of 86Rb into well adhering cells kept in culture medium. The main observations were 1) 86Rb uptake is highest in single cells, and on confluency it reaches a low level, which is kept constant at higher cell density regardless of whether the cultures are stationary or still in logarithmic growth phase; 2) the relative amount of 86Rb taken up via the Na+ -K+ -2Cl- cotransport pathway and via the Na+/K+ pump changes from low cell density to confluent cultures; 86Rb uptake of single cells is nearly insensitive to ouabain, a maximum of ouabain sensitivity is reached around confluency, whereas piretanide-sensitive 86Rb uptake is highest in single cells and seems to reach a minimum at the onset of confluency; 3) the variations in Na+/K+ pumping rate reflect neither differences in the amount of enzyme present nor changes in enzyme repartition between apical and basolateral plasma membranes; they seem to result from either "masking" or "unmasking" of the enzyme; 4) no alterations in K+ uptake occur that would be characteristic of the "stationary growth phase." The only changes that seem to be related to arrest of proliferation are concerned with the Na+/K+-ATPase, which achieves an extraordinary susceptibility to stimulation by monensin and exhibits an increase in PNPPase activity.  相似文献   

13.
Monensin rapidly tripled the initial rate and extent of α-aminoisobutyric acid accumulation by Swiss 3T3 cells. This ionophore catalyzes the electroneutral exchange of external Na for cellular protons and stimulates the NaK pump by suppling it with more Na. The stimulation of the NaK pump and α-aminoisobutyric acid uptake exhibited a similar dependence on monensin concentration. Ouabain prevented monensin from increasing α-aminoisobutyric acid transport. Aminoisobutryic acid transport was more than doubled at low doses of monensin that activated the NaK pump by elevating cell Na without significantly changing cell K. The rapid activation of α-aminoisobutyric acid transport is probably due to the hyperpolarizing effect of stimulating the electrogenic NaK pump. The stimulation of the NaK pump is quiescent fibroblasts by serum or growth factors may be sufficient to activate the Na-dependent amino acid transport systems.  相似文献   

14.
Melittin at subtoxic concentrations stimulates monovalent ion fluxes and, together with insulin, synergistically increases DNA synthesis, but has little effect on phospholipase activity. The Na+ ionophore monensin increases Na-K pump activity without affecting phospholipase activity; whereas, the divalent cation ionophore A23187 has reciprocal effects. Finally, vasopressin and insulin potently stimulate ion fluxes and DNA synthesis but have no effect on phospholipase activity. Thus, the polypeptide mitogens melittin, vasopressin, and insulin alter membrane function and subsequently stimulate DNA synthesis in quiescent 3T3 cells by mechanisms independent of phospholipid deacylation.  相似文献   

15.
Breast cancer is the second leading cause of death in women and thus has received a great deal of attention by researchers. Recent studies suggested decreased occurrence of cancer in patients treated with cardiac glycosides (CGs) for heart conditions. Because CGs induce their cellular effects via the Na+, K+ ATPase (Na–K), we treated four breast cancer cell lines (MCF-7, T47D, MDA-MB453, and MDA-MB231) and a non-cancerous breast ductal epithelial cell line (MCF-10A) with ouabain, a well-characterized CG, and measured cell proliferation by measuring bromodeoxyuridine incorporation. Ouabain (1 μM) decreased cell proliferation in all cell lines studied except MDA-MB453 cells. Western blot of Na–K α and β subunits showed α1, α3, and β1 expression in all cell lines except MDA-MB453 cells where Na–K protein and mRNA were absent. Potassium uptake, measured as rubidium (86Rb) flux, and intracellular potassium were both significantly higher in MDA-MB453 cells compared to MCF-10A cells. RT-qPCR suggested a 7 fold increase in voltage-gated potassium channel (KCNQ2) expression in MDA-MB453 cells compared to MCF-10A cells. Inhibition of KCNQ2 prevented cell growth and 86Rb uptake in MDA-MB453 cells but not in MCF-10A cells. All cancer cells had significantly higher vacuolar H-ATPase (V-ATPase) activity than MCF-10A cells. Inhibition of V-ATPase decreased 86Rb uptake and intracellular potassium in MDA-MB453 cells but not in MCF-10A cells. The findings point to the absence of Na–K, high hERG and KCNQ2 expression, elevated V-ATPase activity and sensitivity to V-ATPase inhibitors in MDA-MB453. We conclude that cancer cells exhibit fundamentally different metabolic pathways for maintenance of intracellular ion homeostasis.  相似文献   

16.
Myocardial sodium-pump activity was examined from ouabain-sensitive 86Rb+ uptake using myocytes isolated from guinea-pig heart. Either sodium loading or the sodium ionophore, monensin, increased 86Rb+ uptake by over 400%, indicating that the amount of Na+ available to the pump is the primary determinant of its activity, and that the sodium pump has a substantial reserve capacity in quiescent myocytes. Moreover, the degree of the above stimulation is markedly higher than corresponding values reported with multicellular preparations, suggesting that diffusion barriers make it impossible to observe the capacity of the sodium pump in the latter preparations. Removal of extracellular Ca2+ increased ouabain-sensitive 86Rb+ uptake, probably by enhancing turnover of the sodium pump rather than increasing availability of Na+ to the pump.  相似文献   

17.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Addition of porcine platelet-derived growth factor (PDGF) to quiescent cultures of Swiss 3T3 cells caused a marked, dose-dependent stimulation of Na+ influx and Na-K pump-mediated 86Rb+ uptake. Porcine PDGF (a single component in SDS polyacrylamide gels) stimulated ion fluxes to the same maximal extent as partially purified preparations, and exhibited half-maximal effect at 6 ng/ml (2 X 10(-10) M). Maximal effect was achieved at 30 ng/ml (10(-9) M). In the presence of insulin, PDGF elicited mitogenesis at comparable concentrations. PDGF stimulated ion uptake in a time-dependent fashion; maximal effect was obtained after 5 min of exposure to the growth factor. PDGF stimulates Na+ influx via an amiloride-sensitive pathway, suggesting that PDGF enhances the activity of a Na+/H+ antiport system. In accordance with this possibility, the mitogen caused an increase of intracellular pH by 0.15 pH units, as judged by the steady-state distribution of labelled 5,5-dimethyloxazolidine-2,4-dione (DMO). Porcine PDGF stimulated E-type prostaglandin synthesis and cAMP accumulation but these events could be dissociated from the stimulation of the ionic fluxes, which was detected within minutes and was not blocked by indomethacin. It is suggested that PDGF elicits multiple signals to stimulate cell proliferation in 3T3 cells.  相似文献   

19.
The effect of subpressor doses of angiotensin II (ANG II) on vascular Na-K pump activity and Na-H exchange, two transmembrane signals of trophic stimulation of vascular muscle, was investigated. Male Sprague-Dawley rats (350-400 g) were given subpressor doses of ANG II by osmotic minipump intraperitoneally for 24 hr or 7-10 days. Control rats received sham procedure/vehicle infusion. Na-K pump activity (86Rb uptake), total and intracellular (Li exchange at 4 degrees C) Na content, and amiloride-sensitive and -insensitive Na uptake of aortas were measured ex vivo. Ouabain-sensitive 86Rb uptake of aortas of rats receiving 80-100, 160-180, and 240-260 ng/kg.min-1 of ANG II for 24 hr was 26.6 +/- 3.5, 28.8 +/- 3.4, and 29.1 +/- 2.6 nmol/mg dry wt.15 min-1 (mean +/- SD, n = 7-12), respectively, compared with 25.2 +/- 3.8 in controls (n = 23, P less than 0.01). These increases were maintained at 7-10 days. After 24 hr and 7-10 days of ANG II treatment, the total Na content of aortas was increased by 9.2% (P less than 0.01) and 7.6% (P less than 0.02), respectively, without a change in intracellular Na content, indicating accumulation of excess extracellular Na. Total and amiloride-sensitive Na uptake of the aorta was unchanged after 24 hr or 7-10 days of ANG II administration. The dry weight of anatomically defined segments of the aorta was 40 +/- 3.8 mg/kg body wt (n = 25) after 24 hr and 42 +/- 4.4 (n = 20) after 7-10 days of ANG II administration, compared with 37 +/- 4.8 (n = 15, P less than 0.05) and 37 +/- 4.9 (n = 17, P less than 0.01) in appropriate controls. Increased Na-K pump activity may signal the onset of trophic stimulation of vascular muscle by ANG II.  相似文献   

20.
Melittin, an amphipatic polypeptide, increases several fold the activity of Na-K pump in quiescent Swiss 3T3 cells. As with other growth factors, melittin increases the activity of the pump by increasing Na entry into the cell. In contrast, other early responses are not elicited by the toxin. At concentrations that promote ion fluxes, melittin stimulates DNA synthesis in quiescent mouse cells acting synergistically with insulin, epidermal growth factor and with the growth factor released by SV40 BHK cells. In contrast, melittin does not interact synergistically with either phorbol esters or vasopressin. The cellular effects of melittin are consistent with the proposal that ion fluxes signal the initiation of mitogenesis in quiescent cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号