首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors involved in the outcome of regeneration of the saphenous nerve after a cut or crush lesion were studied in adult rats with electrophysiological recordings of low-threshold mechanoreceptor activity and plasma extravasation of Evans blue after electrical nerve stimulation that activated C fibers.

In the first series of experiments, saphenous and sciatic nerve section was combined with anastomosis of the transected proximal end of the saphenous nerve to the distal end of the cut tibial nerve. Regeneration of saphenous nerve fibers involved in plasma extravasation and low-threshold mechanoreceptor activity in the glabrous skin was observed 13 weeks after nerve anastomosis. Substance P-, calcitonin gene-related peptide-, and protein gene product 9.5 (PGP-9.5)-immunoreactive (IR) thin epidermal and dermal nerve endings, as well as coarse dermal PGP-9.5-IR nerve fibers and Meissner corpuscles and Merkel cell-neurite-like complexes, were observed in the reinnervated glabrous skin at this time.

In a second series of experiments, the time course of the regeneration of saphenous nerve axons to the permanently sciatic-nerve-denervated foot sole was examined. Saphenous-nerve-induced plasma extravasation and low-threshold mechanoreceptor activity in the saphenous nerve were found in the normal saphenous nerve territory 2, 3, 4, and 6 weeks after sciatic nerve cut combined with saphenous nerve crush in the left hindlimb. Saphenous-nerve-induced plasma extravasation was also present in the glabrous skin normally innervated by the sciatic nerve 3, 4, and 6 weeks after the sciatic cut/saphenous crush lesion. However, no low-threshold mechanoreceptor activity was detected in the saphenous nerve when the glabrous skin area was stimulated.

In a third series of experiments, the fate of the expansion of the saphenous nerve territory after saphenous nerve crush was examined when the crushed sciatic nerve had been allowed to regenerate. Nerve fibers involved in plasma extravasation were observed in the glabrous skin of the hindpaw after saphenous nerve, as well as after tibial nerve, C-fiber stimulation 3, 12, and 43 weeks after the saphenous crush/sciatic crush lesion.

Low-threshold mechanoreceptors from the regenerated saphenous nerve, which primarily innervates hairy skin, seem to be functional in the glabrous skin if the axons are guided by the transected tibial nerve by anastomosis. Furthermore, the results indicate that fibers from the regenerating saphenous nerve that have extended into denervated glabrous skin areas can exist even if sciatic nerve axons are allowed to grow back to their original territory.  相似文献   

2.
A study of the effect of weak, interrupted sinusoidal low frequency magnetic field (ISMF) stimulation on regeneration of the rat sciatic nerve was carried out. In the experiment, 60 Wistar rats were used: 24 rats underwent unilateral sciatic nerve transection injury and immediate surgical nerve repair, 24 rats underwent unilateral sciatic nerve crush injury, and the remaining 12 rats underwent a sham surgery. Half of the animals (n = 12) with either sciatic nerve lesion were randomly chosen and exposed between a pair of Helmholtz coils for 3 weeks post-injury, 4 h/day, to an interrupted (active period to pause ratio = 1.4 s/0.8 s) sinusoidal 50 Hz magnetic field of 0.5 mT. The other half of the animals (n = 12) and six rats with sham surgery were used for two separate controls. Functional recovery was followed for 6 weeks for the crush injuries and 7(1/2) months for the transection injuries by video assisted footprint analysis in static conditions and quantified using a recently revised static sciatic index (SSI) formula. We ascertained that the magnetic field influence was weak, but certainly detectable in both injury models. The accuracy of ISMF influence detection, determined by the one-way repeated measures ANOVA test, was better for the crush injury model: F(1, 198) = 9.0144, P = .003, than for the transection injury model: F(1, 198) = 6.4826, P = .012. The Student-Newman-Keuls range test for each response day yielded significant differences (P < .05) between the exposed and control groups early in the beginning of functional recovery and later on from the points adjacent to the beginning of the plateau, or 95% of functional recovery, and the end of observation. These differences probably reflect the ISMF systemic effect on the neuron cell bodies and increased and more efficient reinnervation of the periphery.  相似文献   

3.
We have examined the expression of Thy-1, an abundant glycosylphosphatidylinositol (GPI)-anchored glycoprotein, in dorsal root ganglia (DRG) and associated nerve fascicles, during postnatal development and following a nerve crush. The expression levels of Thy-1 in DRG neurons, dorsal roots, and central processes in spinal cord were rather low at postnatal day 2, and gradually increased as DRG neurons matured. During early development, the expression of Thy-1 within DRG neurons was low and equally distributed between plasma membrane and cytosol. With maturation, the staining intensities of Thy-1 in both the plasma membrane and the cytosol of DRG neurons became increased. We also studied Thy-1 expression in the regeneration of mature DRG neurons following the crush injury of sciatic nerve. Two days after the crush injury, Thy-1 expression dramatically decreased in the DRG neurons on the lesion side. Between 4 and 7 days after the injury, the expression of Thy-1 gradually increased and returned to a normal level 1 week after the sciatic nerve crush. The time course of the up-regulation of Thy-1 expression during regeneration matched that of the recovery of sensory functions, such as pain withdraw reflex, placing reflex, and the score of Basso-Beattie-Bresnahan Locomotor Rating Scale. Taken together, our results suggest that Thy-1 expression is developmentally regulated and is closely associated with the functional maturation of DRG neurons during both postnatal development and nerve regeneration. Furthermore, perturbation of Thy-1 function with anti-Thy-1 antibodies promoted neurite outgrowth from primary cultured DRG neurons, again confirming the inhibitory role of Thy-1 on neurite outgrowth.  相似文献   

4.
目的:周围神经再生过程中巨噬细胞发挥了重要的作用,然而目前对于神经内内源性和外源性巨噬细胞的具体作用了解的却很少,因此本实验研究了小鼠坐骨神经损伤后早期再生过程中内源性和外源性巨噬细胞数量比例变化的情况,探索周围神经再生的规律。方法:移植CAG-EGFP转基因小鼠的全骨髓有核细胞到骨髓灭活野生型C5781/6小鼠体内建立嵌合体小鼠模型。待移植成功3个月后夹伤小鼠一侧坐骨神经,并在损伤后第2、7、14和28天取材、切片,使用巨噬细胞特异性抗体cD68进行免疫荧光染色,分析损伤神经段中内源性巨噬细胞(CD68+/EGFP-)、外源性巨噬细胞(CD68+/EGFP+)的数量及其比例变化情况。结果:①夹伤骨髓移植模型小鼠坐骨神经后,参与坐骨神经损伤修复的巨噬细胞可分为两类,即内源性巨噬细胞(CD68+/EGFP-)和外源性巨噬细胞(CD68+/EGFP+);②夹伤坐骨神经后,浸润的总巨噬细胞数量从第2天开始逐渐增加,到第14天达到高峰,约为正常情况下的60倍,随后逐渐减少;③起初外、内源性巨噬细胞间的比例是1:1,差值最大出现在损伤后第14天为4:l。结论:小鼠坐骨神经夹伤后,内外源性巨噬细胞共同参与了受损神经组织远心段的修复和再生过程,损伤初期发挥作用的主要是内源性巨噬细胞,随后大量浸润的外源性巨噬细胞占主导作用。本实验首次连续观察并定量分析了神经损伤后早期内源性和外源性巨噬细胞的数量改变,证实了瓦勒氏变性过程中内源性和外源性巨噬细胞在不同阶段对巨噬细胞总量的贡献作用。  相似文献   

5.
The ability of neurons in the abdominal ganglion of Aplysia to regenerate their axons following branchial nerve crush was studied using retrograde staining and intracellular dye injection. The duration of the gill withdrawal reflex (GWR) was measured prior to and following nerve crush. Three days after crushing the nerve, the duration of the gill withdrawal reflex was reduced to 20% of control levels. There was rapid recovery 19 days after crushing the branchial nerve. The GWR duration returned to control levels by postlesion days 25–27. Some of the behavioral recovery can be attributed to axonal regeneration. Regeneration, as evidenced by retrograde staining, was first observed by postlesion day 15. The number of stained neurons in ganglia with crushes increased until postlesion day 33. The number of stained neurons in experimental animals was always less than that of controls (67 ± 9% at postlesion day 56). More axonal regeneration was seen in the hemiganglion ipsilateral to the branchial nerve. Regeneration after 32 days postlesion was 60 ± 5% of controls in the ipsilateral hemiganglion, as opposed to 29 ± 6% in the contralateral hemiganglion. Regeneration of individual neurons was also demonstrated. Identified neuron R2 was shown by intracellular dye injection and electrical stimulation of antidromic action potentials to have an axon in the branchial nerve in all ganglia allowed to regenerate for longer than 32 days. These results indicate that in Aplysia, despite behavioral recovery, complete axonal regeneration does not occur in a large segment of the neurons in the adult central nervous system. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 160–172, 1998  相似文献   

6.
Gao S  Fei M  Cheng C  Yu X  Chen M  Shi S  Qin J  Guo Z  Shen A 《Neurochemical research》2008,33(6):1090-1100
Neuronal nitric oxide synthase (nNOS) has been implicated to influence peripheral nerve lesion and regeneration. Post-synaptic density-95 (PSD-95) is one of nNOS-anchoring proteins and plays an important role in specifying the sites of reaction of NO in nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of PSD-95 and nNOS. At gene levels, PSD-95 mRNA diminished shortly after crush, and significantly elevated from 2 days to 2 weeks, whereas nNOS decreased progressively post-operation, reached the valley at 1 day, and markedly up-regulated from 1 to 2 weeks after SNC. The expression of both molecules returned to the control level at 4 weeks post-injury. At protein levels, PSD-95 and nNOS underwent the similar changes as their gene expression except for a time lag during up-regulating. At their peak expression, PSD-95 co-labeled with nNOS in Schwann cells (SCs) of sciatic nerve within 0.5 mm from the lesion site, but had few colocalization in axons. In addition, the interaction between PSD-95 and nNOS enhanced significantly at 2 weeks after SNC. These results suggest a correlation of PSD-95 up-regulation with nNOS in reactive SCs of crushed sciatic nerve, which may lead to understanding the function of PSD-95 during peripheral nerve regeneration. Shangfeng Gao and Min Fei contributed equally to this work.  相似文献   

7.
Alternative splicing (AS) regulates a variety of biological activities in numerous tissues and organs, including the nervous system. However, the existence and specific roles of AS events during peripheral nerve repair and regeneration remain largely undetermined. In the current study, by mapping splice-crossing sequence reads, we identified AS events and relevant spliced genes in rat sciatic nerve stumps following sciatic nerve crush. AS-related genes at 1, 4, 7, and 14 days post nerve crush were compared with those at 0 day to discover alternatively spliced genes induced by sciatic nerve crush. These injury-induced alternatively spliced genes were then categorized to diseases and biological functions, genetic networks, and canonical signaling pathways. Bioinformatic analysis indicated that these alternatively spliced genes were mainly correlated to immune response, cellular growth, and cellular function maintenance. Our study elucidated AS events following peripheral nerve injury and might help deepen our understanding of the molecular mechanisms underlying peripheral nerve regeneration.  相似文献   

8.
P De Koning  W H Gispen 《Peptides》1987,8(3):415-422
The beneficial effect of short-term (8 days) melanocortin therapy on regenerating peripheral nerves is demonstrated using functional and electrophysiological tests. Following a crush lesion of the rat sciatic nerve, recovery of sensory function is monitored by assessing the responsiveness of the rat to a small electric current applied to the footsole. Recovery of motor function is assessed by means of an analysis of walking patterns. Normalization of the walking pattern reflects reinnervation of different muscle groups. The motor and H-reflex related sensory nerve conduction velocity of the regenerated nerves are longitudinally investigated in the same rats in which the recovery of motor and sensory function had been assessed previously. Functional tests show an enhanced recovery under melanocortin therapy, but in the end both saline- and melanocortin-treated rats show 100% recovery. However, when compared to the contralateral sciatic nerve, in the peptide-treated animals motor nerve conduction in the regenerated nerves has fully recovered after about 90 days following the crush lesion and the sensory conduction after about 120 days, whereas in the saline-treated rats a deficit of 20-40% in both motor and sensory conduction remains. This difference is observed even 214 days following crush.  相似文献   

9.
Purpose Attenuation of pro-inflammatory cytokines and associated inflammatory cell deposits rescues human amniotic fluid mesenchymal stem cells (AFS) from apoptosis. Hyperbaric oxygen (HBO) suppressed stimulus-induced pro-inflammatory cytokine production in blood-derived monocyte-macrophages. Herein, we evaluate the beneficial effect of hyperbaric oxygen on transplanted AFS in a sciatic nerve injury model. Methods Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The AFS were embedded in fibrin glue and delivered to the injured site. Hyperbaric oxygen (100% oxygen, 2 ATA, 60 min/day) was administered 12 h after operation for seven consecutive days. Transplanted cell apoptosis, oxidative stress, inflammatory cell deposits and associated chemokines, pro-inflammatory cytokines, motor function, and nerve regeneration were evaluated 7 and 28 days after injury. Results Crush injury induced an inflammatory response, disrupted nerve integrity, and impaired nerve function in the sciatic nerve. However, crush injury-provoked inflammatory cytokines, deposits of inflammatory cytokines, and associated macrophage migration chemokines were attenuated in groups receiving hyperbaric oxygen but not in the AFS-only group. No significant increase in oxidative stress was observed after administration of HBO. In transplanted AFS, marked apoptosis was detected and this event was reduced by HBO treatment. Increased nerve myelination and improved motor function were observed in AFS-transplant, HBO-administrated, and AFS/HBO-combined treatment groups. Significantly, the AFS/HBO combined treatment showed the most beneficial effect. Conclusion AFS in combination with HBO augment peripheral nerve regeneration, which may involve the suppression of apoptotic death in implanted AFS and the attenuation of an inflammatory response detrimental to peripheral nerve regeneration.  相似文献   

10.
Neuroprotective effects of metformin have been increasingly recognized in both diabetic and non-diabetic conditions. Thus far, no information has been available on the potential beneficial effects of metformin on peripheral nerve regeneration in diabetes mellitus. The present study was designed to investigate such a possibility. Diabetes was established by a single injection of streptozotocin at 50 mg/kg in rats. After sciatic nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with metformin (30, 200 and 500 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. It was found that metformin significantly enhanced axonal regeneration and functional recovery compared to saline after sciatic nerve injury in diabetic rats. In addition, metformin at 200 and 500 mg/kg showed better performance than that at 30 mg/kg. Taken together, metformin is capable of promoting nerve regeneration after sciatic nerve injuries in diabetes mellitus, highlighting its therapeutic values for peripheral nerve injury repair in diabetes mellitus.  相似文献   

11.
Regeneration and functional recovery after peripheral nerve damage still remain a significant clinical problem. In this study, alginate/chitosan (alg/chit) hydrogel was used for the transplantation of olfactory ectomesenchymal stem cells (OE-MSCs) to promote peripheral nerve regeneration. The OE-MSCs were isolated from olfactory mucosa biopsies and evaluated by different cell surface markers and differentiation capacity. After creating sciatic nerve injury in a rat model, OE-MSCs were transplanted to the injured area with alg/chit hydrogel which was prepared and well-characterized. The prepared hydrogel had the porosity of 91.3 ± 1.27%, the swelling ratio of 379% after 240 min, weight loss percentages of 80 ± 5.56% after 14 days, and good blood compatibility. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 4′,6-diamidino-2-phenylindole, and LIVE/DEAD staining were done to assay the behavior of OE-MSCs on alg/chit hydrogel and the results confirmed that the hydrogel can provide a suitable substrate for cell survival. For functional analysis, alg/chit hydrogel with and without OE- MSCs was injected into a 3-mm sciatic nerve defect of Wistar rats. The results of the sciatic functional index, hot plate latency, electrophysiological assessment, weight-loss percentage of wet gastrocnemius muscle, and histopathological examination using hematoxylin–eosin and Luxol fast blue staining showed that utilizing alg/chit hydrogel with OE-MSCs to the sciatic nerve defect enhance regeneration compared to the control group and hydrogel without cells.  相似文献   

12.
Objectives:Whole-body vibration (WBV) is commonly used to improve motor function, balance and functional performance, but its effects on the body are not fully understood. The main objective was to evaluate the morphometric and functional effects of WBV in an experimental nerve regeneration model.Methods:Wistar rats were submitted to unilateral sciatic nerve crush and treated with WBV (4-5 weeks), started at 3 or 10 days after injury. Functional performances were weekly assessed by sciatic functional index, horizontal ladder rung walking and narrow beam tests. Nerve histomorphometry analysis was assessed at the end of the protocol.Results:Injured groups, sedentary and WBV started at 3 days, had similar functional deficits. WBV, regardless of the start time, did not alter the histomorphometry parameters in the regeneration process.Conclusions:The earlier therapy did not change the expected and natural recovery after the nerve lesion, but when the WBV starts later it seems to impair function parameter of recovery.  相似文献   

13.
14.
Shu L  Dong YR  Yan WH  Zhai Y  Wang Y  Li W 《生理学报》2011,63(4):291-299
坐骨神经损伤是临床常见的周围神经疾病。神经损伤后再生肌肉和运动神经元会出现各种功能障碍,虽然其中一部分因素已被阐明,但多局限于受损神经局部,而对于再生后脊髓运动神经元的回返性抑制(recurrent inhibition,RI)通路的功能变化却很少被报道。本文研究大鼠短暂坐骨神经损伤后,恢复神经再支配(reinnervation)情况下,脊髓RI通路的功能变化。在正常或坐骨神经挤压(crush)受损后的成年大鼠上,通过刺激离断的脊髓背根(L5),在外侧腓肠肌-比目鱼肌(lateral gas-trocnemius-soleus,LG-S)神经或内侧腓肠肌(medial gastrocnemius,MG)神经记录单突触反射(monosynaptic reflex,MSR),并同时在另一神经给予条件性刺激,以检测LG-S和MG运动神经元间RI的变化。结果显示:(1)脊髓运动神经元的RI在坐骨神经挤压受损后即基本丢失(<5周),至损伤6周后部分恢复至正常的50%,并至少维持至损伤14周后;(2)一侧的坐骨神经损伤对对侧的RI没有影响;(3)外周神经损伤后,免疫组织化学方法显示脊髓运动神经元数目本身并不发生减少。以上...  相似文献   

15.
As a novel cell cycle inhibitor, PHB2 controls the G1/S transition in cycling cells in a complex manner. Its aberrant expression is closely related to cell carcinogenesis. While its expression and role in peripheral nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve crush (SNC) model in adult rats to examine the dynamic changes of PHB2. Temporally, PHB2 expression was sharply decreased after sciatic nerve crush and reached a valley at day 5. Spatially, PHB2 was widely expressed in the normal sciatic nerve including axons and Schwann cells. While after injury, PHB2 expression decreased predominantly in Schwann cells. The alteration was due to the decreased expression of PHB2 in Schwann cells after SNC. PHB2 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, PHB2 largely localized with GAP43 in axons in the crushed segment. Collectively, we suggested that PHB2 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.  相似文献   

16.
Vinorine is a monoterpenoid indole alkaloid, a type of natural alkaloids. Growing reports exhibited the numerous pharmacology activities of vinorine such as anti-inflammation, anti-bacterial and anti-tumor. In this study, the effect of vinorine injection (7.5, 15 and 30 mg/kg) on motor function, sensation and nerve regeneration in sciatic nerve crush injury rat was investigated. The results of behavioral analysis, electrophysiological analysis and muscle histological analysis suggested that vinorine promoted the motor function recovery after sciatic nerve injury. The results of mechanical withdrawal thresholds assay and hot plate test demonstrated that vinorine improved the sensation recovery after sciatic nerve injury. The results of Fluoro-gold retrograde labeling, transmission electron microscope assay, toluidine blue and HE staining showed that vinorine attenuated the nerve damage caused by sciatic nerve injury and promoted the nerve regeneration. Furthermore, nerve growth factor (NGF) and its downstream extracellular signal-regulated kinase (ERK) signaling pathway participated in the neuro-recovery effect of vinorine after crush. In conclusion, vinorine treatment accelerated the sciatic nerve regeneration, motor function recovery and sensation recovery after crush injury via regulation of NGF and ERK activity. These results suggested that vinorine is a promising agent for never injury therapy.  相似文献   

17.
Left sciatic nerves of adult male Sprague-Dawley rats were crushed and allowed to recover for 0, 1, 2, 4, 7, or 14 days. At each of these times both L-5 dorsal root ganglia were injected with 100 microCi of [3H]glucosamine. Two days later, dorsal root ganglia, lumbosacral trunks, and sciatic nerves were removed bilaterally. The amounts of radiolabelled ganglioside in crushed lumbosacral trunks were consistently higher than in the controls, with the largest difference occurring within 2 days from simultaneous crush and injection to killing (specimens labelled day 0). The largest difference in the amount of radiolabelled ganglioside between crushed and control sciatic nerve (4-9 days from crush to killing) occurred later than that of lumbosacral trunk, but no significant difference occurred within the first 3 days following crush. There was only a slightly higher radioactivity in gangliosides totalled from all three anatomical specimens of crushed than in control nerves. The neutral nonganglioside lipid and acid-precipitable fraction followed patterns of synthesis and accumulation similar to those of the gangliosides. These findings indicate that after nerve crush gangliosides, glucosamine-labelled neutral nonganglioside lipids, and glycoproteins accumulate close to the proximal end of the regenerating axon. This accumulation could serve as a reservoir to increase the ganglioside concentration in the growth cone membrane.  相似文献   

18.
The rate of regeneration of rat sciatic nerve sensory axons was measured using the pinch-reflex test method, and confirmed by studying the transport of labelled protein into the regenerating axons. For nerves receiving a single test crush lesion the rate was 4.02 ± 0.03 (SE) mm/day. For nerves with a conditioning lesion made at the knee seven days prior to the test lesion at the hip the rate was 5.73 ± 0.06 mm/day, and for nerves where both conditioning and test lesions were made at the same site (hip or knee) but separated by seven days, the rate was 6.76 ± 0.04 mm/day, a 68% increase over the normal rate, showing that pre-degeneration of the nerve distal to the site of the test lesion increases the rate of regeneration. It is concluded that the rate of axon regeneration can be influenced by the environment through which the regenerating axons grow.  相似文献   

19.
The development of noninvasive approaches to facilitate the regeneration of post-traumatic nerve injury is important for clinical rehabilitation. In this study, we investigated the effective dose of noninvasive 808-nm low-level laser therapy (LLLT) on sciatic nerve crush rat injury model. Thirty-six male Sprague Dawley rats were divided into 6 experimental groups: a normal group with or without 808-nm LLLT at 8 J/cm2 and a sciatic nerve crush injury group with or without 808-nm LLLT at 3, 8 or 15 J/cm2. Rats were given consecutive transcutaneous LLLT at the crush site and sacrificed 20 days after the crush injury. Functional assessments of nerve regeneration were analyzed using the sciatic functional index (SFI) and hindlimb range of motion (ROM). Nerve regeneration was investigated by measuring the myelin sheath thickness of the sciatic nerve using transmission electron microscopy (TEM) and by analyzing the expression of growth-associated protein 43 (GAP43) in sciatic nerve using western blot and immunofluorescence staining. We found that sciatic-injured rats that were irradiated with LLLT at both 3 and 8 J/cm2 had significantly improved SFI but that a significant improvement of ROM was only found in rats with LLLT at 8 J/cm2. Furthermore, the myelin sheath thickness and GAP43 expression levels were significantly enhanced in sciatic nerve-crushed rats receiving 808-nm LLLT at 3 and 8 J/cm2. Taken together, these results suggest that 808-nm LLLT at a low energy density (3 J/cm2 and 8 J/cm2) is capable of enhancing sciatic nerve regeneration following a crush injury.  相似文献   

20.
Generator of spatial magnetic field is one of most recent achievements among the magnetostimulators. This apparatus allows to obtain the rotating magnetic field. This new method may be more effective than other widely used techniques of magnetostimulation and magnetotherapy. We investigated the influence of alternating, spatial magnetic field on the regeneration of the crushed rat sciatic nerves. Functional and morphological evaluations were used. After crush injury of the right sciatic nerve, Wistar C rats (n?=?80) were randomly divided into four groups (control and three experimental). The experimental groups (A, B, C) were exposed (20?min/day, 5?d/week, 4 weeks) to alternating spatial magnetic field of three different intensities. Sciatic Functional Index (SFI) and tensometric assessments were performed every week after nerve crush. Forty-eight hours before the sacrificing of animals, DiI (1,1’-di-octadecyl-3,3,3’,3’-tetramethyloindocarbocyanine perchlorate) was applied 5?mm distally to the crush site. Collected nerves and dorsal root ganglia (DRG) were subjected to histological and immunohistochemical staining. The survival rate of DRG neurons was estimated. Regrowth and myelination of the nerves was examined. The results of SFI and tensometric assessment showed improvement in all experimental groups as compared to control, with best outcome observed in group C, exposed to the strongest magnetic field. In addition, DRG survival rate and nerve regeneration intensity were significantly higher in the C group. Above results indicate that strong spatial alternating magnetic field exerts positive effect on peripheral nerve regeneration and its application could be taken under consideration in the therapy of injured peripheral nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号