首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The objective of this work is physicochemical characterization of nimesulide-cyclodextrin binary systems both in solution and solid state and to improve the dissolution properties of nimesulide (N) via complexation with α-, β, and γ-cyclodextrins (CDs). Detection of inclusion complexation was done in solution by means of phase solubility analysis, mass spectrometry, and 1H nuclear magnetic resonance (1H-NMR) spectroscopic studies, and in solid state using differential scanning calorimetry (DSC), powder x-ray diffractometry (X-RD), scanning electron microscopy (SEM), and in vitro dissolution studies. Phase solubility, mass spectrometry and 1H-NMR studies in solution revealed 1∶1 M complexation of N with all CDs. A true inclusion of N with β-CD at 1∶2 M in solid state was confirmed by DSC, powder X-RD and SEM studies. Dissolution properties of N-CD binary systems were superior when compared to pure N.  相似文献   

2.
(+)-(S)-Ibuproxam, a prodrug of (+)-(S)-ibuprofen, the pharmacologically active component of ibuprofen, was synthesized in order to minimize side effects (especially gastric irritation) and reduce effective dose. The low water solubility of (+)-(S)-ibuproxam, which prevents rapid dissolution and absorption from the gastrointestinal tract, was overcome by complexation with β-cyclodextrin and its derivatives. The inclusion complex formation was confirmed by differential scanning calorimetry (DSC), by 1H-NMR spectroscopy, and X-ray powder diffractometry. The physicochemical characteristics of ibuproxam were significantly improved by the complexation. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The study was designed to investigate the effect of cyclodextrins (CDs) on the solubility, dissolution rate, and bioavailability of cilostazol by forming inclusion complexes. Natural CDs like β-CD, γ-CD, and the hydrophilic β-CD derivatives, DM-β-CD and HP-β-CD, were used to prepare inclusion complexes with cilostazol. Phase solubility study was carried out and the stability constants were calculated assuming a 1:1 stoichiometry. Solid cilostazol complexes were prepared by coprecipitation and kneading methods and compared with physical mixtures of cilostazol and cyclodextrins. Prepared inclusion complexes were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) studies. In vitro dissolution study was performed using phosphate buffer pH 6.4, distilled water, and HCl buffer pH 1.2 as dissolution medium. The optimized inclusion complex was studied for its bioavailability in rabbit and the results were compared with those of pure cilostazol and Pletoz-50. Phase solubility study showed dramatic improvement in the solubility of drug by formation of complexes, which was further increased by pH adjustment. The dissolution rate of cilostazol was markedly augmented by the complexation with DM-β-CD. DSC and XRD curves showed sharp endothermic peaks indicating the reduction in the microcrystallinity of cilostazol. Selected inclusion complex was also stable at ambient temperature up to 6 months. The in vivo study revealed that DM-β-CD increased the bioavailability of cilostazol with low variability in the absorption. Among all cilostazol–cyclodextrins complexes, cilostazol–DM-β-CD inclusion complex (1:3) prepared by coprecipitation method showed 1.53-fold and 4.11-fold increase in absorption along with 2.1-fold and 2.97-fold increase in dissolution rate in comparison with Pletoz-50 and pure cilostazol, respectively.  相似文献   

4.
Solubilisation of six polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, anthracene, fluoranthene, fluorene, phenanthrene and pyrene) by three synthetic cyclodextrins (CDs) (2-hydroxypropyl-β-CD, hydroxypropyl-γ-CD and ramdomly methylated-β-CD) was investigated in order to select the CD which presents the greatest increase in solubility and better complexation parameters for its use in contaminated scenarios. The presence of the three cyclodextrins greatly enhanced the apparent water solubility of all the PAHs through the formation of inclusion complexes of 1∶1 stoichiometry. Anthracene, fluoranthene, fluorene and phenanthrene clearly presented a higher solubility when β-CD derivatives were used, and especially the complexes with the ramdomly methylated-β-CD were favoured. On the contrary, pyrene presented its best solubility results when using 2-hydroxypropyl-γ-CD, but for acenaphthene the use of any of the three CDs gave the same results. Complementary to experimental phase-solubility studies, a more in-depth estimation of the inclusion process for the different complexes was carried out using molecular modelling in order to find a correlation between the degree of solubilisation and the fit of PAH molecules within the cavity of the different CDs and to know the predominant driving forces of the complexation.  相似文献   

5.
Here, we report a study on the complexation behavior of carotenoids with cyclodextrins (CDs) using solubility experiments and molecular-modelling methods. Carotenoids are an important group of naturally occurring dyes found in vegetables and fruits. Their antioxidant property has initiated investigations on their possible use as drugs. However, carotenoids are lipophilic molecules with very little inherent aqueous solubility. Cyclodextrin complexation has been widely used in order to increase the potential applications of hydrophobic compounds. Thus, the aim of our investigation was to design carotenoids with enhanced water solubility by cyclodextrin complexation. Molecular modelling of carotenoid-cyclodextrin complexes with a 1 : 1 stoichiometry successfully explained the experimentally observed capability of beta-cyclodextrins (beta-CDs) to form complexes with carotenoids as opposed to alpha-cyclodextrins (alpha-CDs) and gamma-cyclodextrins (gamma-CDs). Furthermore, molecular-dynamics calculations revealed that the aggregation properties of CD derivatives significantly influence their complexation behavior. Our docking calculations showed that RAMEB (random methylated beta-CD) is the beta-CD derivative that possesses the lowest tendency to aggregate. Solubility experiments yielded the same results, namely, RAMEB complexes possess the best water solubility. Our results showed that complexation of a ligand not buried inside of the CD cavity is dependent on two factors: i) the geometry of the inclusion part of the complex; ii) the self-aggregation property of the CD itself. The lower affinity the CDs possess for self-aggregation, the more likely are they involved in interactions with carotenoids. These results suggest that self-aggregation of CDs should be considered as an important parameter determining complexation in general.  相似文献   

6.
Enantioselective host-guest complexation between five racemic Ru(II) trisdiimine complexes and eight derivatized cyclodextrins (CDs) has been examined by NMR techniques. The appearance of non-equivalent complexation-induced shifts of between the Δ and Λ-enantionomers of the Ru(II) trisdiimine complexes and derivatized CDs is readily observed by NMR. In particular, sulfobutyl ether-β-cyclodextrin sodium salt (SBE-β-CD), R-naphtylethyl carbamate β-cyclodextrin (RN-β-CD), and S-naphtylethyl carbamate β-cyclodextrin (SN-β-CD) showed good enantiodiscrimination for all five Ru complexes examined, which indicates that aromatic and anionic derivatizing groups are beneficial for chiral recognition. The complexation stoichiometry between SBE-β-CD and [Ru(phen)3]2+ was found to be 1:1 and binding constants reveal that Λ-[Ru(phen)3]2+ binds more strongly to SBE-β-CD than the Δ-enantiomer. Correlations between this NMR method and separative techniques based on CDs as chiral discriminating agents (i.e., selectors) are discussed in detail.  相似文献   

7.
Efavirenz (EFV) is an oral antihuman immunodeficiency virus type 1 drug with extremely poor aqueous solubility. Thus, its gastrointestinal absorption is limited by the dissolution rate of the drug. The objective of this study was to characterize the inclusion complexes of EFV with β-cyclodextrin (β-CD), hydroxypropyl β-CD (HPβCD), and randomly methylated β-CD (RMβCD) to improve the solubility and dissolution of EFV. The inclusion complexation of EFV with cyclodextrins in the liquid state was characterized by phase solubility studies. The solid-state characterization of various EFV and CD systems was performed by X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy analyses. Dissolution studies were carried out in distilled water using US Pharmacopeia dissolution rate testing equipment. Phase solubility studies provided an AL-type solubility diagram for β-CD and AP-type solubility diagram for HPβCD and RMβCD. The phase solubility data enabled calculating stability constants (K s) for EFV-βCD, EFV-HPβCD, and EFV-RMβCD systems which were 288, 469, and 1,073 M−1, respectively. The physical and kneaded mixtures of EFV with CDs generally provided higher dissolution of EFV as expected. The dissolution of EFV was substantially higher with HPβCD and RMβCD inclusion complexes prepared by the freeze drying method. Thus, complexation with HPβCD and RMβCD could possibly improve the dissolution rate-limited absorption of EFV.  相似文献   

8.
《Chirality》2017,29(8):451-457
A major challenge in pharmaceuticals for clinical applications is to alter the solubility, stability, and toxicity of drug molecules in living systems. Cyclodextrins (CDs) have the ability to form host–guest inclusion complexes with pharmaceuticals for further development of new drug formulations. The inclusion complex of clomiphene citrate (CL), a poorly water‐soluble drug, with native β‐cyclodextrin (β‐CD) was characterized by a one and two‐dimensional nuclear magnetic resonance (NMR) spectroscopic approach and also by molecular docking techniques. Here we report NMR and a computational approach in preferential isomeric selection of CL, which exists in two stereochemical isomers, enclomiphene citrate (ENC; E isomer) and zuclomiphene citrate (ZNC; Z isomer) with β‐CD. β‐CD cavity protons, namely, H‐3′ and H‐5′, experienced shielding in the presence of CL. The aromatic ring protons of the CL molecule were observed to be deshielded in the presence of β‐CD. The stoichiometric ratio of the β‐CD:CL inclusion complex was observed by NMR and found to be 1:1. The overall binding constant of β‐CD:CL inclusion complexes was based on NMR chemical shifts and was calculated to be 50.21 M−1. The change in Gibb's free energy (∆G) was calculated to be −9.80 KJ mol−1. The orientation and structure of the β‐CD:CL inclusion complexes are proposed on the basis of NMR and molecular docking studies. 2D 1H‐1H ROESY confirmed the involvement of all three aromatic rings of CL in the inclusion complexation with β‐CD in the solution, confirming the multiple equilibria between β‐CD and CL. Molecular docking and 2D 1H‐1H ROESY provide insight into the inclusion complexation of two isomers of CL into the β‐CD cavity. A molecular docking technique further provided the different binding affinities of the E and Z isomers of CL with β‐CD and confirmed the preference of the Z isomer binding for β‐CD:CL inclusion complexes. The study indicates that the formation of a hydrogen bond between –O– of CL and the hydrogen atom of the hydroxyl group of β‐CD was the main factor for noncovalent β‐CD:CL inclusion complex formation and stabilization in the aqueous phase.  相似文献   

9.
Δ9-Tetrahydrocannabinol hemisuccinate (THC-HS), an ester prodrug of Δ9-tetrahydrocannabinol (THC) has been investigated for its potential to form inclusion complexes with modified synthetic beta-cyclodextrins (CDs). Phase solubility studies were performed to determine the stoichiometric ratio of complexation of THC-HS with random methylated beta-cyclodextrin (RAMEB) and 2-hydroxypropyl beta-cyclodextrin (HPBCD). THC-HS/RAMEB and THC-HS/HPBCD solid systems were prepared by lyophilization and the lyophilized complexes were characterized by Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic spectroscopy, and molecular modeling techniques. The formation of inclusion complexes of THC-HS/RAMEB and THC-HS/HPBCD was demonstrated by an AL type curve with the slopes less than unity by the phase solubility method. The association constants for THC-HS/RAMEB and THC-HS/HPBCD were found to be 562.48 and 238.83 M−1, respectively. The stoichiometry of both of the complexes was found to be 1:1 as determined from the Job's plot. This was confirmed by 1H NMR and FT-IR techniques. The results obtained from the molecular modeling studies were in accordance with the data obtained from nuclear magnetic resonance and FT-IR. The docking studies revealed the most probable mode of binding of THC-HS with RAMEB in which the alkyl chain was submerged in the hydrophobic pocket of the CD molecule and hydrogen bonding interactions were observed between the hemisuccinate ester side chain of THC-HS and the rim hydroxy groups of RAMEB. The solubility of THC-HS was significantly higher in RAMEB compared to HPBCD. Solid dispersions of THC-HS with CDs will be further utilized to develop oral formulations of THC-HS with enhanced bioavailability.  相似文献   

10.
The complexation between two isomers of citral in lemongrass oil and varying types of cyclodextrins (CDs), α-CD, β-CD, and HP-β-CD, were studied by molecular modeling and physicochemical characterization. The results obtained revealed that the most favorable complex formation governing between citrals in lemongrass oil and CDs were found at a 1:2 mole ratio for all CDs. Complex formation between E-citral and CD was more favorable than between Z-citral and CD. The thermal stability of the inclusion complex was observed compared to the citral in the lemongrass oil. The release time course of citral from the inclusion complex was the diffusion control, and it correlated well with Avrami’s equation. The release rate constants of the E- and Z-citral inclusion complexes at 50 °C, 50% RH were observed at 1.32×10?2 h?1 and 1.43×10?2 h?1 respectively.  相似文献   

11.
Cationic trialkylammonium‐substituted α‐, β‐, and γ‐cyclodextrins containing trimethyl‐, triethyl‐, and tri‐n‐propylammonium substituent groups were synthesized and analyzed for utility as water‐soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3‐chloro‐2‐hydroxypropyl)trimethyl‐, triethyl‐, and tri‐n‐propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α‐, β‐, and γ‐cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The 1H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2‐hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C‐2 position was racemic. In several cases, the larger triethyl or tri‐n‐propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. Chirality 28:299–305, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
The aim of this work was to study the influence of β-cyclodextrin (β-CD) on the biopharmaceutic properties of diclofenac (DCF). To this purpose the physicochemical characterization of diclofenac-β-cyclodextrin binary systems was performed both in solution and solid state. Solid phase characterization was performed using differential scanning calorimetry (DSC), powder x-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR). Phase solubility analyses, and in vitro permeation experiments through a synthetic membrane were performed in solution. Moreover, DCF/β-CD interactions were studied in DMSO by1H nuclear magnetic resonance (NMR) spectroscopy. The effects of different preparation methods and drug-to-β-CD molar ratios were also evaluated. Phase solubility studies revealed 1∶1 M complexation of DCF when the freeze-drying method was used for the preparation of the binary system. The true inclusion for the freeze-dried binary system was confirmed by1H NMR spectroscopy, DSC, powder XRD, and IR studies. The dissolution study revealed that the drug dissolution rate was improved by the presence of CDs and the highest and promptest release was obtained with the freeze-dried binary system. Diffusion experiments through a silicone membrane showed that DCF diffusion was higher from the saturated drug solution (control) than the freeze-dried inclusion complexes, prepared using different DCF-β-CD molar ratios. However, the presence of the inclusion complex was able to stabilize the system giving rise to a more regular diffusion profile. Published: October 22, 2005  相似文献   

13.
Cyclodextrins (CDs) are a family of cyclic oligosaccharides composed of α‐(1,4)‐linked glucopyranose subunits. The most important feature of CDs is their ability to form inclusion complexes (host–guest complexes) with a very wide range of solid, liquid and gaseous compounds by a molecular complexation. During the last decade, a considerable number of research papers has been focused on the use of CDs to enhance fluorescence intensity of different analytes and to develop CD‐induced spectrofluorimetric method. In this review, the various spectrofluorimetric methods based on host–inclusion complex are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The effects of chiral discrimination in inclusion complexes formed by native β-cyclodextrin and its substituted form (namely methyl-β-cyclodextrin) with racemate or pure enantiomers of the non-steroidal anti-inflammatory drug ibuprofen have been investigated in water. Stability constants and complexation efficiency have been determined for these host–guest systems with a 1:1 molar ratio from phase solubility profiles, showing that in aqueous solution, methylated cyclodextrin is a better complex agent than native cyclodextrin, with more enhanced effects for the (R)-enantiomer. These results have been validated using NMR technique. In particular, 1H NMR spectra in D2O show a splitting of the signals for the methyl group and the aromatic protons close to the asymmetric centre of the racemate ibuprofen included in cyclodextrin cavity.  相似文献   

15.
In this work we describe the synthesis, Ca+2 channel blockade capacity and antioxidant power of N3,N5-bis(2-(5-methoxy-1H-indol-3-yl)ethyl)-2,6-dimethyl-4-aryl-1,4-dihydropyridine-3,5-dicarboxamides 1–9, a number of multi-target small 1,4-dihydropyridines (DHP), designed by juxtaposition of melatonin and nimodipine. As a result, we have identified antioxidant DHP 7 (Ca2+ channel blockade: 55%, and 8.78 Trolox/Equivalents), the most balanced DHP analyzed here, for potential Alzheimer’s disease therapy.  相似文献   

16.

Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  相似文献   

17.
Wen X  Liu Z  Zhu T  Zhu M  Jiang K  Huang Q 《Bioorganic chemistry》2004,32(4):223-233
Cinchonine (Cin) is the primary drug of choice in the treatment of malaria, but its poor solubility has restricted its use via the oral route. Cyclodextrins (CDs) form inclusion complexes with cinchonine to form soluble complexes. This interaction was investigated by solubility studies, electrospray ionization mass spectrometry (ESI-MS), and molecular modeling. ESI-MS evaluated successfully the nature of the solution-phase inclusion complexes. The experimental results showed that not only 1:1, but also stable 2:1 inclusion complexes can be formed between CDs and Cin. Multi-component complexes of beta-CD-Cin-beta-CD (1:1:1), gamma-CD-Cin-gamma-CD (1:1:1), and beta-CD-Cin-gamma-CD (1:1:1) were found in equimolar beta- and gamma-CD mixtures with Cin. The formation of 2:1 and multi-component 1:1:1 non-covalent CD-Cin complexes indicates that beta- and gamma-CD are able to form sandwich-type inclusion complexes with Cin in high concentrations. The phase-solubility diagram showed non-linear type A(p) profile, indicating that more than one cyclodextrin molecule is involved in the complexation of one guest molecule. Molecular modeling calculations have been carried out to rationalize the experimental findings and predict the lowest energy molecular structure of inclusion complex.  相似文献   

18.
The objective of the present research was to evaluate the physicochemical characteristics of berberine chloride and to assess the complexation of drug with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a first step towards solution dosage form development. The parameters such as log P value were determined experimentally and compared with predicted values. The pH-dependent aqueous solubility and stability were investigated following standard protocols at 25°C and 37°C. Drug solubility enhancement was attempted utilizing both surfactants and cyclodextrins (CDs), and the drug/CD complexation was studied employing various techniques such as differential scanning calorimetry, Fourier transform infrared, nuclear magnetic resonance, and scanning electron microscopy. The experimental log P value suggested that the compound is fairly hydrophilic. Berberine chloride was found to be very stable up to 6 months at all pH and temperature conditions tested. Aqueous solubility of the drug was temperature dependent and exhibited highest solubility of 4.05 ± 0.09 mM in phosphate buffer (pH 7.0) at 25°C, demonstrating the effect of buffer salts on drug solubility. Decreased drug solubility was observed with increasing concentrations of ionic surfactants such as sodium lauryl sulfate and cetyl trimethyl ammonium bromide. Phase solubility studies demonstrated the formation of berberine chloride–HPβCD inclusion complex with 1:1 stoichiometry, and the aqueous solubility of the drug improved almost 4.5-fold in the presence of 20% HPβCD. The complexation efficiency values indicated that the drug has at least threefold greater affinity for hydroxypropyl-β-CD compared to randomly methylated-β-CD. The characterization techniques confirmed inclusion complex formation between berberine chloride and HPβCD and demonstrated the feasibility of developing an oral solution dosage form of the drug.KEY WORDS: berberine chloride, complexation, cyclodextrin, solubility, surfactants  相似文献   

19.
Clotrimazole (CTZ) and cyclodextrin (CD) inclusion complexes having improved apparent water solubility were obtained from phase solubility diagrams. β‐CD (1.5% w/w) and hydroxypropyl‐β‐CD (40% w/w) offered poor CTZ solubility enhancements (12 and 384 times, respectively). Unexpectedly, the apparent solubility of CTZ was 9980 times increased from 0.4 µg.mL?1 (1.42 μM) without CD to 4.89 mg.mL?1 (14.9 mM) using randomly‐methylated β‐CD (Me‐β‐CD) (40% w/w). This is the highest apparent CTZ solubility improvement ever reported in the literature using conventional CDs. Quantitative nuclear magnetic resonance (1H‐NMR) coupled with two‐dimensional nuclear Overhauser effect (NOESY) experiments and molecular docking calculations showed that the highest interactions with Me‐β‐CD were reported for CTZ two phenyl groups. A lower interaction was reported for chlorophenyl, while imidazole had the weakest interaction with Me‐β‐CD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of β-CD and HP-β-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号