首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K M Morden  B M Gunn  K Maskos 《Biochemistry》1990,29(37):8835-8845
One- and two-dimensional NMR experiments were carried out on a decamer, d-(CGCTTTTCGC).d(GCGAAAAGCG), and on the same sequence with the addition of an unpaired thymidine, d(CGCTTTTCGC).d(GCGAATAAGCG), which will be referred to as the T-bulge decamer. Evidence from one-dimensional NOE experiments on the exchangeable protons indicates that the unpaired thymidine is extrahelical. This conclusion is also supported by numerous cross-peaks in the two-dimensional NOESY spectrum of the nonexchangeable protons. Assignments for all of the resonances, with the exception of the H5' and H5" resonances, have been made for both oligonucleotide duplexes through the use of 2D NOESY, COSY, and relayed COSY experiments. Temperature dependence of the methyl resonance chemical shifts indicates that the unpaired thymidine shows unusual behavior compared to other thymidines in the duplex. Two-dimensional NOESY experiments carried out from 5 to 35 degrees C indicate the unpaired thymidine remains extrahelical throughout this temperature range. A similar temperature dependence for the methyl chemical shift is found in the corresponding single-strand d(GCGAATAAGCG). The oligo-(dA).oligo(dT) tracts in both the decamer and the T-bulge decamer have structures different from B-form DNA and exhibit NOEs similar to those observed in other oligonucleotides containing A.T tracts. The formation of this unusual A.T tract structure may induce the extrahelical conformation of the unpaired thymidine.  相似文献   

2.
D E Graves  M P Stone  T R Krugh 《Biochemistry》1985,24(26):7573-7581
One- and two-dimensional 400-MHz proton NMR experiments are used to examine the solution structure of the covalent adduct formed by the interaction of anthramycin methyl ether with the self-complementary deoxyoligonucleotide d(ATGCAT)2. The concentration dependence of chemical shifts and nuclear Overhauser enhancement (NOE) experiments are utilized to assign the adenine H2 protons within the minor groove for both free d(ATGCAT)2 and the adduct. These studies demonstrate that one of the four adenine H2 protons is in close proximity to the bound anthramycin and this results in its upfield shift of 0.3 ppm compared to the adenine H2 protons of the free duplex. Effects of the covalent attachment of anthramycin to the d(ATGCAT)2 duplex result in an increased shielding of selected deoxyribose protons located within the minor groove of the adduct, as demonstrated by two-dimensional autocorrelated (COSY) NMR techniques. Interactions between the protons of the covalently attached anthramycin and the d(ATGCAT)2 duplex are determined by utilizing two-dimensional NOE (NOESY) techniques. Analysis of these data reveals NOE cross-peaks between the anthramycin methyl, H6, and H7 protons with specific deoxyoligonucleotide protons within the minor groove, thus allowing the orientation of the drug within the minor groove to be determined. Nonselective inversion recovery (T1) relaxation experiments are used to probe the structural and dynamic properties of the anthramycin-d(ATGCAT)2 adduct. These data suggest that the binding of anthramycin alters the correlation time of the d(ATGCAT)2 duplex and stabilizes both of the internal A X T base pairs with respect to solvent exchange.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
High-resolution homonuclear and heteronuclear two-dimensional NMR studies have been carried out on the self-complementary d(C-C-G-C-G-A-A-T-T-C-C-G-G) duplex (designated GCG 13-mer) in aqueous solution. This sequence contains an extra cytidine located between residues G3 and G4 on each strand of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) and correlated (COSY and relay COSY) spectra for the GCG 13-mer duplex in H2O and D2O solution. The extra cytidine at the bulge site (designated CX) results in more pronounced changes in the NOE distance connectivities for the G3-CX-G4 segment centered about the CX residue compared to the C9-C10 segment on the partner strand opposite the CX residue for the GCG 13-mer duplex at 25 degrees C. The cross-peak intensities in the short mixing time NOESY spectrum also establish that all glycosidic torsion angles including that of CX are anti in the GCG 13-mer duplex at 25 degrees C. The observed chemical shift changes for the CX base protons and the G3pCX phosphorus resonance with temperature between 0 and 40 degrees C demonstrate a temperature-dependent conformational equilibrium in the premelting transition region. The NOE and chemical shift parameters establish that the predominant conformation at low temperature (0 degree C) has the extra cytidine looped out of the helix with the flanking G3.C10 and G4.C9 base pairs stacked on each other. These results support conclusions based on earlier one-dimensional NMR studies of extra cytidine containing complementary duplexes in aqueous solution [Morden, K. M., Chu, Y. G., Martin, F. H., & Tinoco, I., Jr. (1983) Biochemistry 22, 5557-5563. Woodson, S. A., & Crothers, D. M. (1987) Biochemistry 26, 904-912]. By contrast, the chemical shift and NOE parameters demonstrate that the conformational equilibrium shifts toward a structure with a stacked extra cytidine on raising the temperature to 40 degrees C prior to the helix-coil melting transition. The most downfield shifted phosphorus resonance in the GCG 13-mer duplex has been assigned to the phosphate in the C2-G3 step, and this observation demonstrates that the perturbation in the phosphodiester backbone extends to regions removed from the (G3-CX-G4).(C9-C10) bulge site.  相似文献   

4.
Covalent adduct--the product of intracomplex alkylation at N-3-position of dC-8-nucleoside residue of target octanucleotide pd[TGTTTGGC] was completely synthesized by means of 4-[N-methyl-N-(2-chloroethyl)amino]benzyl-5'-phosphamido derivative of heptanucleotide pd[CCAAACA]. Its melting temperature was shown to be 70 degrees C. Tm did not depend on covalent adduct concentration and was by 40 degrees C higher than that for unmodified duplex pd[TGTTTGGC].pd[CCAAACA] at concentration of 0.5 x 10(-4) M. The spatial structure of the covalent adduct in aqueous solution was investigated by two-dimensional 3H-NMR spectroscopy. The assignment of oligonucleotide protons as well as protons of a modifying group was carried out using COSY, COSY-DQF and NOESY experiments. Conformational analysis of proton-proton coupling constants for H1', H2'a, H2'b and H3' protons showed the sugar residues to be in 2'-endo conformation. Analysis of NOE connectivities observed between the protons of the alkylating group and oligonucleotide protons yielded conclusion, regarding the 4-[N-methyl-N-(2-chloroethyl)amino]benzylamido 5'-residue being localized in the region of the lacked nucleoside residue of the heptanucleotide chain about 5 A apart from the dC-1 residue and from cytosine base of the alkylated dC-8 residue.  相似文献   

5.
The oligodeoxynucleotide d(TTCTGT) was covalently attached to the 9-amino group of 2-methoxy-6-chloro-9-aminoacridine (Acr) through its 3'-phOsphate via a pentamethylene linker (m5). In order to avoid its hydrolysis by nucleases inside the cel., one of its phosphates (TpT) was substituTed with a neopentyl group. Complex formation between each of the two purified isomers and the complementary strand d(GCACAGAA) was investigated by nuclear magnetic resonance. The COSY and NOESY connectivities allowed us to assign all the proton resonances of the bases, the sugars (except the overlapping 5'-5' resonances), the acridine, and the pentamethylene chain. Structural information derived from the relative intensity of COSY and NOESY maps revealed that the duplex d(T*TCTGT).d(GCACAGAA) adopts a B-type conformation and that the deoxyriboses preferentially adopt a 2'-endo conformation. The NOE connectivities observed between the protons of the bases or the sugars and the protons of the dye show the intercalation of the acridine between the base pairs. NOE connectivities as well as imino proton resonances show that, at room temperature, the C7 base and the G8 base belonging to two different duplexes are paired. The pseudoaxial and pseudoequatorial isomers were assigned, and the differences in stability of their complex with the complementary strand are discussed.  相似文献   

6.
The local structure of two self complementary oligonucleotides d(GTAC-GTAC) and d(GTACGUAC) which differ only by the presence of uracil, not a normal component of DNA, have been investigated by 1H NMR at 500 MHz. The two octamers exhibit the same thermodynamical constants (t 1/2, delta H), their exchangeable protons broaden and disappear at the same temperature. The T-U substitution did not induce any significant changes on non exchangeable protons resonances from 2-D COSY and 2-D NOESY experiments. So the two octamers exhibit the same global structure. The only variation was detected by 1D NOE measurements: the base orientations around the N glycosidic bonds (chi angles) are different.  相似文献   

7.
The novel hybrid duplex alpha-5'-d[TACACA]-3'.beta-5'-r[AUGUGU]-3' was analyzed extensively by 1D and 2D NMR methods. Two forms of the duplex exist in about an 80:20 ratio. Analysis of the exchangeable imino protons of the major component revealed that three AU and one AT base pair are present in addition to two GC base pairs, confirming that the duplex anneals in parallel orientation. The presence of the AT base pair, which can only be accounted for by a parallel duplex, was confirmed by a selective INEPT experiment, which correlated the thymidine imino proton to its C5 carbon. The lesser antiparallel form could be detected by exchangeable and nonexchangeable proton resonances in both strands. An exchange peak was observed in the NOESY spectrum for the thymidine methyl group resonance in both the predominant and lesser conformations, indicating the lifetime of the individual structures was on the millisecond time scale. The nonexchangeable protons of the predominant duplex were assigned by standard methods. The sugar pucker of the ribonucleosides was determined to be of the "S" type by a pseudorotation analysis according to Altona, with the J-couplings measured from the multiplet components of the phase-sensitive COSY experiment. The NOE pattern observed for the alpha-deoxynucleosides also suggested an S-type sugar pucker. The adoption of an S-type sugar pucker for both strands indicates that, in contrast to RNA.DNA duplexes formed exclusively from beta-nucleotides, the alpha-DNA.beta-RNA duplex may form a B-type helix. The 31P resonances of the alpha and beta strands have very different chemical shifts in the hybrid duplex and the difference persists above the helix melting temperature, indicating an intrinsic difference in 31P chemical shift for nucleotides differing only in the configuration about the glycosidic bond.  相似文献   

8.
D J Patel  L Shapiro  D Hare 《Biopolymers》1986,25(4):693-706
The base and sugar protons of the d(G-G-T-A-T-A-C-C) duplex have been assigned from two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) measurements in D2O solution at 25°C. The nucleic acid protons have been assigned from NOEs between protons on adjacent bases on the same and partner strands, as well as from NOEs between the base protons and their own and 5′-flanking H1′, H2′, H2″, H3′, and H4′ sugar protons. These assignments are confirmed from coupling constant and NOE connectivities within the sugar protons of a given residue. Several of these NOEs exhibit directionality and demonstrate that the d(G-G-T-A-T-A-C-C) duplex is a right-handed helix. The relative magnitude of the NOEs between the base protons and the sugar H2′ protons of its own and 5′-flanking sugar demonstrate that the TATA segment of the d(G-G-T-A-T-A-C-C) duplex adopts a B-DNA type helix geometry in solution, in contrast to the previous observation of a A-type helix for the same octanucleotide duplex in the crystalline state.  相似文献   

9.
High-resolution two-dimensional NMR studies have been completed on the self-complementary d(C-G-C-G-A-G-C-T-T-G-C-G) duplex (designated G.T 12-mer) and the self-complementary d(C-G-C-G-A-G-C-T-O4meT-G-C-G) duplex (designated G.O4meT 12-mer) containing G.T and G.O4meT pairs at identical positions four base pairs in from either end of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) spectra for the G.T 12-mer and G.O4meT 12-mer duplexes in H2O and D2O solution. The guanosine and thymidine imino protons in the G.T mismatch resonate at 10.57 and 11.98 ppm, respectively, and exhibit a strong NOE between themselves and to imino protons of flanking base pairs in the G.T 12-mer duplex. These results are consistent with wobble pairing at the G.T mismatch site involving two imino proton-carbonyl hydrogen bonds as reported previously [Hare, D. R., Shapiro, L., & Patel, D. J. (1986) Biochemistry 25, 7445-7456]. In contrast, the guanosine imino proton in the G.O4meT pair resonates at 8.67 ppm. The large upfield chemical shift of this proton relative to that of the imino proton resonance of G in the G.T mismatch or in G.C base pairs indicates that hydrogen bonding to O4meT is either very weak or absent. This guanosine imino proton has an NOE to the OCH3 group of O4meT across the pair and NOEs to the imino protons of flanking base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The beta-complementary hexamer, beta-d[GTACGC], to the alpha-sequence, alpha-d[CATGCG], was synthesized by the phosphotriester method. The non-exchangeable proton assignments were obtained using 1D- and 2D-NMR techniques, including NOE, COSY and NOESY. The beta-strand exists as a random coil at 21 degrees C; however, at 4 degrees C, it forms an antiparallel self-recognition duplex annealing at positions 1-4. The beta-strand was annealed to the alpha-strand, and confirmation of complete annealing was obtained by detection and assignment of the six base pair imino protons in H2O/D2O solution at 21 degrees C. 1D-NOE experiments of the alpha, beta duplex d[alpha-(CATGCG) X beta-(GTACGC)] reveal that (i) it exists in aqueous solution in a conformation that belongs to the B family, (ii) it is 70 +/- 10% right-handed, (iii) the sugar-base orientations of the beta-strand are anti, and the deoxyribose units exist predominantly in the 2'-endo-3'-exo conformation. NOE measurements of the imino proton signals in the alpha, beta duplex reveal that the duplex exhibits parallel polarity.  相似文献   

11.
E V Scott  G Zon  L G Marzilli  W D Wilson 《Biochemistry》1988,27(20):7940-7951
One- and two-dimensional NMR studies on the oligomer dA1T2G3C4G5C6A7T8, with and without actinomycin D (ActD), were conducted. Analysis of the NMR data, particularly 2D NOE intensities, revealed that the free oligonucleotide is a duplex in a standard right-handed B form. At the ratio of 1 ActD/duplex (R = 1), 1D NMR studies indicate that two 1:1 unsymmetric complexes form in unequal proportions with the phenoxazone ring intercalated at a GpC site, in agreement with previous studies [Scott, E.V., Jones, R.L., Banville, D.L., Zon, G., Marzilli, L.G., & Wilson, W.D. (1988) Biochemistry 27, 915-923]. The 2D COSY data also confirm this interpretation since eight cytosine H6 to H5 and two ActD H8 to H7 cross-peaks are observed. At R = 2, both COSY and NOESY spectra confirm the formation of a unique 2:1 species with C2 symmetry. The oligomer remains in a right-handed duplex but undergoes extreme conformational changes both at and adjacent to the binding site. The deoxyribose conformation of T2, C4, and C6 shifts from primarily C2'-endo in the free duplex to an increased amount of C3'-endo in the 2:1 complex as revealed by the greater intensity of the base H6 to 3' NOE cross-peak relative to the intensity of the H6 to H2' NOE cross-peak. This conformational change widens the minor groove and should help alleviate the steric crowding of the ActD peptides. The orientation of the ActD molecules at R = 2 has the quinoid portion of the phenoxazone ring at the G3pC4 site and the benzenoid portion of the phenoxazone ring at the G5pC6 site on the basis of NOE cross-peaks from ActD H7 and H8 to G5H8 and C6H6. All base pairs retain Watson-Crick type H-bonding, unlike echinomycin complexes [e.g., Gao, X., & Patel, D.J. (1988) Biochemistry 27, 1744-1751] where Hoogsteen base pairs have been observed. In contrast to previous studies on ActD, we were able to distinguish the two peptide chains.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
G Lancelot  N T Thuong 《Biochemistry》1986,25(19):5357-5363
The oligodeoxynucleotide d(TATC) was covalently attached to the 9-amino group of 2-methoxy-6-chloro-9-aminoacridine (Acr) through its 3'-phosphate via a pentamethylene linker (m5). Complex formation between d(TATC)m5Acr and the complementary strand d(GATA) in aqueous solution was investigated by nuclear magnetic resonance. The COSY and NOESY connectivities allowed us to assign all the proton resonances of the bases, the sugars (except the overlapping 5'/5' resonances), the acridine, and the pentamethylene chain. Structural informations derived from relative intensities of COSY and NOESY maps revealed that the duplex d(TATC)-d(GATA) adopts a B-type conformation and that the deoxyriboses preferentially adopt a 2'-endo conformation. The NOE connectivities observed between the protons of the bases or of the sugars and the protons of the dye and of the pentamethylene chain led us to propose a model involving an equilibrium between two families of configurations. In the first family, the acridine derivative is intercalated between base pairs C4-G4 and T3-A3. In the second family, the acridine derivative is sandwiched between two aggregated duplexes. The structure of the intercalated complex as well as that of the aggregated species is discussed.  相似文献   

13.
We have investigated intermolecular interactions and conformational features of the netropsin X d(G-G-A-A-T-T-C-C) complex by one- and two-dimensional NMR studies in aqueous solution. Netropsin removes the 2-fold symmetry of the d(G-G-A-A-T-T-C-C) duplex at the AATT binding site and to a lesser extent at adjacent dG X dC base pairs resulting in doubling of resonances for specific positions in the spectrum of the complex at 25 degrees C. We have assigned the amide, pyrrole, and CH2 protons of netropsin, and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. We observe intermolecular nuclear Overhauser effects (NOE) between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4 X T5 base pairs of the d(G1-G2-A3-A4-T5-T6-C7-C8) duplex. Weaker intermolecular NOEs are also observed between the pyrrole concave face protons and the sugar H1' protons of residues T5 and T6 in the AATT minor groove of the duplex. We also detect intermolecular NOEs between the guanidino CH2 protons at one end of netropsin and adenosine H2 proton of the two flanking A3 X T6 base pairs of the octanucleotide duplex. These studies establish a set of intermolecular contacts between the concave face of the antibiotic and the minor groove AATT segment of the d(G-G-A-A-T-T-C-C) duplex in solution. The magnitude of the NOEs require that there be no intervening water molecules sandwiched between the antibiotic and the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation.  相似文献   

14.
The nonexchangeable base and sugar protons of the octanucleotide d(G-G-A-A-T-T-C-C) have been assigned by two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) methods in aqueous solution. The assignments are based on distance connectivities of less than 4.5 A established from NOE effects between base and sugar protons on the same strand and occasionally between strands, as well as, coupling connectivities within the protons on each sugar ring. We observe the NOEs to exhibit directionality and are consistent with the d(G-G-A-A-T-T-C-C) duplex adopting a right-handed helix in solution. The relative magnitude of the NOEs between base and sugar H2' protons of the same and 5'-adjacent sugars characterizes the AATT segment to the B-helix type in solution.  相似文献   

15.
S H Chou  P Flynn  B Reid 《Biochemistry》1989,28(6):2435-2443
The nonsymmetrical double-helical hybrid dodecamer d(CGTTATAATGCG).r(CGCAUUAUAACG) was synthesized with solid-phase phosphoramidite methods and studied by high-resolution 2D NMR. The imino protons were assigned by one-dimensional nuclear Overhauser methods. All the base protons and H1', H2', H2", H3', and H4' sugar protons of the DNA strand and the base protons, H1', H2', and most of the H3'-H4' protons of the RNA strand were assigned by 2D NMR techniques. The well-resolved spectra allowed a qualitative analysis of relative proton-proton distances in both strands of the dodecamer. The chemical shifts of the hybrid duplex were compared to those of the pure DNA double helix with the same sequence (Wemmer et al., 1984). The intrastrand and cross-strand NOEs from adenine H2 to H1' resonances of neighboring base pairs exhibited characteristic patterns that were very useful for checking the spectral assignments, and their highly nonsymmetric nature reveals that the conformations of the two strands are quite different. Detailed analysis of the NOESY and COSY spectra, as well as the chemical shift data, indicate that the RNA strand assumes a normal A-type conformation (C3'-endo) whereas the DNA strand is in the general S domain but not exactly in the normal C2'-endo conformation. The overall structure of this RNA-DNA duplex is different from that reported for hybrid duplexes in solution by other groups (Reid et al., 1983a; Gupta et al., 1985) and is closer to the C3'-endo-C2'-endo hybrid found in poly(dA).poly(dT) and poly(rU).poly(dA) in the fiber state (Arnott et al., 1983, 1986).  相似文献   

16.
E Liepinsh  W Leupin    G Otting 《Nucleic acids research》1994,22(12):2249-2254
The residence times of the hydration water molecules near the base protons of d-(GTGGAATTCCAC)2 and d-(GTGGTTAACCAC)2 were investigated by nuclear magnetic resonance (NMR) spectroscopy. Nuclear Overhauser effects (NOE) were observed between base protons of the DNA and hydration water in NOESY and ROESY experiments. Large positive NOESY cross peaks observed between the resonances of the water and the adenine 2H protons of the central d-(AATT)2 segment in the duplex d-(GTGGAATTCCAC)2 indicate the presence of a 'spine of hydration' with water molecules exhibiting residence times on the DNA longer than 1 nanosecond. In contrast, no positive intermolecular NOESY cross peaks were detected in the d-(TTAA)2 segment of the duplex d-(GTGGTTAACCAC)2, indicating that no water molecules bound with similarly long residence times occur in the minor groove of this fragment. These results can be correlated with the larger width of the minor groove in d-(TTAA)2 segments as compared to that in d-(AATT)2 segments, as observed previously in single crystal structures of related oligonucleotide duplexes in B type conformation. The present experiments confirm earlier experimental results from single crystal studies and theoretical predictions that a 5'-dTA-3' step in the nucleotide sequence interrupts the spine of hydration in the minor groove.  相似文献   

17.
寡聚脱氧核苷酸d(CCGTACGG)质子共振谱线归属和溶液物象表征王萍,石根斌,宋国强,陈凯先,嵇汝运(中国科学院上海药物研究所,200031)关键词寡聚脱氧核苷酸;2DNMR;溶液构象石蒜内铵是一种新型DNA嵌合剂,它可以显著改变DNA螺旋的构象。...  相似文献   

18.
2D-NMR studies of the unnatural duplex alpha-d(TCTAAAC)-beta-d(AGATTTG).   总被引:4,自引:4,他引:0  
The unnatural oligonucleotide alpha-d(TCTAAAC) was synthesized and was found more resistant towards endonucleases than its beta-analog. 2D-NMR experiments allowed the assignment of all non-exchangeable aromatic and sugar protons except for the overlapping 5' -5" resonances, as well as the exchangeable imino protons of the parallel hybrid duplex alpha-d (TCTAAAC)-beta-d(AGATTTG). NMR studies show that the strength of the association between the alpha-strand and the beta parallel strand is equivalent to that between their anti-parallel complementary beta-analogs beta-d(CAAATCT) and beta-d(AGATTTG). NOE data provide evidence that both duplexes form stable right-helical duplexes with an anti-conformation on the glycosyl linkages and a Watson-Crick pairing. NOESY and COSY spectra allowed us to determine that alpha and beta deoxyriboses adopt a 3' -exo conformation.  相似文献   

19.
Two-dimensional nuclear Overhauser enhancement (NOESY) spectra of labile protons were recorded in H2O solutions of a protein and of a DNA duplex, using a modification of the standard NOESY experiment with all three 90 degree pulses replaced by jump-and-return sequences. For the protein as well as the DNA fragment the strategically important spectral regions could be recorded with good sensitivity and free of artifacts. Using this procedure, sequence-specific assignments were obtained for the imino protons, C2H of adenine, and C4NH2 of cytosine in a 23-base-pair DNA duplex which includes the 17-base-pair OR3 repressor binding site of bacteriophage lambda. Based on comparison with previously published results on the isolated OR3 binding site, these data were used for a study of chain termination effects on the chemical shifts of imino proton resonances of DNA duplexes.  相似文献   

20.
The imino proton spectrum of Escherichia coli valine tRNA has been studied by two-dimensional nuclear Overhauser effect spectroscopy (NOESY) in H2O solution. The small nuclear Overhauser effects from the imino proton of an internal base pair to the imino protons of each nearest neighbor can be observed as off-diagonal cross-peaks. In this way most of the sequential NOE connectivity trains for all the helices in this molecule can be determined in a single experiment. AU resonances can be distinguished from GC resonances by the AU imino NOE to the aromatic adenine C2-H, thus leading to specific base-pair assignments. In general, the NOESY spectrum alone is not capable of assigning every imino proton resonance even in well-resolved tRNA spectra. Multiple proton peaks exhibit more than two cross-peaks, resulting in ambiguous connectivities, and coupling between protons with similar chemical shifts produces cross-peaks that are incompletely resolved from the diagonal. The sequence of the particular tRNA determines the occurrence of the latter problem, which can often be solved by careful one-dimensional experiments. The complete imino proton assignments of E. coli valine tRNA are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号