首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of an acyclic pentapeptide, Boc-Gly-Gly-Leu-Aib-Val-OMe, reveals an extended conformation for the Gly-Gly segment, in contrast to the helical conformation determined earlier in the octapeptide Boc-Leu-Aib-Val-Gly-Gly-Leu-Aib-Val-OMe [I. L. Karle, A. Banerjee, S. Bhattacharjya, and P. Balaram [1996] Biopolymers, Vol. 38, pp. 515–526). The pentapeptide crystallizes in space group P21 with one molecule in the asymmetric unit. The cell parameters are: a = 10.979(2) Å, b = 9.625(2) Å, c = 14.141(2) Å, and β = 96.93(1)°, R = 6.7% for 2501 reflections (I > 3σ(I)). The Gly-Gly segment is extended (ϕ1 = −92°, ψ1 = −133°, ϕ2 = 140°, ψ2 = 170°), while the Leu-Aib segment adopts a type II β-turn conformation (ϕ3 = −61°, ψ3 = 130°, ϕ4 = 71°, ψ4 = 6°). The observed conformation for the pentapeptide permits rationalization of a structural transition observed for the octapeptide in solution. An analysis of Gly-Gly segments in peptide crystal structures shows a preference for either β-turn or extended conformations. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   

3.
The synthesis and X-ray diffraction analysis of two dipeptide taste ligands have been carried out as part of our study of the molecular basis of taste. The compounds L -aspartyl-D -α-methylphenylalanine methyl ester [L -Asp-D -(αMe)Phe-OMe] and L -aspartyl-D -alanyl-2,2,5,5-tetramethylcyclopentanyl ester [L -Asp-D -Ala-OTMCP] elicit bitter and sweet taste, respectively. The C-terminal residues of the two analogues adopt distinctly different conformations in the solid state. The aspartyl moiety assumes the same conformation found in other dipeptide taste ligands with the side-chain carboxylate and the amino groups formaing a zwitterionic ring with a conformation defined by ψ,χX1 = 157.7°, ?61.5° for L -Asp-D -Ala-OTMCP and 151.0°, ?68.8° for L -Asp-D -(αMe)Phe-OMe. In the second residue, a left-handed helical conformations is observed for the (αMe)Phe residue of L -Asp-D -(αMe)Phe-OMe with ?2 = 49.0° and ψ2 = 47.9°, while the Ala residue of L -Asp-D -Ala-OTMCP adopts a semi-exextended conformation characterized by dihedral angles ?2 = 62.8° and ψ2 = ?139.9°. The solid-state structure of the bitter L -Asp-D -(αMe)Phe-OMe is extended; while the crystal structure of the sweet L -Asp-D -OTMCP roughly adopts the typical L-shaped structure shown by other sweeteners. The data of L -Asp-D -(αMe)Phe-OMe are compared with those of its diastereoisomer L -Asp-L -(αMe)Phe-OMe. Conformational analysis of the two taste ligands in solution by NMR and computer simulations agrees well with our model for sweet and bitter tastes.  相似文献   

4.
The crystal structure of a dipeptide L -leucyl–L -leucine (C12H24N2O3) has been determined. The crystals are monoclinic, space group P21, with a = 5.434(4) Å, b = 15.712(7) Å, c = 11.275(2) Å, β = 100.41(1)°, and Z = 2. The crystals contain one molecule of dimethyl sulfoxide (DMSO) as solvent of crystallization for each dipeptide molecule. The structure has been solved by direct methods and refined to a final R index of 0.059 for 920 reflections (sinθ/λ ? 0.60 Å?1) with I ? 2σ (I). The trans peptide unit shows substantial degree of non-planarity (Δω = 14°). The peptide backbone adopts an extended conformation with torsion angles of ψ1 = 138(1)°, ω1 = 166(1)°, ?2 = ? 149.3(7)°, ψ21 = 164.2(7)°, and ψ22 = ? 15(1)°. For the first leucyl residue, the side-chain conformation is specified by the torsion angles 1χ1 = 176.7(7)°, 1χ21 = 62(1)°, 1χ22 = ? 177.4(8)°; the second leucyl residue adopts a Sterically unfavorable conformation with 2χ1 = 61(1)°, 2χ21 = 97(1)°, and 2χ22 = ?151(1)°. The packing involves head-to-tail interaction of peptide molecules and segregation of polar and nonpolar regions. The DMSO molecule is strongly hydrogen bonded to the terminal NH group. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

6.
The crystal and molecular structure of N-benzyloxycarbonyl-α-aminoisobutyryl-L -prolyl methylamide, the amino terminal dipeptide fragment of alamethicin, has been determined using direct methods. The compound crystallizes in the orthorhombic system with the space group P212121. Cell dimensions are a = 7.705 Å, b = 11.365 Å, and c = 21.904 Å. The structure has been refined using conventional procedures to a final R factor of 0.054. The molecular structure possesses a 4 → 1 intramolecular N-H—O hydrogen bond formed between the CO group of the urethane moiety and the NH group of the methylamide function. The peptide backbone adopts the type III β-turn conformation, with ?2 = ?51.0°, ψ2 = ?39.7°, ?3 = ?65.0°, ψ3 = ?25.4°. An unusual feature is the occurrence of the proline residue at position 3 of the β-turn. The observed structure supports the view that Aib residues initiate the formation of type III β-turn conformations. The pyrrolidine ring is puckered in Cγ-exo fashion.  相似文献   

7.
Conformational studies of -glucans   总被引:1,自引:0,他引:1  
A study of the effect of linkage on the possible conformations of di-and polysaccharides of α-D -glucose and also the probable intramolecular hydrogen bonds has been made. The differences in the nature of linkage is shown to effect the energetically preferred conformations; (1 → 2) linkages lead only to righthanded helical conformations, (1 → 3) linkages lead to extended as well as both left and righthanded helical conformations; (1 → 4) linkages lead to both right-and lefthanded wide helical conformations. The possible hydrogen bonds between adjacent residues are also dependent on the nature of the linkage. A comparison of the conformational data of α-D -glucans with those of β-D -glucans has indicated that the favored conformations and hydrogen bonds between contiguous residues in the chain are influenced by the configuration at the anomeric carbon atom in all the three types of polysaccharides. From the energy calculations a probable conformation (?M = ?10°, ψM = ?30°, ?N = ?23°, ψN = ?19°) has also been proposed for crystalline mycodextran in conformity with x-ray data. This conformation contains two types of hydrogen bonds between contiguous residues one between 0–2 and 0–3 atoms at (1 → 4) linkage and the other between 0?2 and 0–4 atoms at (1 → 3) linkage in the chain. The conformation of maltose unit (?10°,?30°) that is likely to occur in the crystalline mycodextran coincides with the minimum energy conformation of maltose.  相似文献   

8.
The crystal structures of the isovaline (Iva) containing dipeptides, Boc-D -Iva-L -Pro-OBz l and Boc-L -Iva-L -Pro-OBz l, were determined by x-ray diffraction. The diastereomeric peptides were shown to adopt unturned conformations closely similar to each other (?Iva 52°, ψIva 46°, ?Pro–65°, and ψPro 143° for D -Iva-L -Pro sequence and ?Iva 52°, ψIva 44°, ?Pro ?63°, and ψpro 148° for L -Iva-L -Pro sequence). The Pro ring of each peptide was in Cγ-endo conformation. The unusually large ∠CIva-NPro-C values (131° in both peptides) were observed, that was due to steric repulsion between the δ-methylene of Pro and the alkyl side chain of Iva residue. These conformations were essentially the same as that of the corresponding α-aminoisobutyric acid (Aib)-containing peptide Boc-Aib-L -Pro-OBz l. The result has demonstrated that replacement of either one of the two methyl groups of the Aib residue in Boc-Aib-L -Pro-OBz l with an ethyl group does not cause any significant change in the unturned conformation of the dipeptide. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Abstract

The total potential energy including nonbondedJuntorsional and hydrogen bond contributions has been computed for pustulan, a (1?6) linked β-D-glucan polysaccharide, as a function of rotational angles φ, ψ, and ω The (φ, ψ, ω)-space contains many local minima and at least three distinct deep minima. Two minima at (φ, ψ, ω)=(25°,190°,gg) and (φ, ψ, ω)=(65°,150°,gg) of almost equal energies have helical parameters (n=5.2, A=1.0Å) and (n=3.2, h= 1.5Å), respectively. A third minimum at (φ, ψ, ω)=(40°,70°gt) leads to an extended zig-zag structure (n=2.2, h=2.2Å). Energy maps obtained for gentiobiose, the disaccharide of pustulan, also reveal many local minima and the small energy differences among them indicate that gentiobiose is extremely flexible. Gentiodextrins, a family of cyclic molecules of (l?6)-β-D- glucose residues, were also studied. Conformations free from steric hindrance were found for cyclic molecules with three to six glucose residues.  相似文献   

10.
The dehydro-residue containing peptides N-Ac-dehydro-Phe-L -Leu-OCH3 ( I ) and N-Ac-dehydro-Phe-NorVal-OCH3 ( II ) were synthesized by the usual workup procedures. The peptides crystallize from their solutions in methanol in space group P65: ( I ) a = b = 12.528(2) Å, c = 21.653(5) Å; ( II ) a = b = 12.532(2) Å, c = 21.695(4) Å. The structures were determined by direct methods. Both peptides adopt similar conformations with ?,ψ of dehydro-Phe as follows: ( I ) ?57.0(5)° and ?37.0(5)°; ( II ) ?56.0(5),° and ?37.5(5)°. The observed data on dehydro-Phe when placed at the (i + 1) position show that the ?,ψ values of dehydro-Phe are either ?60°, 140° or ?60°, ?30°. The conformation of ?60°, 140° can be accommodated only with a flexible residue at the (i + 2) position while the ?,ψ values of ?60°, ?30° are obtained with a bulky residue at the (i + 2) position as in the present structures. The molecules are packed in a helical way along the c axis. These are held by two strong intermolecular hydrogen bonds involving both NH as donors and acetyl group and dehydro-Phe oxygen atoms as acceptors. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The role of end groups in determining stereochemistry and packing in hydrophobic helical peptides has been investigated using an α-aminosobutyric acid (Aib) containing model nonapeptide sequence. In contrast to the Boc-analogue, Ac-(Aib-Val-Ala-Leu)2-Aib-OMe crystallizes with two independent molecules in a triclinic cell. The cell parameters are: space group P1, a=10.100(2)Å, b=15.194(4) Å, c=19.948(5) Å, α=63.12(2)°, β=88.03(2)°, γ=88.61(2)°, Z=2, R=7.96% for 5140 data where |Fo|>3σ(F). The two independent molecules alternate in infinite columns formed by head-to-tail hydrogen bonding. The helices in the two independent molecules are quite similar to each other but one molecule is rotated ≈?123° about its helix axis with respect to the other. All the helical columns pack parallel to each other in the crystal. Replacement of the bulky Boc group does not lead to any major changes in conformation. Packing characteristics are also similar to those observed for similar helical peptides.  相似文献   

12.
α,β-Dehydro amino acid residues are known to constrain the peptide backbone to the β-bend conformation. A pentapeptide containing only one α,β dehydrophenylalanine (ΔPhe) residue has been synthesized and crystallized, and its solid state conformation has been determined. The pentapeptide Boc-Leu-Phe-Ala-ΔPhe-Leu-OMe (C39H55N5O8, Mw = 721.9) was crystallized from aqueous methanol. Monoclinic space group was P21, a = 10.290(2)°, b = 17.149(2)°, c = 12.179(2) Å, β = 96.64(1)° with two molecules in the unit cell. The x-ray (Mo Kα, λ = 0.7107A) intensity data were collected using a CAD4 diffractometer. The crystal structure was determined by direct methods and refined using least-squares technique. R = 4.4% and Rw = 5.4% for 4403 reflections having |F0| ≥ 3σ(|F0|). All the peptide links are trans and the pentapeptide molecule assumes 310-helical conformation. The mean ?,ψ values, averaged over the first four residues, are ?64.4°, ?22.4° respectively. There are three 4 → 1 intramolecular hydrogen bonds, characteristic of 310,-helix. In the crystal, the peptide helices interact through two head-to-tail. N? H? O intermolecular hydrogen bonds. The peptide molecules related by 21, screw symmetry form a skewed assembly of helices. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
A single-crystal x-ray diffraction analysis of Boc-L -Ala-D -aIle-L -Ile-OMe has been carried out. The analysis has shown (a) that the tripeptide molecules have in part an α-extended conformation, the torsion angles of the L -Ala and D -aIle residues being φ1 = ?75.1° and ψ1 = ?25.8° and φ2 = 67.3° and ψ2 = 44.1°, respectively, and (b) that the molecules are organized in rippled planes where they occur in relative antiparallel orientation linked together side by side by H bonds. This molecular organization of the tripeptide corresponds closely to that of an antiparallel α-pleated sheet, and likely constitutes the first example of a structure of this kind for which a characterization at the atomic level has been achieved. A molecular dynamics study has shown that the molecular conformation of the tripeptide in the crystalline state is determined primarily by intermolecular interactions. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
In 1968 C. Venkatachalam (Biopolymers, Vol. 6, pp. 1425–1436) predicted the ideal forms of β-turns (type I, type II, etc.) based entirely on theoretical calculations. Subsequently, over a thousand x-ray structures of different globular proteins have been analyzed, with results suggesting that the most important form among the hairpin conformers is the type I β-turn. For the latter type of hairpin conformation, the original computations had predicted ϕi+1 = −60°, ψi+1 = −30°, ϕi+2 = −90°, and ψi+2 = 0° as backbone torsion angle values, and these have been used from that time as reference values for the identification of the type I β-turn. However, it has never been clarified whether these “ideal” backbone torsion angle values exist in real structures, or whether these torsion angles are only “theoretical values.” Using the most recent release of the Protein Data Bank (1994), a survey has been made to assign amino acid pairs that approach the ideal form of the type I β-turn. The analysis resulted in four sequences where the deviation from ideal values for any main-chain torsion angles was less than 2°. In order to determine whether such a backbone fold is possible only in proteins owing to fortuitous cooperation of different folding effects, or whether it occurs even in short peptides, various attempts have been made to design the optimal amino acid sequence. Such a peptide model compound adopting precisely the predicted torsion angle values [ϕi+1 = −60°, ψi+1 = −30°, ϕi+2 = −90°, and ψi+2 = 0°] could provide valuable information. The solid state conformation of cyclo[(δ) Ava-Gly-Pro-Thr (O1Bu)-Gly] reported herein, incorporating the -Pro-Thr- subunit, yields values suggesting that the “ideal” type I β-turn is even possible for a peptide where there are no major environmental effects present. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
An apolar synthetic octapeptide, Boc-(Ala-Aib)4-OMe, was crystallized in the triclinic space group P1 with cell dimensions a = 11.558 Å, b = 11.643 Å, c = 9.650 Å, α = 120.220°, β = 107.000°, γ = 90.430°, V = 1055.889 Å3, Z = 1, C34H60O11N8·H2O. The calculated crystal density was 1.217 g/cm3 and the absorption coefficient ? was 6.1. All the intrahelical hydrogen bonds are of the 310 type, but the torsion angles, ? and ψ, of Ala(5) and Ala(7) deviate from the standard values. The distortion of the 310-helix at the C-terminal half is due to accommodation of the bulky Boc group of an adjacent peptide in the nacking. A water molecule is held between the N-terminal of one peptide and the C-terminal of the other. The oxygen atom of water forms hydrogen bonds with N (1) -H and N (2) -H, which are not involved in the intrahelical hydrogen bonds. The hydrogen atoms of water also formed hydrogen bonds with carbonyl oxygens of the adjacent peptide molecule. On the other hand, 1H-nmr analysis revealed that the octapeptide took an α-helical structure in a CD3CN solution. The longer peptides, Boc-(Ala-Aib)6-OMe and Boc-(Ala-Aib)8-OMe, were also shown to take an α-helical structure in a CD3CN solution. An α-helical conformation of the hexadecapeptide in the solid state was suggested by x-ray analysis of the crystalline structure. Thus, the critical length for transition from the 310- to α-helix of Boc-(Ala-Aib)n-OMe is 8. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
The effect of the number of methylene groups in the side chains on the conformation of polypeptides is assessed for three poly(L -lysine) homologs with R = –(CH2)nNH2. Circular dichroism studies show a pH-induced helix–coil transition in 0.05 M KCl with midpoints at 9.6, 9.0, and 8.7 for n = 5, 6, and 7, respectively, as compared with 10.1 for (Lys)x (n = 4). Homologs with n = 6 and 7 could be partially helical even when the side groups are fully charged (with n = 7, the compound is highly aggregated above pH 9.1). Thus, the longer the number of methylene groups the more stable is the helical conformation of these homologs. Potentiometric titration of the n = 5 homolog gives a ΔG° of ?310 cal/mol (residue) for the uncharged coil-to-helix transition at 25°C. The corresponding ΔH° and ΔS° are ?1740 cal/mol (residue) and ?4.8 e.u./mol (residue). Unlike (Lys)x, the uncharged helix-to-β transition is slow and incomplete even after heating at 80°C for 1 hr. Addition of methanol enhances the helical formation in neutral solution with midpoints at 72, 52, and 27% methanol (v/v) for n = 5, 6, and 7, respectively [cf. 88% for (Lys)x]. Addition of sodium dodecyl sulfate induces a coil-to-helix transition for all three homologs in contrast with the β form of (Lys)x under similar conditions.  相似文献   

17.
The synthesis of the tetrapeptide benzyloxycarbonyl(α-aminoisobutyryl-L -prolyl)2-methyl ester (Z-(Aib-Pro)2-OMe) and an analysis of its conformation in solution and the solid state are reported. Stepwise synthesis using dicyclohexylcarbodiimide leads to racemization at Pro(2). Evidence for the presence of diastereomeric tetrapeptides is obtained from 270-MHz1H-nmr and 67.89-MHz 13C-nmr. The all-L tetrapeptide is obtained by fractional crystallization from ethyl acetate. The NH of Aib(3) is shown to be involved in an intramo-lecular hydrogen bond by variable-temperature 1H-nmr and the solvent dependence of NH chemical shifts. The results are consistent with a β-turn conformation with Aib(1) and Pro(2) at the corners stabilized by a 4 → 1 hydrogen bond. The molecule crystallizes in the space group P212121, with a = 8.839, b = 14.938, and c = 22.015 Å. The structure has been refined to an R value of 0.051. The peptide backbone is all-trans, and a 4 → 1 hydrogen bond, between the CO group of the urethane moiety and Aib(3) NH, is observed. Aib(1) and Pro(2) occupy the corner positions of a type I β-turn with ? = ?55.4°, Ψ = ?31.3° for Aib(1) and ? = ?71.6°, Ψ = ?38° for Pro(2). The tertiary amide unit linking Pro(2) and Aib(3) is significantly distorted from planarity (Δω = 14.3°).  相似文献   

18.
The protected dipeptide Boc-Aib-Pro-OBzl, C21H30N2O5, crystallizes in the orthorhombic space group P212121, with a = 12.820, b = 10.529, c = 16.548Å, and Z = 4. The crystal structure has been solved by direct methods and refined to an R value of 0.074 for 1352 reflections. The Boc-Aib-Pro-OBzl molecule has been shown to adopt an unfolded conformation in the solid state with ?Aib = 50.5°, ΨAib = 45.3°, ?Pro = ?64.6°, and ΨPro = 148.1°. The result is in marked contrast with the reported crystal structure of Cbz-Aib-Pro-NHMe, which adopts an intramolecularly hydrogen-bonded β-turn conformation. Comparison with 13 reported conformations of Aib-Pro sequences in the crystalline state revealed that the Aib-Pro sequence adopts an unfolded conformation if the residue that immediately follows the dipeptide sequence possesses no hydrogen available for hydrogen bonding, while a β-turn conformation is preferred if the Pro residue is followed by an NH group. Correlation between pyrrolidine ring puckering of the Pro residue and main-chain conformation in Aib-Pro sequences is discussed.  相似文献   

19.
In order to test the helical preference of short oligo-L -leucines, we crystallized the tripeptide L -leucyl-L .-leucyl-L -leucine (LLL) and carried out x-ray diffraction studies of it (L -leucyl-L -leucyl-L leucine)2. 3CH3OH. H2O, (C39H84N6O12). Crystallized in the monoclinic system, space group P21, cell parameters: a = 12.031(2), b = 15.578(3), c = 14.087(2) Å, α = 90°, β = 97.29(1)°, γ = 90°, V = 2618.6 Å3. MW = 829.1, Dc = 1.051 gcm?3. R index of 0.057 for 4213 reflections (λcukα = 1.5418 Å) > 2σ. LLL takes tip the β-sheet rather than a helical conformation in the crystalline stale. The three methanol molecules and the water molecule that constitute the solvent of crystallization form a network of hydrogen bonds to the LLL molecules and to one another. It is rather remarkable that though A and L have stronger helical preferences than G, neither AAA nor LLL form the crystalline helix but GAL does, indicating that the helical preferences depend on the sequence context. The residue L2 in molecule A and the residues L1 and L3 of molecule B do not show the preferred conformation for forming helices. Further, very remarkably. LLL exhibits a unique super secondary feature of the protein folding topology, namely the twisted β-sheet. Where as most short peptides show only the classical p-sheet conformation. Thai even the tripeptide LLL is able to exhibit the twisted β-sheet conformation, and with the correct left-handed twist this suggests that even very short peptide segments possess the ability to assume several of the characteristic topological features exhibited by proteins. An extensive review of tripeptide conformations has been carried out and some results of this study have been included here. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The crystal structure of the nonapeptide Boc-D -Phe-Aib-Aib-Aib-Aib-Gly-Leu-Aib-AibOMe (I), which is an analogue of the N-terminal sequence of antiamoebins and emerimicins, establishes a completely 310-helical conformation with seven successive intramolecular 4 → 1 hydrogen bonds. The average, ?, ψ values for residues 1–8 are ?59° and ?32°, respectively. Crystal parameters are C47H77N9O12, space group P1, a = 10.636(4) Å, b = 11.239(4) Å, c = 12.227(6) Å, α = 101.17(4)°, β = 97.22(4)°, γ = 89.80(3)°, Z = 1, R = 5.95% for 3018 data with |F0| > 3α(F), resolution 0.93 Å. The use of the torsion angle κ = C(i ? 1)N(i)Cα(i)Cβ(i), where κ = 68° for D -Phe and κ = 164° for L -Leu, confirms the opposite configurations of these residues. The ?, ψ values of ?62° and ?32° at D -Phe are unusual, since this region is characteristic of residues with L configurations. Peptide I possesses only two chiral residues of opposing configuration. The observed right-handed 310-helical structure suggests that helix sense has probably been determined by the stereo-chemical preferences of the Leu residue. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号