首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
硒是人体必需的一种微量元素,参与合成硒代半胱氨酸、硒代甲硫氨酸以及多种硒代蛋白(酶),具有抗肿瘤、抗氧化、增强人体免疫等多种生物学活性,与人体的健康有着密切关系.硒以不同的形式存在于自然界中,大致可分为无机硒和有机硒两种,其生物活性与毒性也各有不同.富硒酵母作为补充硒元素的主要形式之一,具有生物利用度高、食用安全、毒性低等优点.研究富硒酵母中的硒的赋态,对合理摄取硒元素,促进人体健康具有重要意义,因此成为近年来研究的热点.  相似文献   

2.
为了明确不同培养条件下杏鲍菇对外源硒的耐受性,分别在固体培养基、液体发酵培养基和栽培基质中添加不同量的亚硒酸钠,并检测杏鲍菇子实体中富集硒的存在形态。结果表明:固体培养条件下,硒浓度低于160 mg/L时,对菌丝的生长没有显著影响;液体培养条件下,4 mg/L的硒元素即可对杏鲍菇菌丝体的生长产生显著抑制;栽培模式下,基质中补充10~600 mg/kg的硒元素,不会影响杏鲍菇菌丝体的生长,且子实体中的硒含量会随基质中硒浓度的增加而增加。子实体硒形态分析表明,富集硒以硒代蛋氨酸、甲基硒代半胱氨酸、硒代胱氨酸和亚硒酸盐[Se(IV)]四种形式存在,其中硒代蛋氨酸是硒与氨基酸的主要结合形式。  相似文献   

3.
植物硒及其含硒蛋白的研究   总被引:5,自引:0,他引:5  
雷红灵 《生命科学》2012,(2):123-129
硒是植物的有益元素,植物对硒的吸收与外源硒的有效性、硒的形态、植物的种类等有关;硒在植物中主要以有机硒形态存在,HPLC-ICP-MS联用已成为植物体内硒形态鉴定的最常用手段;含硒蛋白是植物体内最主要的有机大分子硒,具有抗肿瘤、抗氧化等多种生物活性。在环境安全和人类健康等方面,富硒植物具有很好的应用价值,所以利用分子生物学手段分析富硒植物的富硒机制,可以为富硒基因的筛选和利用提供理论依据。  相似文献   

4.
丙酸菌乳酸菌富硒发酵蔬菜的研制   总被引:2,自引:0,他引:2  
目的 对丙酸菌乳酸菌富硒发酵蔬菜进行初步研制。方法 富硒丙酸菌、乳酸菌泡菜制作工艺流程:原料(洗涤整理)切分→盐水浸泡→装坛并放入辅料→加入老盐水(含乳酸菌)接种丙酸菌、Na2SeO3100μg/ml→培养。按泡菜、酸菜感官评分方法及评分标准,对不同处理的泡菜进行色、香、味、气、质地及滋味评分。并作产品无害化指标:E.Coli及亚硝酸盐浓度检测。采用3,3’--二氨基联苯胺萃取分光光度法测定发酵蔬菜硒含量。蔬菜试样的试验指标有总硒质量分数「μg/g」,有机硒质量分数「μg/g」,以及有机硒占总硒的质量分数,分别代表该蔬菜对硒的吸收率变化及把无机硒转化成有机硒的转成率变化。结果 蔬菜虽未加硒作预泡处理,而是直接进行富硒发酵,泡制二天即可达到要求,随着泡制时间延长有机硒占总硒的质量分数有所下降,但下降幅度不如前者明  相似文献   

5.
目的:比较富硒北虫草和普通北虫草的总硒含量、无机硒含量和有机硒含量。方法:采用紫外分光光度法测定富硒北虫草和普通北虫草的总硒含量和无机硒含量,然后通过计算得出有机硒含量。结果:富硒北虫草中总硒含量高于普通北虫草70倍左右,而有机硒含量则大约是普通北虫草的100倍,且富硒北虫草中有机硒含量为总硒含量的97%左右。结论:鞍山华宇生物科技有限公司开发的富硒北虫草中有机硒的含量明显高于普通北虫草,具有良好的使用前景。  相似文献   

6.
富硒生物样品中硒的价态和形态分析   总被引:9,自引:0,他引:9  
本文利用2,3—二氨基萘(DAN)荧光法测定了富硒玉米粉、硒酵母蛋白等样品中四价硒、六价硒、有机硒含量及总硒量。进一步验证了差减法测定不同价态硒含量的实验方法  相似文献   

7.
富硒益生菌的功效研究进展   总被引:1,自引:0,他引:1  
硒是人体必需的微量元素,对人体健康有重要作用。益生菌能够将硒元素转化为有机硒,降低硒的毒性,同时硒又提高了益生菌的生物活性,富硒益生菌具备了硒和益生菌的双重功效。本文主要综述了近年来富硒益生菌的功效,如抗氧化、抑制有害菌、调节肠道菌群、抗癌等。  相似文献   

8.
硒蛋白含有一种特殊氨基酸--硒代半胱氨酸。在翻译阶段,该氨基酸从硒蛋白mRNA编码区的UGA密码子处掺入多肽链。已证明它由丝氨酸和活性硒供体分子合成。一种独特的tRNA、某些特殊蛋白质因子以及硒蛋白mRNA的特殊二级结构是UGA解读为硒代半胱氨酸所必需的。  相似文献   

9.
碎米荠及富硒产品中无机硒提取方法的建立   总被引:1,自引:0,他引:1  
采用不同浓度的HCl、NaOH、KH_2PO_4、NaHCO_3、KCl、流动相及超纯水作浸提液提取富硒产品中的无机硒后,用高效液相色谱-原子荧光光谱(HPLC-AFS)联用仪测定Se(IV)和Se(VI),并对浸提时间、浸提温度、振荡频率、液料比等条件进行系统研究,建立了富硒植物碎米荠及富硒产品中无机硒的提取方法:无机硒的最佳提取剂为0.1mol/L KH_2PO_4溶液,提取方法为:称取样品0.10g于离心管中,加入0.1mol/L KH_2PO_4溶液至3mL,于70℃、1 500r/min条件下振荡提取30min,以3 000r/min转速离心10min,0.45μm滤膜过滤后上机测定,样品加标回收率为86.14%~117.60%,Se(IV)和Se(VI)均能定性定量检测,为富硒产品中无机硒测定方法标准的制定奠定了基础。  相似文献   

10.
亚硒酸钠和硒酸钠对小白菜生长生理特性的影响   总被引:9,自引:0,他引:9  
以小白菜品种'秦白2号'为材料,采用盆栽试验研究了不同浓度亚硒酸钠[Se(IV)]和硒酸钠[Se(VI)]胁迫对小白菜生长生理特性的影响及其生理机制,为土壤硒污染修复及其合理开发利用提供理论依据.结果表明,Se(IV)≤10.0 mg·kg-1时,小白菜的叶长、叶宽显著下降,而生物量没有受到显著影响;Se(VI)≤1.0 mg·kg-1时,叶长、叶宽、生物量没有显著变化;更高浓度处理时,叶长、叶宽、生物量均随外源Se(IV)和Se(VI)处理浓度的增大而急速下降.Se(IV)≤40.0 mg·kg-1和Se(VI)≤20.0 mg·kg-1处理均对小白菜叶片叶绿素含量无显著影响,但更高浓度外源Se(IV)和Se(VI)却显著抑制了叶绿素合成.低浓度外源Se(IV)和Se(VI)均使小白菜叶片谷胱甘肽过氧化物酶(GSH-Px)活性上升,膜质过氧化物(MDA)含量下降,对超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性及脯氨酸含量无显著影响;高浓度硒使MDA含量、脯氨酸含量及SOD活性上升,而使GSH-Px活性和CAT活性下降;外源Se(IV)和Se(VI)均使过氧化物酶(POD)活性降低.研究发现,低浓度外源Se(IV)和Se(VI)均提高了小白菜的抗氧化作用,从而促进小白菜叶片叶绿素的合成和生长,高浓度时则相反;低浓度硒的抗氧化作用和高浓度硒的过氧化作用均以Se(VI)大于Se(IV).说明硒酸钠的有效性和毒害作用均大于亚硒酸钠.  相似文献   

11.
Formula-fed infants often have lower serum selenium levels than breast-fed infants. Although no deleterious effects have been correlated to this finding, supplementation of formula with selenium is considered. In this study, we investigated the uptake and retention by suckling rat pups of 75Se from selenite, selenate, and selenomethionine added to infant formula. The molecular distribution of 75Se in liver, kidney, intestine, and plasma was followed by gel-filtration chromatography on Superose 12. 75Se-uptake was most rapid from selenomethionine (70% at 1 hr), followed by selenate (51%) and selenite (29%). This difference was explained by a higher retention of 75Se in the stomach and small intestinal wall of pups given selenite supplement. Plasma distribution of 75Se as studied by gel filtration was also different, with a higher proportion of 75Se from selenomethionine being protein-bound than from selenite or selenate. Similarly, a larger proportion of 75Se from selenomethionine became protein-bound in the liver than from selenite or selenate. In conclusion, although whole body retention after 24–48 hr was similar, the metabolic fate of selenium varies considerably with the form of selenium added to formula. Further studies are needed to study the long-term consequences of selenium accumulated in different body compartments.  相似文献   

12.
Selenium is an essential trace element and its isufficient status may cause serious health complications for both individuals and the whole populations. To investigate the selenium status of the subpop-ulation in northeastern Bohemia represented by the region ústí nad Orlicí, 253 serum, 469 urine, and 31 hair samples from 470 randomly selected volunteers between 6 and 65 yr of age have been analyzed for selenium concentration. Serum and hair Se were detected by instrumental neutron activation analysis (means: 55 ±11 Μg Se/L sera, 0.268 ±0.040 Μg Se/g hair). Urine Se was measured by fluorimetry (12 ±5 Μg Se/L urine) with coanalyses of Lyphocheck urine, SRM Urine 2670, and Seronorm urine for quality control of the method. Results proved significant age-dependent differences, but gender differences were not significant. The frequency plot of serum Se proved maximal frequencies in adults between 55 and 70 Μg Se/L and in children in the range 45–55 Μg Se/L. The same plots of urine Se for both age groups showed maximal frequency in the limits 8–15 Μg Se/L. All indices used (Se in serum, urine, and hair) confirmed mild to severe selenium deficiency in the population of the region.  相似文献   

13.
Selenium concentrations in the soil environment are directly linked to its transfer in the food chain, eventually causing either deficiency or toxicity associated with several physiological dysfunctions in animals and humans. Selenium bioavailability depends on its speciation in the soil environment, which is mainly influenced by the prevailing pH, redox potential, and organic matter content of the soil. The selenium cycle in the environment is primarily mediated through chemical and biological selenium transformations. Interactions of selenium with microorganisms and plants in the soil environment have been studied in order to understand the underlying interplay of selenium conversions and to develop environmental technologies for efficient bioremediation of seleniferous soils. In situ approaches such as phytoremediation, soil amendment with organic matter and biovolatilization are promising for remediation of seleniferous soils. Ex situ remediation of contaminated soils by soil washing with benign leaching agents is widely considered for removing heavy metal pollutants. However, it has not been applied until now for remediation of seleniferous soils. Washing of seleniferous soils with benign leaching agents and further treatment of Se-bearing leachates in bioreactors through microbial reduction will be advantageous as it is aimed at removal as well as recovery of selenium for potential re-use for agricultural and industrial applications. This review summarizes the impact of selenium deficiency and toxicity on ecosystems in selenium deficient and seleniferous regions across the globe, and recent research in the field of bioremediation of seleniferous soils.  相似文献   

14.
植物硒同化的研究进展及其耐硒突变体的筛选   总被引:9,自引:0,他引:9  
简要叙述了高等植物对硒元素吸收、同化的过程和特点。对近年来植物硒蛋白存在状态、硒相关突变体的筛选和应用硒代谢关键酶基因的转基因植物研究等方面的最新进展作了扼要综述。在此基础上对植物硒营养研究的发展提出了几点设想。  相似文献   

15.
The effects of selenium on streamecosystems were studied in outdoor,experimental stream mesocosms during a dosingperiod in which sodium selenite was added atnominal concentrations of 30 µg/L,10 µg/L, and 2.5 µg/L. The durationof the high, medium, and low treatments were573 d, 972 d, and 311 d, respectively. Apost-dosing period of three years (hightreatment) and two years (medium, lowtreatments) also was studied. Seleniumconcentrations in water, sediment, plants, andmacroinvertebrates were measured throughoutthe dosing and recovery periods. Fatheadminnows and bluegill sunfish were periodicallyheld in the streams to measure seleniumaccumulation and its effects on fish survivaland reproduction. Quantitative samples ofmacroinvertebrates were collected to assessselenium effects on macroinvertebratecommunities.Mean selenium concentration inwater was quite close to the nominalconcentration. Selenium accumulated in thesediment in all three treated streams, but notin the control streams. Sediment seleniumdecreased slowly after dosing ceased, but wasstill significantly higher than in controlstreams three years (high treatment) and twoyears (medium treatment) later.Macrophytetissue selenium concentrations weresignificantly greater in all three treatmentsthan those in the control streams duringdosing. Macrophyte selenium bioaccumulationfactors (BAFs) ranged from about 300 to 1900. Tissue selenium decreased rapidly in all threetreatments after dosing ended.During dosing,selenium concentrations in animals from allthree treatments were significantly higherthan in those from control streams. The BAFsfor macroinvertebrates ranged from 1100 to2000. Isopods accumulated more, and amphipodsless, selenium than other invertebrates. Therewere no significant effects of selenium onmacroinvertebrate abundance, richness ordiversity. Several macroinvertebrates werenot affected by exposure to selenium, butisopod and Tubifex populations weredramatically reduced in the high and mediumtreatments. After dosing, mean seleniumconcentration in macroinvertebrates decreasedslowly.Bluegill sunfish accumulated seleniumduring dosing and after selenium additionsceased. Tissue selenium was highest in theliver, followed by the gonads, skeletalmuscle, and whole body. Tissue seleniumconcentrations one (high, medium) and two(high) years after dosing were lower thanduring dosing, but whole body, skeletal muscleand liver concentrations were high enough tobe considered potentially toxic.Recovery ofselenium contaminated streams includes bothreduction of tissue selenium concentration tonon-toxic levels in fish and their foodorganisms and recovery of populations of taxadeleteriously affected by selenium exposure. Our results suggest that when selenium iseliminated from the water in streams, seleniumconcentrations in sediment, plants,macroinvertebrates, and fishes will decreaseto levels that approach concentrationsconsidered to be non-toxic to fish andwildlife and that affected populations willrecover within several years. Based onselenium accumulation in the food chain andthe presence of real, but not statisticallysignificant, effects on fish mortality andreproduction in the low treatment streams, wesupport a selenium water quality criterion forthe protection of fishes and sensitiveinvertebrates of 2 µg/L or less.  相似文献   

16.
Selenium (Se) is an essential micronutrient for human and animal organisms. Organic selenium complexes and selenium-containing amino acids are considered the most bioavailable.Under appropriate conditions yeasts are capable of accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. It has been found that introduction of water-soluble selenium salt as a component of the culture medium for yeasts produced by conventional batch processing results in a substantial amount of selenium being absorbed by the yeast.Using a culture medium supplemented with 30 μg/mL sodium-selenite added during the exponential growth phase results in selenium-accumulation in the range of 1200–1400 μg/g dried baker's yeast (Saccharomyces cerevisiae) measured by ICP-AES method. In our previous studies it was shown that higher amounts of sodium-selenite in the culture medium have a strong inhibitory effect on the growth of this yeast. As a consequence of variations in cultivation conditions we obtained selenium yeast with different inorganic selenium content. The most important parameters influencing incorporated forms of selenium are pH value and dissolved oxygen level in the culture medium, and depending on these the selenium consumption rate of the yeast. A 0.40–0.50 mg/g h-1 specific selenium consumption rate was found to be appropriate to obtain selenium-enriched bakers' yeast of a high quality. Under suitable conditions the undesirable inorganic selenium content of the yeast could be suppressed to as low as 5–6% at the expense, however, of approximately a 20% decrease in the final biomass.  相似文献   

17.
Evidence is summarized for the antimutagenicity as well as the mutagenicity of selenium. In general, antimutagenicity predominates at physiological levels, while mutagenicity occurs at 3 to 1000 times normal physiological levels.  相似文献   

18.
Thirty-two wether lambs of Tan sheep were randomly assigned into four dietary treatment groups (eight per group) for an 8-wk study and then fed a basal diet deficient in Se (0.06 mg/kg) or diets supplemented to provide 0.10 mg/kg Se from sodium selenite, selenized yeast, and selenium-enriched probiotics, respectively. Blood samples were collected at d 0, 28, and 56 of the experiment and tissue samples were collected at experiment termination. Tissue and blood Se concentrations, blood glutathione peroxidase (GSH-Px) activities, and plasma interleukin levels were analyzed. The results showed that the concentrations of Se in the kidney, liver, and muscle increased in all of the supplemented groups (p<0.01) compared with the control group. However, the Se concentrations in the kidney, liver, and muscle in the groups supplemented with Se yeast and Se-enriched probiotics were higher than those in the group supplemented with sodium selenite (p<0.01). The activities of GSH-Px and the concentrations of Se in blood also increased in all of the supplemented groups during the period of supplementation (p<0.01) compared with the control group. The activities of GSH-Px and the concentrations of Se in the whole blood of the lambs fed with selenized yeast and Se-enriched probiotics were higher than those of lambs fed with sodium selenite (p<0.01 or p<0.05). The concentrations of interleukin-1 and interleukin-2 in plasma significantly increased in all of the supplemented groups during the entire period of experiment (p<0.01) compared with the control group, but had no significant differences among all of the supplemented groups. In conclusion, a diet supplemented with Se for finishing lambs was able to increase the concentrations of Se in tissue and blood, activities of GSH-Px in blood, and levels of interleukins in plasma. Organic Se sources (selenized yeast and Se-enriched probiotics) were more effective than the inorganic Se source (sodium selenite) in increasing tissue and blood Se concentrations and blood GSH-Px activities of lambs. However, there were no significant differences in plasma interleukin levels of lambs between organic and inorganic Se sources.  相似文献   

19.
Four selenium (Se) nonaccumulator plant species, including a forage grass species, Tall Fescue (Festuca arundinacea Schreb.), a forage legume species, Alfalfa (Medicago sativa L.), a wetland species, Rush (Juncus tenuis Wild.), and a dry-land alkaline soil species, Saltgrass (Distichlis spicata L.), were grown in soil contaminated by agricultural drainage sediment having elevated levels of Se and sulfur (S). The above-ground plant tissues were consecutively harvested five times and examined for Se and S accumulation. Plant tissue Se concentrations ranged from 23.0 mg kg-1 to 8.3 mg kg-1. Tissue S concentrations ranged from 3239 mg kg-1 to 7034 mg kg-1. Both tissue Se and S concentrations were significantly different between harvests, species, and species/harvest interactions. Total Se accumulation by the plant biomass harvested ranged from 0.3 to 1.3 mg per soil column and total S accumulations ranged from 87.5 to 321.1 mg per soil column. The reduction in the percentage of total soil Se after 24 weeks growth of the plant species ranged from 12.0% in the Tall Fescue planting to 17.3% in the Rush planting. Over 90% of the soil Se losses were unidentified losses and leaching of Se was prevented. The accumulations of Se and S in the plant biomass were very small compared with the total soil Se and S losses, but substantial amounts of total soil Se (12.0 to 15.0%) and S (28.0 to 50.9%) inventories were dissipated by the growing and harvesting of the plants. The soil S concentration was several hundred times higher than the soil Se concentration, but Se accumulation by the plants and Se dissipation from the soil were not impaired by the high level of soil sulfur. For natural grassland habitat restoration, such as at the Kesterson Wildlife Refuge in the Central Valley of California, or for restoration of large-scale Se contaminated agricultural lands, Se nonaccumulator plant species are favorable candidates, because the possibility of introducing Se toxicity into the food chain can be minimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号