首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal state conformations of three peptides containing the α,α-dialkylated residues. α,α-di-n-propylglycine (Dpg) and α,α-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Alu-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II β-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: ? = 66.2°, ψ = 19.3°; III: ? = 66.5°. ψ = 21.1°) deviate appreciably from ideal values for the i + 2 residue in a type II β-turn. In both peptides the observed (N…O) distances between the Boc CO and Ala (3) NH groups are far too long (1: 3.44 Å: III: 3.63 Å) for an intramolecular 4 → 1 hydrogen bond. Boc-Ala-Dpg-Ata-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules HA and HB adopt consecutive β-turn (type III-III in HA and type III-I in IIB) or incipient 310-helical structures, stabilized by two intramolecular 4 → 1 hydrogen bonds. In all four molecules the bond angle N-Cα-C′ (τ) at the Dxg residues are ≥ 110°. The observation of conformational angles in the helical region of ?,ψ space at these residues is consistent with theoretical predictions. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   

3.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

4.
α,β-Dehydro amino acid residues are known to constrain the peptide backbone to the β-bend conformation. A pentapeptide containing only one α,β dehydrophenylalanine (ΔPhe) residue has been synthesized and crystallized, and its solid state conformation has been determined. The pentapeptide Boc-Leu-Phe-Ala-ΔPhe-Leu-OMe (C39H55N5O8, Mw = 721.9) was crystallized from aqueous methanol. Monoclinic space group was P21, a = 10.290(2)°, b = 17.149(2)°, c = 12.179(2) Å, β = 96.64(1)° with two molecules in the unit cell. The x-ray (Mo Kα, λ = 0.7107A) intensity data were collected using a CAD4 diffractometer. The crystal structure was determined by direct methods and refined using least-squares technique. R = 4.4% and Rw = 5.4% for 4403 reflections having |F0| ≥ 3σ(|F0|). All the peptide links are trans and the pentapeptide molecule assumes 310-helical conformation. The mean ?,ψ values, averaged over the first four residues, are ?64.4°, ?22.4° respectively. There are three 4 → 1 intramolecular hydrogen bonds, characteristic of 310,-helix. In the crystal, the peptide helices interact through two head-to-tail. N? H? O intermolecular hydrogen bonds. The peptide molecules related by 21, screw symmetry form a skewed assembly of helices. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Some theoretical studies have predicted that the conformational freedom of the α-aminoisobutyric acid (H-Aib-OH) residue is restricted to the α-helical region of the Ramachandran map. In order to obtain conformational experimental data, two model peptide derivatives, MeCO-Aib-NHMe 1 and ButCO-LPro-Aib-NHMe 2 , have been investigated. The Aib dipeptide 1 crystallizes in the monoclinic system (a = 12.71 Å, b = 10.19 Å, c = 7.29 Å, β = 110.02°, Cc space group) and its crystal structure was elucidated by x-ray diffraction analysis. The azimuthal angles depicting the molecular conformation (? = ?55.5°, ψ = ?39.3°) fall in the α-helical region of the Ramachandran map and molecules are hydrogen-bonded in a three-dimensional network. In CCl4 solution, ir spectroscopy provides evidence for the occurrence of the so-called 5 and C7 conformers stabilized by the intramolecular ii and i + 2 → i hydrogen bonds, respectively. The tripeptide 2 was studied in various solvents [CCl4, CD2Cl2, CDCl3, (CD3)2SO, and D2O] by ir and pmr spectroscopies. It was shown to accommodate predominantly the βII folded state stabilized by the i + 3 → i hydrogen bond. All these experimental findings indicate that the Aib residue displays the same conformational behavior as the other natural chiral amino acid residues.  相似文献   

6.
The crystal structure of the nonapeptide Boc-D -Phe-Aib-Aib-Aib-Aib-Gly-Leu-Aib-AibOMe (I), which is an analogue of the N-terminal sequence of antiamoebins and emerimicins, establishes a completely 310-helical conformation with seven successive intramolecular 4 → 1 hydrogen bonds. The average, ?, ψ values for residues 1–8 are ?59° and ?32°, respectively. Crystal parameters are C47H77N9O12, space group P1, a = 10.636(4) Å, b = 11.239(4) Å, c = 12.227(6) Å, α = 101.17(4)°, β = 97.22(4)°, γ = 89.80(3)°, Z = 1, R = 5.95% for 3018 data with |F0| > 3α(F), resolution 0.93 Å. The use of the torsion angle κ = C(i ? 1)N(i)Cα(i)Cβ(i), where κ = 68° for D -Phe and κ = 164° for L -Leu, confirms the opposite configurations of these residues. The ?, ψ values of ?62° and ?32° at D -Phe are unusual, since this region is characteristic of residues with L configurations. Peptide I possesses only two chiral residues of opposing configuration. The observed right-handed 310-helical structure suggests that helix sense has probably been determined by the stereo-chemical preferences of the Leu residue. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The crystal and molecular structure of N-benzyloxycarbonyl-α-aminoisobutyryl-L -prolyl methylamide, the amino terminal dipeptide fragment of alamethicin, has been determined using direct methods. The compound crystallizes in the orthorhombic system with the space group P212121. Cell dimensions are a = 7.705 Å, b = 11.365 Å, and c = 21.904 Å. The structure has been refined using conventional procedures to a final R factor of 0.054. The molecular structure possesses a 4 → 1 intramolecular N-H—O hydrogen bond formed between the CO group of the urethane moiety and the NH group of the methylamide function. The peptide backbone adopts the type III β-turn conformation, with ?2 = ?51.0°, ψ2 = ?39.7°, ?3 = ?65.0°, ψ3 = ?25.4°. An unusual feature is the occurrence of the proline residue at position 3 of the β-turn. The observed structure supports the view that Aib residues initiate the formation of type III β-turn conformations. The pyrrolidine ring is puckered in Cγ-exo fashion.  相似文献   

8.
Crystals have been obtained of a ternary complex containing the yeast a1/α2 homeodomain heterodimer bound to a 21-base pair DNA site containing two 5′ overhanging bases at each end. The crystals are grown from cobaltic hexamine and form in space group P61 or P65 with a = b = 133 Å, c = 45.4 Å. Crystals that are flash-frozen at ?179°C diffract to 2.7 Å along the c-axis and to 2.4 Å in perpendicular directions. The crystals contain one protein–DNA complex in the crystallographic asymmetric unit. © 1995 Wiley-Liss, Inc.  相似文献   

9.
In the present paper we describe the synthesis, purification, single crystal x-ray analysis, and nmr solution characterization, combined with restrained molecular dynamic simulations, of the cyclic hexapeptide cyclo-(L -Pro-L -Phe-β-Ala)2. The peptide was synthesized by classical solution methods and the cyclization of the free hexapeptide was accomplished in good yields in diluted methylene chloride solution using N,N-dicyclohexyl-carbodiimide. The compound crystallizes in the monoclinic space group P21 from methanol-dichloro-methane solution. The two identical halves of the molecule adopt in the solid state two different conformations. One β-Ala-L -Pro peptide bond is trans, while the second is cis. The molecule is present in dimethylsulfoxide d6 solutions as a mixture of conformational families. One of these corresponds to a C2 symmetrical molecule with both β-Ala-Pro cis peptide bonds, while the second major conformation is very similar to that observed in the solid state. All Pro-Phe segments, both in the solid state and the symmetrical and unsym-metrical solution conformations, display ?,ψ angles close to that of position i + 1 and i + 2 of type II β-turns. In addition, the segments preceeded by a trans β-Ala-Pro peptide bond are characterized by a typical ii + 3 hydrogen bond, which is absent in the conformer containing a cis β-Ala-Pro peptide bond. The latter conformation corresponds to a new structural domain we define as the “pseudo type II β-turn.” © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Many of the theoretical methods used for predicting the occurrence of α-helices in peptides are based on the helical preferences of amino acid monomer residues. In order to check whether the helix-forming tendencies are based on helical preferences of monomers only or also on their sequence contexts, we synthesized permuted sequences of the tripeptides GAP, GAV, and GAL that formed crystalline helices with near α-helical conformation. The tripeptides AFG and FAG formed good crystals. The x-ray crystallographic studies of AFG and FAG showed that though they contain the same amino acids as GAF but in different sequences, they do not assume a helical conformation in the solid state. On the other hand, AFG and FAG, which contain the same amino acids but in a different sequence, exhibit nearly the same backbone torsion angles corresponding to an incipient formation of a β-bulge, and exhibit nearly identical unit cells and crystal structures. Based on these results, it appears that the helix-forming tendencies of amino acids depend on the sequence context in which it occurs in a polypeptide. The synthetic peptides AFG (L -Ala-L -Phe-Gly) and FAG (L -Phe-L -Ala-Gly), C14H19N3O4, crystallize in the orthorhombic space group P212121, with a = 5. 232(1), b = 14. 622(2), c = 19. 157(3) Å, Dx = 1.329 g cm?3, Z = 4, R = 0.041 for 549 reflections for AFG, and with a = 5. 488(2), b = 14.189 (1), c = 18.562(1) Å, Dx = 1.348 g cm?3, Z = 4, R = 0.038 for 919 reflections for FAG. Unlike the other tripeptides GAF, GGV, GAL, and GAI, the crystals of AFG and FAG do not contain water molecule, and the molecules of AFG or FAG do not show the helical conformation. The torsion angles at the backbone of the peptide are ψ1 = 144. 5(5)°; ?2, ψ2 = ?98.1(6)°, ?65.2(6)° ?3, ψ13, ψ31 = 154.1(6)°, ?173.6(6)°, 6.9(8)° for AFG; and ψ1 = 162.6(3)°; ?2, ψ2 = ?96.7(4)°, ?46.3(4)°; ?3, ψ13, ψ31 = 150.1(3)°, ?168.7(3)°, 12.2(5)° for FAG. The conformation angles (? ψ) for residues 2 and 3 for both AFG and FAG show incipient formation of an β-bulge. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
An apolar synthetic octapeptide, Boc-(Ala-Aib)4-OMe, was crystallized in the triclinic space group P1 with cell dimensions a = 11.558 Å, b = 11.643 Å, c = 9.650 Å, α = 120.220°, β = 107.000°, γ = 90.430°, V = 1055.889 Å3, Z = 1, C34H60O11N8·H2O. The calculated crystal density was 1.217 g/cm3 and the absorption coefficient ? was 6.1. All the intrahelical hydrogen bonds are of the 310 type, but the torsion angles, ? and ψ, of Ala(5) and Ala(7) deviate from the standard values. The distortion of the 310-helix at the C-terminal half is due to accommodation of the bulky Boc group of an adjacent peptide in the nacking. A water molecule is held between the N-terminal of one peptide and the C-terminal of the other. The oxygen atom of water forms hydrogen bonds with N (1) -H and N (2) -H, which are not involved in the intrahelical hydrogen bonds. The hydrogen atoms of water also formed hydrogen bonds with carbonyl oxygens of the adjacent peptide molecule. On the other hand, 1H-nmr analysis revealed that the octapeptide took an α-helical structure in a CD3CN solution. The longer peptides, Boc-(Ala-Aib)6-OMe and Boc-(Ala-Aib)8-OMe, were also shown to take an α-helical structure in a CD3CN solution. An α-helical conformation of the hexadecapeptide in the solid state was suggested by x-ray analysis of the crystalline structure. Thus, the critical length for transition from the 310- to α-helix of Boc-(Ala-Aib)n-OMe is 8. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The αII-helix (? = ?70.47°, ψ = ?35.75°) is a structure having the same n and h as the (standard) αI-helix (? = ?57.37°, ψ = ?47.49°). Its conformational angles are commonly found in proteins. Using an improved α-helix force field, we have compared the vibrational frequencies of these two structures. Despite the small conformational differences, there are significant predicted differences in frequencies, particularly in the amide A, amide I, and amide II bands, and in the conformation-sensitive region below 900 cm?1. This analysis indicates that αII-helices are likely to be present in bacteriorhodopsin [Krimm, S. & Dwivedi, A. M. (1982) Science 216 , 407–408].  相似文献   

13.
The bifunctional flavoenzyme 5-hydroxyvaleryl-CoA dehydratase/ dehydrogenase has been crystallized from solutions containing ammonium sulfate (form I) or polyethylene glycol (form II) as precipitant. In both cases, the crystals grew in the monoclinic space group C2. The unit cell dimensions for form I crystals were determined as a = 162.8 Å, b = 71.8 Å, c = 83.5 Å, β = 109.1°. Corresponding values for form II crystals were a = 161.2 Å, b = 71.6 Å, c = 82.2 Å, β = 109.3°. In both cases most probably there are two monomers per asymmetric unit. The crystals diffract to about 2 Å resolution and are rather stable in the X-ray beam. © 1994 Wiley-Liss, Inc.  相似文献   

14.
A new representation of protein structure is obtained by the angular coordinate transformations ηi = (?i+1i)/2 and ξi = ?i+1i with careful mathematical attention to the cyclical boundary conditions of all of the variables involved. From published ?-ψ data it is possible to obtain a new η-ξ plot. As the angle ξi is varied from – 180° through 0° to + 180° in this plot, the local helicity of the polypeptide chain changes continuously and contiguously without sudden reversals in handedness. The variable, ηi, gives the torsional position of the ith peptide group. Some peptide groups in proteins, such as the second peptide residue in a type II β-turn, are nonhydrogen-bonded and can undergo considerable torsional oscillation. In such cases the η angle should be represented by a line whose length reflects the allowed dynamical variations in the peptide torsional position. Certain peptide residues in proteins may be able to undergo a complete torsional rotation of 360°. Such residues would be represented on the η-ξ plot as a straight line across the plot parallel to the abscissa. Other examples of the possible usefulness of this plot are also given.  相似文献   

15.
The methods suggested earlier for the analysis and representation of protein structural data are now extended to the helical regions in finer details. These enable better handling of characterization of bends and distortions, for which statistical parameters are also developed. Using latest myoglobin data, best experimental parameters for the α-helix are deduced to be rN = 1.55 (0.13) Å, r = 2.28 (0.12) Å, rC′ = 1.70 (0.10) Å, r0 = 2.02 (0.12) Å, ? = 100.5 (2.3)°, and t = 1.495 (0.055) Å.  相似文献   

16.
The solid state conformations of cyclo[Gly–Proψ[CH2S]Gly–D –Phe–Pro] and cyclo[Gly–Proψ[CH2–(S)–SO]Gly–D –Phe–Pro] have been characterized by X-ray diffraction analysis. Crystals of the sulfide trihydrate are orthorhombic, P212121, with a = 10.156(3) Å, b = 11.704(3) Å, c = 21.913(4) Å, and Z = 4. Crystals of the sulfoxide are monoclinic, P21, with a = 10.662(1) Å, b = 8.552(3) Å, c = 12.947(2) Å, β = 94.28(2), and Z = 2. Unlike their all-amide parent, which adopts an all-trans backbone conformation and a type II β-turn encompassing Gly-Pro-Gly-D -Phe, both of these peptides contain a cis Gly1-Pro2 bond and form a novel turn structure, i.e., a type II′ β-turn consisting of Gly–D –Phe–Pro–Gly. The turn structure in each of these peptides is stabilized by an intramolecular H bond between the carbonyl oxygen of Gly1 and the amide proton of D -Phe4. In the cyclic sulfoxide, the sulfinyl group is not involved in H bonding despite its strong potential as a hydrogen-bond acceptor. The crystal structure made it possible to establish the absolute configuration of the sulfinyl group in this peptide. The two crystal structures also helped identify a type II′ β-turn in the DMSO-d6 solution conformers of these peptides. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The protected dipeptide Boc-Aib-Pro-OBzl, C21H30N2O5, crystallizes in the orthorhombic space group P212121, with a = 12.820, b = 10.529, c = 16.548Å, and Z = 4. The crystal structure has been solved by direct methods and refined to an R value of 0.074 for 1352 reflections. The Boc-Aib-Pro-OBzl molecule has been shown to adopt an unfolded conformation in the solid state with ?Aib = 50.5°, ΨAib = 45.3°, ?Pro = ?64.6°, and ΨPro = 148.1°. The result is in marked contrast with the reported crystal structure of Cbz-Aib-Pro-NHMe, which adopts an intramolecularly hydrogen-bonded β-turn conformation. Comparison with 13 reported conformations of Aib-Pro sequences in the crystalline state revealed that the Aib-Pro sequence adopts an unfolded conformation if the residue that immediately follows the dipeptide sequence possesses no hydrogen available for hydrogen bonding, while a β-turn conformation is preferred if the Pro residue is followed by an NH group. Correlation between pyrrolidine ring puckering of the Pro residue and main-chain conformation in Aib-Pro sequences is discussed.  相似文献   

18.
The synthesis of the tetrapeptide benzyloxycarbonyl(α-aminoisobutyryl-L -prolyl)2-methyl ester (Z-(Aib-Pro)2-OMe) and an analysis of its conformation in solution and the solid state are reported. Stepwise synthesis using dicyclohexylcarbodiimide leads to racemization at Pro(2). Evidence for the presence of diastereomeric tetrapeptides is obtained from 270-MHz1H-nmr and 67.89-MHz 13C-nmr. The all-L tetrapeptide is obtained by fractional crystallization from ethyl acetate. The NH of Aib(3) is shown to be involved in an intramo-lecular hydrogen bond by variable-temperature 1H-nmr and the solvent dependence of NH chemical shifts. The results are consistent with a β-turn conformation with Aib(1) and Pro(2) at the corners stabilized by a 4 → 1 hydrogen bond. The molecule crystallizes in the space group P212121, with a = 8.839, b = 14.938, and c = 22.015 Å. The structure has been refined to an R value of 0.051. The peptide backbone is all-trans, and a 4 → 1 hydrogen bond, between the CO group of the urethane moiety and Aib(3) NH, is observed. Aib(1) and Pro(2) occupy the corner positions of a type I β-turn with ? = ?55.4°, Ψ = ?31.3° for Aib(1) and ? = ?71.6°, Ψ = ?38° for Pro(2). The tertiary amide unit linking Pro(2) and Aib(3) is significantly distorted from planarity (Δω = 14.3°).  相似文献   

19.
The crystal structure of (Z)-acetyl-α,β-dehydrophenylalanine methylamide (monoclinic Cc, a = 10.241(1), b = 15.252(1), c = 8.643(1) Å, β = 120.98(1)°, Z = 4) has been solved by x-ray diffraction to an R-factor = 0.148, and compared to that of the homologous L -phenylalanine dervative. Molecules are intermolecularly hydrogen-bonded to four neighboring molecules in a three-dimensional network with alternating layers of interacting amide bonds and orthogonally arranged phenyl rings. The existence of the Cα = Cβ double bond results in a phenyl orientation that is forbidden for phenylananine (χ1 = ?7,8°), and in shorter Cα ? Cβ and Cβ ? Cγ distances. The geometrical paramenters of the peptide backbone are not drastically modified by α,β-unsaturation. However, the N-Cα-C′ angle is increased by nearly 5°, and the dimensions, and therefore probably the electronic conjugation, of the N-terminal amide group to be affected by the occurrence of the vicinal Cα = Cβ double bond.  相似文献   

20.
The electron-diffraction pattern of an oriented film of poly(α-aminoisobutyric acid) in the 310-helical conformation has been analyzed. The conformation was obtained by a linked-atom least-squares refinement of average values from crystal structures. Specimens treated with dichloracetic acid, to improve their crystallinity, conform to space group R3c with a = 21.8 Å, c = 5.95 Å. The structure contains channels that can accommodate molecules of dichloracetic acid. One molecule of acid per six residues fills the channels, and the R-factor then is 34% using 23 reflections. Ir evidence is presented to show that the acid may hydrogen bond to the peptide groups. Some reflections occasionally observed on the diffraction photographs are attributed to a 15/4 α-helix. The significance of the results is considered in relation to Aib-containing peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号