首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In developing insect eggs the cells of the blastoderm adopt either an embryonic or an extraembryonic fate. The extraembryonic tissue consists of epithelia, termed amnion and serosa, which wrap the germ band embryo. The serosa develops directly from part of the blastoderm and surrounds the embryo as well as the yolk. The amnion develops from the margins of the germ band and in most insect species generates a transient ventral cavity for the developing embryo. The amniotic cavity and the serosa have been reduced in the course of dipteran evolution. The insect order of Diptera includes the paraphyletic Nematocera, including gnats and mosquitoes, and the more derived monophyletic Brachycera, the true flies. Nematocera develop within an amniotic cavity and the surrounding serosa, whereas cyclorrhaphan Brachycera do not. This observation implies that the amnion and serosa have been reduced before the radiation of the monophyletic cyclorrhaphan flies. Here I show that an amniotic cavity is formed during embryogenesis of the horsefly Haematopota pluvialis (Tabanidae) and the dancefly Empis livida (Empididae). The results suggest that extraembryonic tissue was reduced in the stem lineage of cyclorrhaphan flies, with consequences for the molecular basis of pattern formation along the anterior-posterior axis of the embryo. Received: 21 October 1999 / Accepted: 17 January 2000  相似文献   

2.
Bone morphogenetic protein (BMP) signaling is an essential factor in dorsoventral patterning of animal embryos but how BMP signaling evolved with fundamental changes in dorsoventral tissue differentiation is unclear. Flies experienced an evolutionary reduction of extra-embryonic tissue types from two (amniotic and serosal tissue) to one (amnionserosal tissue). BMP-dependent amnioserosa specification has been studied in Drosophila melanogaster. However, the mechanisms of serosal and amniotic tissue specification in less diverged flies remain unknown. To better understand potential evolutionary links between BMP signaling and extra-embryonic tissue specification, we examined the activity profile and function of BMP signaling in serosa and amnion patterning of the scuttle fly Megaselia abdita (Phoridae) and compared the BMP activity profiles between M. abdita and D. melanogaster. In blastoderm embryos of both species, BMP activity peaked at the dorsal midline. However, at the beginning of gastrulation, peak BMP activity in M. abdita shifted towards prospective amnion tissue. This transition correlated with the first signs of amnion differentiation laterally adjacent to the serosa anlage. Marker-assisted analysis of six BMP signaling components (dpp, gbb, scw, tkv, sax, sog) by RNA interference revealed that both serosa and amnion specification of M. abdita are dependent on BMP activity. Conversely, BMP gain-of-function experiments caused sharpened expression boundaries of extra-embryonic target genes indicative of positive feedback. We propose that changes in the BMP activity profile at the beginning of gastrulation might have contributed to the reduction of extra-embryonic tissue types during the radiation of cyclorrhaphan flies.  相似文献   

3.
Extraembryonic development is familiar to mouse researchers, but the term is largely unknown among insect developmental geneticists. This is not surprising, as the model system Drosophila melanogaster has an extremely reduced extraembryonic component, the amnioserosa. In contrast, most insects retain the ancestral complement of two distinct extraembryonic membranes, amnion and serosa. These membranes are involved in several key morphogenetic events at specific developmental stages. The events of anatrepsis and katatrepsis-collectively referred to as blastokinesis-are specific to hemimetabolous insects. Corresponding events in holometabolous insects are simplified and lack formal names. All insects retain dorsal closure, which has been well studied in Drosophila. This review aims to resurrect both the terminology and awareness of insect extraembryonic development-which were last common currency in the late nineteenth and early twentieth centuries-as a number of recent studies have identified essential components of these events, through RNA interference of developmental genes and ectopic hormonal treatments. As much remains unknown, this topic offers opportunities for research on tissue specification, the regulation of cell shape changes and tissue interactions during morphogenesis, tracing the origins and final fates of cell and tissue lineages, and ascertaining the membranes' functions between morphogenetic events.  相似文献   

4.
Many insects undergo katatrepsis, essential reorganization by the extraembryonic membranes that repositions the embryo. Knockdown of the zen gene by RNA interference (RNAi) prevents katatrepsis in the milkweed bug Oncopeltus fasciatus. However, the precise morphogenetic defect has been uncertain, and katatrepsis itself has not been characterized in detail. The dynamics of wild type and zenRNAi eggs were analyzed from time-lapse movies, supplemented by analysis of fixed specimens. These investigations identify three zenRNAi defects. First, a reduced degree of tissue contraction implies a role for zen in baseline compression prior to katatrepsis. Subsequently, a characteristic ‘bouncing’ activity commences, leading to the initiation of katatrepsis in wild type eggs. The second zenRNAi defect is a delay in this activity, suggesting that a temporal window of opportunity is missed after zen knockdown. Ultimately, the extraembryonic membranes fail to rupture in zenRNAi eggs: the third defect. Nevertheless, the outer serosal membrane manages to contract, albeit in an aberrant fashion with additional phenotypic consequences for the embryo. These data identify a novel epithelial morphogenetic event – rupture of the ‘serosal window’ structure – as the ultimate site of defect. Overall, Oncopeltus zen seems to have a role in coordinating a number of pre-katatreptic events during mid embryogenesis.  相似文献   

5.
6.
Unlike most Hox cluster genes, with their canonical role in anterior-posterior patterning of the embryo, the Hox3 orthologue of insects has diverged. Here, we investigate the zen orthologue in Oncopeltus fasciatus (Hemiptera:Heteroptera). As in other insects, the Of-zen gene is expressed extraembryonically, and RNA interference (RNAi) experiments demonstrate that it is functionally required in this domain for the proper occurrence of katatrepsis, the phase of embryonic movements by which the embryo emerges from the yolk and adjusts its orientation within the egg. After RNAi knockdown of Of-zen, katatrepsis does not occur, causing embryos to complete development inside out. However, not all aspects of expression and function are conserved compared to grasshopper, beetle, and fly orthologues. Of-zen is not expressed in the extraembryonic tissue until relatively late, suggesting it is not involved in tissue specification. Within the extraembryonic domain, Of-zen is expressed in the outer serosal membrane, but unlike orthologues, it is not detectable in the inner extraembryonic membrane, the amnion. Thus, the role of zen in the interaction of serosa, amnion, and embryo may differ between species. Of-zen is also expressed in the blastoderm, although this early expression shows no apparent correlation with defects seen by RNAi knockdown.  相似文献   

7.
As extra-embryonic tissues, the amnion and serosa are not considered to contribute materially to the insect embryo, yet they must execute an array of morphogenetic movements before they are dispensable. In hemimetabolous insects, these movements have been known for over a century, but they have remained virtually unexamined. This study addresses late extraembryonic morphogenesis in the milkweed bug, Oncopeltus fasciatus. Cell shape changes and apoptosis profiles are used to characterize the membranes as they undergo a large repertoire of final reorganizational events that reposition the embryo (katatrepsis), and eliminate the membranes themselves in an ordered fashion (dorsal closure). A number of key features were identified. First, amnion-serosa “fusion” involves localized apoptosis in the amnion and the formation of a supracellular actin purse string at the amnion-serosa border. During katatrepsis, a ‘focus’ of serosal cells undergoes precocious columnarization and may serve as an anchor for contraction. Lastly, dorsal closure involves novel modifications of the amnion and embryonic flank that are without counterpart during the well-known process of dorsal closure in the fruit fly Drosophila melanogaster. These data also address the long-standing question of the final fate of the amnion: it undergoes apoptosis during dorsal closure and thus is likely to be solely extraembryonic.  相似文献   

8.
9.
Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates.  相似文献   

10.
Most insect embryos develop with two distinct extraembryonic membranes, the serosa and the amnion. In the insect beetle Tribolium the early origin of the serosa within the anterior blastoderm is well established but the origin of the amnion is still debated. It is not known whether this tissue develops from a blastodermal precursor or originates de novo later from embryonic tissue during embryogenesis.We undertook an in-depth analysis of the spatio-temporal expression pattern profile of important extraembryonic membrane marker genes with emphasis on early blastoderm development in Tribolium.The amnion marker iroquois (Tc-iro) was found co-expressed with the serosa marker zerknüllt1 (Tc-zen1) during early blastoderm formation in an anterior cap domain. This domain later resolved into two adjacent domains that likely represent the precursors of the serosa and the amnion. In addition, we found the hindsight ortholog in Tribolium (Tc-hnt) to be a serosa-specific marker. Surprisingly, decapentaplegic (Tc-dpp) expression was not seen as a symmetric cap domain but detected asymmetrically first along the DV- and later also along the AP-axis. Moreover, we found a previously undescribed domain of phosphorylated MAD (pMAD) protein in anterior ventral serosal cells.This is the first study showing that the anterior-lateral part of the amnion originates from the anterior blastoderm while the precursor of the dorsal amnion develops later de novo from a dorsal-posterior region within the differentiated blastoderm.  相似文献   

11.
Most insect embryos develop with two distinct extraembryonic membranes, the serosa and the amnion. In the insect beetle Tribolium the early origin of the serosa within the anterior blastoderm is well established but the origin of the amnion is still debated. It is not known whether this tissue develops from a blastodermal precursor or originates de novo later from embryonic tissue during embryogenesis.We undertook an in-depth analysis of the spatio-temporal expression pattern profile of important extraembryonic membrane marker genes with emphasis on early blastoderm development in Tribolium.The amnion marker iroquois (Tc-iro) was found co-expressed with the serosa marker zerknüllt1 (Tc-zen1) during early blastoderm formation in an anterior cap domain. This domain later resolved into two adjacent domains that likely represent the precursors of the serosa and the amnion. In addition, we found the hindsight ortholog in Tribolium (Tc-hnt) to be a serosa-specific marker. Surprisingly, decapentaplegic (Tc-dpp) expression was not seen as a symmetric cap domain but detected asymmetrically first along the DV- and later also along the AP-axis. Moreover, we found a previously undescribed domain of phosphorylated MAD (pMAD) protein in anterior ventral serosal cells.This is the first study showing that the anterior-lateral part of the amnion originates from the anterior blastoderm while the precursor of the dorsal amnion develops later de novo from a dorsal-posterior region within the differentiated blastoderm.  相似文献   

12.
BACKGROUND: In the long-germ insect Drosophila, a single extraembryonic membrane, the amnioserosa, covers the embryo at the dorsal side. In ancestral short-germ insects, an inner membrane, the amnion, covers the embryo ventrally, and an outer membrane, the serosa, completely surrounds the embryo. An early differentiation step partitions the uniform blastoderm into the anterior-dorsal serosa and the posterior-ventral germ rudiment giving rise to amnion and embryo proper. In Drosophila, amnioserosa formation depends on the dorsoventral patterning gene zerknüllt (zen), a derived Hox3 gene. RESULTS: The short-germ beetle Tribolium castaneum possesses two zen homologs, Tc-zen1 and Tc-zen2. Tc-zen1 acts early and specifies the serosa. The loss of the serosa after Tc-zen1 RNAi is compensated by an expansion of the entire germ rudiment toward the anterior. Instead of the serosa, the amnion covers the embryo at the dorsal side, and later size regulation normalizes the early fate shifts, revealing a high degree of plasticity of short-germ development. Tc-zen2 acts later and initiates the amnion and serosa fusion required for dorsal closure. After Tc-zen2 RNAi, the amnion and serosa stay apart, and the embryo closes ventrally, assuming a completely everted (inside-out) topology. CONCLUSIONS: In Tribolium, the duplication of the zen genes was accompanied by subfunctionalization. One of the paralogues, Tc-zen1, acts as an early anterior-posterior patterning gene by specifying the serosa. In absence of the serosa, Tribolium embryogenesis acquires features of long-germ development with a single extraembryonic membrane. We discuss implications for the evolution of insect development including the origin of the zen-derived anterior determinant bicoid.  相似文献   

13.
14.
The origin of new morphological structures requires the establishment of new genetic regulatory circuits to control their development, from initial specification to terminal differentiation. The upstream regulatory genes are usually the first to be identified, while the mechanisms that translate novel regulatory information into phenotypic diversity often remain obscure. In particular, elaborate sex-specific structures that have evolved in many animal lineages are inevitably controlled by sex-determining genes, but the genetic basis of sexually dimorphic cell differentiation is rarely understood. In this report, we examine the role of dachshund (dac), a gene with a deeply conserved function in sensory organ and appendage development, in the sex comb, a recently evolved male-specific structure found in some Drosophila species. We show that dac acts during metamorphosis to restrict sex comb development to the appropriate leg region. Localized repression of dac by the sex determination pathway is necessary for male-specific morphogenesis of sex comb bristles. This pupal function of dac is separate from its earlier role in leg patterning, and Dac at this stage is not dependent on the pupal expression of Distalless (Dll), the main regulator of dac during the larval period. Dll acts in the epithelial cells surrounding the sex comb during pupal development to promote sex comb rotation, a complex cellular process driven by coordinated cell rearrangement. Our results show that genes with well-conserved developmental functions can be re-used at later stages in development to regulate more recently evolved traits. This mode of gene co-option may be an important driver of evolutionary innovations.  相似文献   

15.
optix, the Drosophila ortholog of the SIX3/6 gene family in vertebrate, encodes a homeodomain protein with a SIX protein–protein interaction domain. In vertebrates, Six3/6 genes are required for normal eye as well as brain development. However, the normal function of optix in Drosophila remains unknown due to lack of loss-of-function mutation. Previous studies suggest that optix is likely to play an important role as part of the retinal determination (RD) network. To elucidate normal optix function during retinal development, multiple null alleles for optix have been generated. Loss-of-function mutations in optix result in lethality at the pupae stage. Surprisingly, close examination of its function during eye development reveals that, unlike other members of the RD network, optix is required only for morphogenetic furrow (MF) progression, but not initiation. The mechanisms by which optix regulates MF progression is likely through regulation of signaling molecules in the furrow. Specifically, although unaffected during MF initiation, expression of dpp in the MF is dramatically reduced in optix mutant clones. In parallel, we find that optix is regulated by sine oculis and eyes absent, key members of the RD network. Furthermore, positive feedback between optix and sine oculis and eyes absent is observed, which is likely mediated through dpp signaling pathway. Together with the observation that optix expression does not depend on hh or dpp, we propose that optix functions together with hh to regulate dpp in the MF, serving as a link between the RD network and the patterning pathways controlling normal retinal development.  相似文献   

16.
The ventral nerve cord (VNC) of the Drosophila embryo is derived from neuroblasts (NBs). NBs divide in a stem cell lineage to generate a series of ganglion mother cells (GMCs), each of which divides once to produce a pair of neurons or glial cells. One of the NB genes, castor (cas), is expressed in a subset of NBs and has never been identified in neurons and the peripheral nervous system; cas plays a role in axonogenesis. But its limited expression along the dorsal-ventral axis within the central nervous system has not been investigated yet. In the present study, we examined the expression patterns of both genes using confocal microscopy to determine the effects of repo mutation on cas expression. Cas was mainly expressed in layers different from repo-expressed layers during early embryogenesis: repo was expressed mostly from deep to mid layers, while cas, from mid to superficial layers. Loss-of-function of repo did not result in an ectopic expression of cas, but rather, a scattering of cas-expressing cells. However, repo gain-of-function mutation caused repression of cas. In addition, repo-expressing cells seemed to block the migration of cas-expressing cells.  相似文献   

17.
18.
19.
20.
It has been extensively documented that exposure of amphibians and teleost fish to exogenous steroid hormones like estrogen, androgen, xenoestrogen or steroid biosynthesis inhibitors can impair their gonadal development or induce sex reversal against genotypic sex. However, the molecular pathways underlying sexual development and the effects of sex steroids or other exogenous hormones in these aquatic vertebrates remain elusive. Recently, a germ plasm-associated piRNA (piwi-interacting RNA) pathway has been shown to be a determinant in the development of animal gonadal germline cells. In the current study, we examined whether this piRNA pathway is involved in the regulation of sex steroid hormones in gonadal development. We firstly established developmental expression patterns of three key piRNA pathway genes (mael, piwi and vasa), during Silurana (Xenopus) tropicalis embryogenesis and early larval development. All three genes exhibit high expression at early developmental stages and have significantly decreased expression thereafter, indicating a very active involvement of piRNA pathway at the beginning of embryogenesis. We further examined gene expression changes of those genes in frog larvae exposed to two sex steroid biosynthesis inhibitors, fadrozole and finasteride, both of which are known to result in male-biased or female-biased phenotypes, respectively. We found that fadrozole and finasteride exposures increased the expression of piRNA pathway genes such as mael and vasa at the larval stage when the expression of piRNA pathway genes is programmed to be very low. Therefore, our results indicate that the piRNA pathway is likely a common pathway by which different sex steroid hormones regulate gonadal sex differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号