首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axon regeneration in young adult mice lacking Nogo-A/B   总被引:53,自引:0,他引:53  
Kim JE  Li S  GrandPré T  Qiu D  Strittmatter SM 《Neuron》2003,38(2):187-199
After injury, axons of the adult mammalian brain and spinal cord exhibit little regeneration. It has been suggested that axon growth inhibitors, such as myelin-derived Nogo, prevent CNS axon repair. To investigate this hypothesis, we analyzed mice with a nogo mutation that eliminates Nogo-A/B expression. These mice are viable and exhibit normal locomotion. Corticospinal tract tracing reveals no abnormality in uninjured nogo-A/B(-/-) mice. After spinal cord injury, corticospinal axons of young adult nogo-A/B(-/-) mice sprout extensively rostral to a transection. Numerous fibers regenerate into distal cord segments of nogo-A/B(-/-) mice. Recovery of locomotor function is improved in these mice. Thus, Nogo-A plays a role in restricting axonal sprouting in the young adult CNS after injury.  相似文献   

2.
P Liesi 《The EMBO journal》1985,4(10):2505-2511
Most regions of the adult mammalian central nervous system (CNS) do not support axonal growth and regeneration. Laminin, expressed by cultured astrocytes and known to promote neurite outgrowth of cultured neurons, is normally present in brain basement membranes, and only transiently induced in adult brain astrocytes by injury. Here I provide three lines of evidence which suggest that the continued expression of laminin by astrocytes may be a prerequisite for axonal growth and regeneration in adult CNS. Firstly, laminin is continuously present in astrocytes of adult rat olfactory bulb apparently in close association with the olfactory nerve axons. Secondly, laminin is continuously expressed by astrocytes in adult frog brain, and sectioning of the optic tract further increases laminin immunoreactivity in astrocytes of the optic tectum during the period of axonal regeneration. Lastly, laminin appears normally in astrocytes of the frog and goldfish optic nerves which regenerate, but not in astrocytes of the rat or chick optic nerves which do not regenerate. The selective association of laminin with axons that undergo growth and regeneration in vivo is consistent with the possibility that astrocytic laminin provides these central nervous systems with their regenerative potential.  相似文献   

3.
It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS1,2. In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries3. Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved4. Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth5-7.Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection6,8. By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred, making the loss-of-function studies less effective. To solve this problem, the method described here includes a re-suspension and re-plating step after transfection, which allows axons to re-grow from neurons in the absence of the targeted protein. Finally, we provide an example of using this in vitro model to study the role of an axon regeneration-associated gene, c-Jun, in mediating axon growth from adult DRG neurons9.  相似文献   

4.
5.
In an effort to determine whether the “growth state” and the “mature state” of a neuron are differentiated by different programs of gene expression, we have compared the rapidly transported (group I) proteins in growing and nongrowing axons in rabbits. We observed two polypeptides (GAP-23 and GAP-43) which were of particular interest because of their apparent association with axon growth. GAP-43 was rapidly transported in the central nervous system (CNS) (retinal ganglion cell) axons of neonatal animals, but its relative amount declined precipitously with subsequent development. It could not be reinduced by axotomy of the adult optic nerves, which do not regenerate; however, it was induced after axotomy of an adult peripheral nervous system nerve (the hypoglossal nerve, which does regenerate) which transported only very low levels of GAP-43 before axotomy. The second polypeptide, GAP-23 followed the same pattern of growth-associated transport, except that it was transported at significant levels in uninjured adult hypoglossal nerves and not further induced by axotomy. These observations are consistent with the “GAP hypothesis” that the neuronal growth state can be defined as an altered program of gene expression exemplified in part by the expression of GAP genes whose products are involved in critical growth-specific functions. When interpreted in terms of GAP hypothesis, they lead to the following conclusions: (a) the growth state can be subdivided into a “synaptogenic state” characterized by the transport of GAP-23 but not GAP-43, and an “axon elongation state” requiring both GAPs; (b) with respect to the expression of GAP genes, regeneration involves a recapitulation of a neonatal state of the neuron; and (c) the failure of mammalian CNS neurons to express the GAP genes may underly the failure of CNS axons to regenerate after axon injury.  相似文献   

6.
CNS neurons, such as retinal ganglion cells (RGCs), do not normally regenerate injured axons, but instead undergo apoptotic cell death. Regenerative failure is due to inhibitory factors in the myelin and forming glial scar as well as due to an insufficient intrinsic capability of mature neurons to regrow axons. Nevertheless, RGCs can be transformed into an active regenerative state upon inflammatory stimulation (IS) in the inner eye, for instance by lens injury, enabling these RGCs to survive axotomy and to regenerate axons into the lesioned optic nerve. The beneficial effects of IS are mediated by various factors, including CNTF, LIF and IL-6. Consistently, IS activates various signaling pathways, such as JAK/STAT3 and PI3K/AKT/mTOR, in several retinal cell types. Using a conditional knockdown approach to specifically delete STAT3 in adult RGCs, we investigated the role of STAT3 in IS-induced neuroprotection and axon regeneration. Conditional STAT3 knockdown in RGCs did not affect the survival of RGCs after optic nerve injury compared with controls, but significantly reduced the neuroprotective effects of IS. STAT3 depletion significantly compromised CNTF-stimulated neurite growth in culture and IS-induced transformation of RGCs into an active regenerative state in vivo. As a consequence, IS-mediated axonal regeneration into the injured optic nerve was almost completely abolished in mice with STAT3 depleted in RGCs. In conclusion, STAT3 activation in RGCs is involved in neuroprotection and is a necessary prerequisite for optic nerve regeneration upon IS.  相似文献   

7.
8.
Glial inhibition of CNS axon regeneration   总被引:13,自引:0,他引:13  
Damage to the adult CNS often leads to persistent deficits due to the inability of mature axons to regenerate after injury. Mounting evidence suggests that the glial environment of the adult CNS, which includes inhibitory molecules in CNS myelin as well as proteoglycans associated with astroglial scarring, might present a major hurdle for successful axon regeneration. Here, we evaluate the molecular basis of these inhibitory influences and their contributions to the limitation of long-distance axon repair and other types of structural plasticity. Greater insight into glial inhibition is crucial for developing therapies to promote functional recovery after neural injury.  相似文献   

9.
Factors inside and outside neurons control the process of axonal growth and regeneration. Recently, it has become apparent that neurons are determined intrinsically for their ability to grow axons. In the mammalian CNS, the intrinsic machinery of neurons that triggers the growth of axons during early embryonic stages is shut down at a certain point in development; as a consequence, axon elongation and regeneration cannot occur in postnatal life. The proto-oncogene Bcl-2 has been recognized to act as a key regulator for the program of axon elongation inside neurons. However, expressing the gene Bcl-2 in CNS neurons is not sufficient to induce nerve regeneration in the adult CNS, eliminating the inhibitory mechanism in the mature CNS environment is still required. Recently, the formation of glia scar has been reported to be the major limiting factor in the CNS environment that blocks nerve regeneration. These new discoveries challenge the classical view of nerve regeneration in the mammalian CNS. It opens up a new dimension in the study of the cellular and molecular mechanisms underlying neurodevelopmental and neurodegenerative diseases.  相似文献   

10.
Mature retinal ganglion cells like other CNS neurons are unable to regenerate their axons after injury. Regenerative failure has been attributed, in part, to two factors: the existence of myelin-derived inhibitors that bind to the Nogo receptor (NgR) and a deficiency of trophic support factors. We investigated the regrowth of injured axons both by inhibiting NgR by RNA interference and by recruiting exogenous trophic support by zymosan intravitreal injection. Our results showed that either approach can stimulate optic nerve axon regrowth but regenerated axons can grow longer and extend further when both methods are combined. We conclude that endogenous NgR inhibition and exogenous trophic support both play independent, important roles in enhancing optic nerve axon regrowth and that the regenerative effect can be augmented when the two are combined. This may provide a therapeutic strategy for promoting axon regeneration in the CNS as well.  相似文献   

11.
Neurotrophins play important roles in the response of adult neurons to injury. The intracellular signaling mechanisms used by neurotrophins to regulate survival and axon growth in the mature CNS in vivo are not well understood. The goal of this study was to define the role of the extracellular signal-regulated kinases 1/2 (Erk1/2) pathway in the survival and axon regeneration of adult rat retinal ganglion cells (RGCs), a prototypical central neuron population. We used recombinant adeno-associated virus (AAV) to selectively transduce RGCs with genes encoding constitutively active or wild-type mitogen-activated protein kinase kinase 1 (MEK1), the upstream activator of Erk1/2. In combination with anterograde and retrograde tracing techniques, we monitored neuronal survival and axon regeneration in vivo. MEK1 gene delivery led to robust and selective transgene expression in multiple RGC compartments including cell bodies, dendrites, axons and targets in the brain. Furthermore, MEK1 activation induced in vivo phosphorylation of Erk1/2 in RGC bodies and axons. Quantitative analysis of cell survival demonstrated that Erk1/2 activation promoted robust RGC neuroprotection after optic nerve injury. In contrast, stimulation of the Erk1/2 pathway was not sufficient to induce RGC axon growth beyond the lesion site. We conclude that the Erk1/2 pathway plays a key role in the survival of axotomized mammalian RGCs in vivo, and that activation of other signaling components is required for axon regeneration in the growth inhibitory CNS environment.  相似文献   

12.
Unlike mammals, fish have the capacity for functional adult CNS regeneration, which is due, in part, to their ability to express axon growth-related genes in response to nerve injury. One such axon growth-associated gene is gap43, which is expressed during periods of developmental and regenerative axon growth, but is not expressed in CNS neurons that do not regenerate in adult mammals. We previously demonstrated that cis-regulatory elements of gap43 that are sufficient for developmental expression are not sufficient for regenerative expression in the zebrafish. Here we have identified a 3.6kb genomic sequence from Fugu rubripes that can promote reporter gene expression in the nervous system during both development and regeneration in zebrafish. This compact sequence is advantageous for functional dissection of regions important for axon growth-associated gene expression during development and/or regeneration. In addition, this sequence will also be useful for targeting gene expression to neurons during periods of growth and plasticity.  相似文献   

13.
In adult mammals, the severing of the optic nerve near the eye is followed by a loss of retinal ganglion cells (RGCs) and a failure of axons to regrow into the brain. Experimental manipulations of the non-neuronal environment of injured RGCs enhance neuronal survival and make possible a lengthy axonal regeneration that restores functional connections with the superior colliculus. These effects suggest that injured nerve cells in the mature central nervous system (CNS) are strongly influenced by interactions with components of their immediate environment as well as their targets. Under these conditions, injured CNS neurons can express capacities for growth and differentiation that resemble those of normally developing neurons. An understanding of this regeneration in the context of the cellular and molecular events that influence the interactions of axonal growth cones with their non-neuronal substrates and neuronal targets should help in the further elucidation of the capacities of neuronal systems to recover from injury.  相似文献   

14.
Embryonic birds and mammals display a remarkable ability to regenerate axons after spinal injury, but then lose this ability during a discrete developmental transition. To explain this transition, previous research has emphasized the emergence of myelin and other inhibitory factors in the environment of the spinal cord. However, research in other CNS tracts suggests an important role for neuron-intrinsic limitations to axon regeneration. Here we re-examine this issue quantitatively in the hindbrain-spinal projection of the embryonic chick. Using heterochronic cocultures we show that maturation of the spinal cord environment causes a 55% reduction in axon regeneration, while maturation of hindbrain neurons causes a 90% reduction. We further show that young neurons transplanted in vivo into older spinal cord can regenerate axons into myelinated white matter, while older axons regenerate poorly and have reduced growth cone motility on a variety of growth-permissive ligands in vitro, including laminin, L1, and N-cadherin. Finally, we use video analysis of living growth cones to directly document an age-dependent decline in the motility of brainstem axons. These data show that developmental changes in both the spinal cord environment and in brainstem neurons can reduce regeneration, but that the effect of the environment is only partial, while changes in neurons by themselves cause a nearly complete reduction in regeneration. We conclude that maturational events within neurons are a primary cause for the failure of axon regeneration in the spinal cord.  相似文献   

15.
Identification of Nogo-66 receptor (NgR) and homologous genes in fish   总被引:2,自引:0,他引:2  
The Nogo-66 receptor NgR has been implicated in the mediation of inhibitory effects of central nervous system (CNS) myelin on axon growth in the adult mammalian CNS. NgR binds to several myelin-associated ligands (Nogo-66, myelin associated glycoprotein, and oligodendrocyte-myelin glycoprotein), which, among other inhibitory proteins, impair axonal regeneration in the CNS of adult mammals. In contrast to mammals, severed axons readily regenerate in the fish CNS. Nevertheless, fish axons are repelled by mammalian oligodendrocytes in vitro. Therefore, the identification of fish NgR homologs is a crucial step towards understanding NgR functions in vertebrate systems competent of CNS regeneration. Here, we report the discovery of four zebrafish (Danio rerio) and five fugu (Takifugu rubripes) NgR homologs. Synteny between fish and human, comparable intron-exon structures, and phylogenetic analyses provide convincing evidence that the true fish orthologs were identified. The topology of the phylogenetic trees shows that the extra fish genes were produced by duplication events that occurred in ray-finned fishes before the divergence of the zebrafish and pufferfish lineages. Expression of zebrafish NgR homologs was detected relatively early in development and prominently in the adult brain, suggesting functions in axon growth, guidance, or plasticity.  相似文献   

16.
The very limited ability to regenerate axons after injury in the mature mammalian central nervous system (CNS) has been partly attributed to the growth restrictive nature of CNS myelin. Oligodendrocyte myelin glycoprotein (OMgp) was identified as a major myelin‐derived inhibitor of axon growth. However, its role in axon regeneration in vivo is poorly understood. Here we describe the generation and molecular characterization of an OMgp allelic series. With a single gene targeting event and Cre/FLP mediated recombination, we generated an OMgp null allele with a LacZ reporter, one without a reporter gene, and an OMgp conditional allele. This allelic series will aid in the study of OMgp in adult CNS axon regeneration using mouse models of spinal cord injury. The conditional allele will overcome developmental compensation when employed with an inducible Cre, and allows for the study of temporal and tissue/cell type‐specific roles of OMgp in CNS injury‐induced axonal plasticity. genesis 47:751–756, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Olfactory ensheathing cells (OECs) are the main glial cell type that populates mammalian olfactory nerves. These cells have a great capacity to promote the regeneration of axons when transplanted into the injured adult mammalian CNS. However, little is still known about the molecular mechanisms they employ in mediating such a task. Brain-derived neurotrophic factor (BDNF) was identified as a candidate molecule in a genomic study that compared three functionally different OEC populations: Early passage OECs (OEC Ep), Late passage OECs (OEC Lp) and the OEC cell line TEG3 [Pastrana, E., Moreno-Flores, M.T., Gurzov, E.N., Avila, J., Wandosell, F., Diaz-Nido, J., 2006. Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. J. Neurosci. 26, 5347-5359]. We have here set out to determine the role played by BDNF in the stimulation of axon outgrowth by OECs. We compared the extracellular BDNF levels in the three OEC populations and show that it is produced in significant amounts by the OECs that can stimulate axon regeneration in adult retinal neurons (OEC Ep and TEG3) but it is absent from the extracellular medium of OEC Lp cells which lack this capacity. Blocking BDNF signalling impaired axonal regeneration of adult retinal neurons co-cultured with TEG3 cells and adding BDNF increased the proportion of adult neurons that regenerate their axons on OEC Lp monolayers. Combining BDNF with other extracellular proteins such as Matrix Metalloproteinase 2 (MMP2) further augmented this effect. This study shows that BDNF production by OECs plays a direct role in the promotion of axon regeneration of adult CNS neurons.  相似文献   

18.
Notch signaling inhibits axon regeneration   总被引:1,自引:0,他引:1  
El Bejjani R  Hammarlund M 《Neuron》2012,73(2):268-278
Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian central nervous system do not regenerate, and even neurons in the peripheral nervous system often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in?vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C.?elegans neurons. Notch signaling suppresses regeneration by acting autonomously in the injured cell to prevent growth cone formation. The metalloprotease and gamma-secretase cleavage events that lead to Notch activation during development are also required for its activity in regeneration. Furthermore, blocking Notch activation immediately after injury improves regeneration. Our results define a postdevelopmental role for the Notch pathway as a repressor of axon regeneration in?vivo.  相似文献   

19.
Failure of injured axons to regenerate in the central nervous system (CNS) is the main obstacle for repair of stroke and traumatic injuries to the spinal cord and sensory roots. This regeneration failure is high-lighted at the dorsal root transitional zone (DRTZ), the boundary between the peripheral (PNS) and central nervous system where sensory axons enter the spinal cord. Injured sensory axons regenerate in the PNS compartment of the dorsal root but are halted as soon as they reach the DRTZ. The failure of regenerating dorsal root axons to re-enter the mature spinal cord is a reflection of the generally nonpermissive nature of the CNS environment, in contrast to the regeneration supportive properties of the PNS. The dorsal root injury paradigm is therefore an attractive model for studying mechanisms underlying CNS regeneration failure in general and how to overcome the hostile CNS environment. Here we review the main lines that have been pursued to achieve growth of injured dorsal root axons into the spinal cord: (i) modifying the inhibitory nature of the DRTZ by breaking down or blocking the effect of growth repelling molecules, (ii) stimulate elongation of injured dorsal root axons by a prior conditioning lesion or administration of specific growth factors, (iii) implantation of olfactory ensheathing cells to provide a growth supportive cellular terrain at the DRTZ, and (iv) replacing the regeneration deficient adult dorsal root ganglion neurons with embryonic neurons or neural stem cells.  相似文献   

20.
Neurons of the mammalian CNS, including retinal ganglion cells, lack, in contrast to the PNS, the ability to regenerate axons spontaneously after injury. Regeneration of the CNS is extremely complex and involves various molecular factors and cells. Therewith the regenerative process remains an enormous scientific and clinical challenge. This article provides an overview of proteins that play a crucial role in axon regeneration of retinal ganglion cells and their underlying signaling pathways. In this context, we elucidate the role of 2D gel electrophoresis and highlight some additional proteins, altered upon regeneration by using this highly sensitive method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号