首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
以ATP敏感性钾通道(ATP-sensitive potassium channels,KATP)和电压依赖性钾通道(voltage-gated potassium channels,Kv)为代表的钾离子通道在基底节中存在大量的分布和表达,目前认为其功能异常与帕金森病(Parkinson's disease,PD)的发病密切相关,在PD的病理生理过程中具有重要作用.不同类型的钾通道调制剂对于不同类型的PD模型具有一定的治疗作用,钾通道有望成为PD的一种新型治疗靶点.  相似文献   

2.
内源性一氧化碳(carbon monoxide,CO)是一种旁分泌和自分泌气体信息分子,对多种离子通道有调节作用.CO对血管平滑肌细胞和颈动脉体球细胞大电导钙激活钾通道(large-conductance calcium-activated potassium channels,BKCa channels)均有激活作用;对血管平滑肌细胞膜ATP敏感钾通道(ATP-sensitive potassium channels,KATP channels)和心肌线粒体膜KATP通道可能有开放作用;对重组的人双孔钾通道hTREK-1有调节作用;但对钙通道的作用则随细胞类型的不同而不同,可能表现为开放或抑制.  相似文献   

3.
KATP通道在细胞的新陈代谢与膜兴奋性的耦联中起重要作用.采用膜片钳的内面向外式记录方法,在成年大鼠海马CA1区锥体细胞上记录到一种被胞浆侧ATP和甲糖宁(tolbutamide,一种KATP通道阻断剂)抑制的Ca2+依赖性钾离子通道.在细胞膜内外的K+浓度均为140 mmol/L时,通道的电导为(204±21) pS,翻转电位为(3.57±1.13) mV,通道无整流性.通道开放概率及ATP对通道的抑制作用均呈现电压依赖性.该KATP通道与以往报道的"经典"KATP通道有显著不同,其活动受膜电位、胞内Ca2+和ATP三重调节,表明这是一种新型的KATP通道.上述结果表明在海马神经元上至少有两种性质不同的KATP通道,提示神经元可能通过不同性质的KATP通道感受细胞内的代谢状态,进而调节细胞膜的兴奋性.  相似文献   

4.
帕金森病(Parkinson’s disease,PD)是常见的中枢神经系统退行性疾病之一,其主要病理学特征是中脑黑质部的多巴胺(dopamine,DA)能神经元选择性丢失。虽然已发现基因易感性、衰老、环境毒素等因素与PD发病有关,但导致DA能神经元退行性死亡的细胞分子机制仍不明确。DA代谢是DA能神经元中的重要生理过程,其过程与黑质DA能神经元丢失密切相关,DA代谢异常参与了PD神经元变性相关的诸多病理学过程,例如铁代谢异常、α-突触核蛋白异常聚集、内质网应激、蛋白质降解功能障碍、神经炎症反应等。本文就DA代谢异常在PD相关病理学过程中的作用进行综述。  相似文献   

5.
帕金森病(PD)是以运动功能失调为主要表现的神经退行性疾病,其病理特征是黑质致密部多巴胺能神经元的丢失和路易氏小体的形成。线粒体能量供应障碍和氧化应激在PD发生与发展过程中起重要作用,抗氧化和改善线粒体功能的物质可延缓PD的发展。维生素B_3是体内氧化还原体系的重要组分,参与抗氧化、抗炎、促进自噬以及维护神经元正常结构和功能,提示补充维生素B_3可能是延缓PD的方法之一。  相似文献   

6.
ATP敏感钾通道(ATP-sensitive potassium channel, KATP通道)广泛分布在血管系统,并在血管张力调节中发挥重要作用。 KATP通道由4个孔道形成的内向整流钾离子通道(inward rectifier K+ channels, Kir)亚基和4个磺脲受体调节亚基(sulfonylu-rea receptor, SUR)组成。尽管其它一些亚基在血管中也存在,Kir6.1/SUR2B是主要的血管亚型KATP通道。KATP通道转基因小鼠的研究以及人群中KATP通道基因突变的发现,都强烈支持KATP通道对于心血管系统的动态平衡调控是不可缺少的。大量的血管活性物质通过调节KATP通道活性来改变血管平滑肌细胞的膜电位,从而调节血管张力。多数内源性血管收缩物质,例如血管加压素,激活蛋白激酶C (protein kinase C, PKC),磷酸化KATP通道并抑制其活性;而血管扩张物质,如血管活性肠肽,通过增加cAMP的形成和提高蛋白激酶A (protein kinase A, PKA)的活性来增加KATP通道的活性。PKC作用于Kir6.1亚基C-末端,磷酸化4个保守的丝氨酸,而PKA磷酸化SUR2B亚基第2核苷酸结合域的Ser1387位点。血管KATP通道也受活性氧的调节,其中Kir6.1的Cys176是一个重要的过氧化物调节位点。此外,KATP通道功能可被一些慢性的病理生理条件上调,如感染性休克。核因子-κB依赖的基因转录是脂多糖诱导的血管KATP通道激活的一个机制。本综述将概括性描述血管KATP通道在生理和病理情况下受到的调节,以期阐明血管KATP通道在治疗和预防心血管疾病方面可能是一个有用的靶点。  相似文献   

7.
ATP敏感钾通道(KATP channel)的一个重要的特点就是受内源性ATP的强烈抑制,从而将细胞的新陈代谢状态与其兴奋性偶联起来,执行重要的生理功能,其调控机制非常复杂。目前尤以ATP/ADP、磷脂、细胞骨架对其的调控研究最为活跃。通过对KATP通道的结构、功能、调节机制,重点是对通道活动、敏感性及通道的衰减与复活等调控机制的最新研究进展的总结,有利于对各种与KATP有关的疾病的发病机制和临床防治做进一步的研究。  相似文献   

8.
Meng JL  Ma YY  Luo HY  Kong SZ  He YW  Dong BC  Wu SH  He M 《生理学报》2008,60(3):369-374
本研究以P50听觉诱发电位(P50 auditory evoked potential, P50)和酪氨酸羟化酶(tyrosine hydroxylase, TH)阳性细胞计数作为黑质功能和形态学指标,动态追踪研究雌激素对6-羟基多巴胺(6-hydroxydopamine, 6-OHDA)损伤黑质多巴胺(dopamine, DA)能神经元的作用.将大鼠分为4组:(1)正常雌性大鼠对照组;(2)单纯帕金森氏病(Parkinson's disease, PD)模型组;(3)双侧去卵巢PD模型组;(4)去卵巢回补3d雌激素的PD模型组.在大鼠清醒和安静的生理状态下连续14d记录黑质的P50,并检测黑质TH 细胞数目的变化.结果显示:单纯PD模型大鼠黑质P50的T/C值较正常雌鼠降低40.60%(P<0.01),其损伤侧黑质TH 细胞数目减少64.74%(P<0.01);去卵巢PD模型大鼠黑质P50的T/C值较单纯PD模型大鼠进一步降低45.88%(P<0.01),同时其黑质TH 细胞数目值也进一步减少57.26%(P<0.01),表明急性缺乏生理水平性腺雌激素将增大6-OHDA损伤黑质DA能神经元的程度,同时使黑质的感觉门控(sensory gating, SG)功能明显受损;去卵巢后回补3d生理剂量雌激素,可明显改善大鼠黑质的SG功能,提高TH 细胞数量(与去卵巢PD模型大鼠比较,P<0.01),其黑质损伤程度与单纯PD模型大鼠相当.以上结果提示,生理水平的雌激素具有提高黑质DA能神经元对伤害性刺激耐受性的神经保护作用.缺乏性腺源性的雌激素时,及时给予生理剂量的雌激素可以减轻神经毒素6-OHDA对黑质DA能神经元结构和功能的损伤.  相似文献   

9.
帕金森病(Parkinson’s disease,PD)的一个主要病理特征就是中脑黑质多巴胺能神经元的丧失,目前研究认为该病理变化与多种因素有关,包括蛋白质异常积聚、泛素蛋白酶体系统功能异常、神经炎症、线粒体损伤和氧化应激。在帕金森病人和动物模型中,中脑黑质有着明显的氧化改变。帕金森病的遗传和环境因素均会作用于线粒体,尤其对线粒体呼吸链复合体I有着抑制作用,造成线粒体损伤,产生活性氧(ROS)。活性氧的大量产生造成脂类、蛋白质和DNA的氧化,从而加剧多巴胺能神经元的线粒体和细胞损伤。多巴胺代谢过程中会产生活性氧,该自身代谢特点决定了多巴胺能神经元存在有较高的氧化应激,易受环境因素的影响。因而,线粒体的氧化损伤在帕金森病病理发生中起着重要作用。  相似文献   

10.
越来越多的证据表明胶质细胞在中枢神经系统发育、神经元的存活、神经修复与再生、突触传递及免疫炎症等方面均具有重要的功能。近年来,胶质细胞在帕金森病(Parkinson’s disease,PD)中的作用受到越来越多的关注。大量的研究证实,中脑黑质(substantia nigra,SN)部位铁聚积参与了PD多巴胺(dopamine,DA)神经元的死亡。目前PD铁沉积的研究主要集中在DA神经元,但实际上脑内胶质细胞在中枢神经系统铁稳态调节中发挥着重要的作用。因此,本文综述了胶质细胞铁代谢及其参与DA神经元铁聚积及死亡的作用机制,为揭示PD患者SN部位铁聚积的机制以及发现潜在的治疗靶点提供理论依据。  相似文献   

11.
目的:探讨KATP通道在缺氧中对海马CA1区神经元的保护作用机制。方法:比较对照组、单纯缺氧组、KATP通道激动剂 缺氧组、KATP通道阻断剂 缺氧组中神经元p53 mRNA的表达、DNA断裂、以及神经元存活情况。结果:将神经元暴露在氧浓度为0%的缺氧环境中12h,KATP通道的激动剂二氮嗪(diazoxide,100μmol/L)显著降低p53 mRNA的表达量及细胞的凋亡数量。KATP通道的阻断剂甲糖宁(tolbutamide,100μmol/L)使p53mR-NA表达量显著增加,细胞的凋亡数量也随之显著增加。p53的特异性阻断剂曲古抑菌素(trichostatin,TSA)可以逆转甲糖宁(tolbutamide,100μmol/L)的作用。结论:KATP通道可以通过下调p53 mRNA的表达水平,对缺氧中的海马CA1区神经元起到保护作用。  相似文献   

12.
钠-钾ATP酶(Na -K -ATPase)对于维持胞质渗透压和细胞容积的相对稳定以及细胞内pH的稳定具有重要的生理意义.肺泡上皮具有阻止液体进入肺泡腔内和主动清除肺泡腔内液体的作用,是抵抗肺泡性肺水肿形成的一道重要屏障.这一功能的完成有赖于Ⅱ型肺泡上皮细胞对钠离子的主动转运和分布于Ⅰ型、Ⅱ型肺泡上皮细胞的特殊水通道,而钠离子的主动转运依靠钠-钾ATP酶来完成.海水淹溺型肺水肿(PE-SWD)是以低氧血症及代谢性酸中毒为主要病理生理学特点的临床病症.PE-SWD发生时,Na -K -ATPase活性的改变直接影响到细胞膜外Na 、K 、等离子的浓度和分布,既是造成PE-SWD发生的多种因素所引起的直接恶果,又是促进PE-SWD不断发生的继发性原因.因此认识肺泡上皮细胞钠-钾ATP酶在PE-SWD发病中的作用对于PE-SWD的治疗具有重要意义.本文就钠-钾ATP酶的功能、结构、调节机制及钠-钾ATP酶在PE-SWD发病中的作用作一综述.  相似文献   

13.
线粒体电压依赖性阴离子通道及其调控功能   总被引:1,自引:0,他引:1  
电压依赖性阴离子通道(voltage-dependent anion channel,VDAC)是存在于线粒体外膜上的31kDa膜蛋白,能在膜上形成亲水性通道,调控阴离子、阳离子、ATP以及其他代谢物进出线粒体,在调节细胞代谢、维持胞内钙稳态,调节细胞凋亡和坏死等过程中发挥重要功能。现就VDAC的结构、特性、活性调节及对细胞功能的调控作一综述。  相似文献   

14.
Xu XH  Wang XL 《生理科学进展》2001,32(2):168-170
G蛋白偶联的内向整流钾通道(GIRK)在中枢神经系统中具有广泛分布,并且与多种受体相偶联,在神经突触后抑制中具有重要作用。本文简要介绍了近年来G蛋白偶联钾通道在基因结构、脑内组织分布、细胞内调控,以及脑功能方面的研究结果。关于GIRK在中枢神经系统中的生理和病理意义还有待进一步研究。  相似文献   

15.
ATP敏感的钾通道与预适应心肌保护作用   总被引:3,自引:0,他引:3  
缺血、药物等多种因素产生的预适应现象都具有显著的心肌保护作用。ATP敏感的钾通道是介导预适应保护作用的重要环节。目前多数研究结果表明是线粒体而非质膜ATP敏感的钾通道介导了预适应的保护作用,但它是否为此过程的最终效应器尚有待更多更深入的研究,未来线粒体ATP敏感钾通道的克隆和调控机制的揭示,将是从根本上解决这一问题的关键。  相似文献   

16.
电压依赖性钾通道与人类神经性疾病   总被引:10,自引:0,他引:10  
电压依赖性钾通道是钾通道超家族中成员最多,最为复杂的亚家族,主要包括Kvα亚单位和辅助亚单位两部分,其中快速失活A型通道和毒蕈碱敏感的M通道已被大量研究,它们广泛分布于神经系统,主要参与各种生理和病理作用,如膜兴奋性的产生,神经递质的释放,神经元细胞的增殖和退化,以及神经网络的信号传递等。目前发现Kv通道亚型或亚单位的突变与学习和记忆的损伤,共济失调,癫痫,神经性耳聋等一些神经性疾病的产生有关。  相似文献   

17.
目的:明确线粒体ATP敏感钾通道与钙激活钾通道对正常和缺血脑线粒体渗透性转变的作用。方法:实验采用分光光度法,在分离的线粒体上分别观察两种线粒体钾通道激动剂对正常与缺血脑线粒体肿胀的影响。结果:在正常脑线粒体,diazoxide与NSl619能有效抑制由钙诱导的线粒体氏20下降,但其效应可被atractyloside所阻断。与正常相比,缺血损伤后的脑线粒体在钙离子诱导下线粒体A520下降较快,diazoxide与NS1619仍可抑制由钙诱导的线粒体A520下降,其作用同样为atractykxside所阻断。结论:线粒体ATP敏感钾通道与钙激活钾通道激活在离体条件均具有保护脑线粒体的作用,其作用可能是通过影响线粒体通透性转变而实现。  相似文献   

18.
生理水平的质子在生物体内分布广泛,具有重要的生理功能。在特定的病理条件下,正常的酸碱平衡被破坏,导致质子大量生成和累积,产生对机体有害的酸毒(acidotoxicity)。组织酸化是多种神经系统疾病(如缺血性中风、多发性硬化症以及亨廷顿舞蹈症等)的共同病理特征,也是致这些疾病神经损伤的原因之一。质子可直接激活酸敏感离子通道(acid-sensing ion channel,ASIC),介导组织酸化相关的生理和病理功能,例如,缺血性神经损伤。一直以来,ASIC引起酸毒性神经损伤被认为主要依赖于通道介导的细胞内钙离子升高。然而,本研究组新近的研究表明ASIC1a亚型通道能够通过激活受体相互作用蛋白1(receptor-interacting protein 1,RIP1),介导不依赖于通道离子通透功能的细胞程序性坏死。另外,亚细胞定位研究发现,除了在神经元膜表面,ASIC1a还可以定位在线粒体内膜上,通过调控线粒体通透性转变(mitochondrial permeability transition,MPT)过程,在缺血性神经损伤中发挥重要作用。这些进展使人们对于ASIC介导神经元死亡的机制有了新的认识。  相似文献   

19.
目的:探讨线粒体ATP敏感性钾通道和线粒体钙激活钾通道在葛根素预处理抗心肌细胞缺氧/复氧损伤中的作用。方法:采用酶解分离大鼠心肌细胞复制心肌细胞缺氧/复氧模型,台盼蓝拒染法测定心肌细胞存活率;四甲基罗丹明乙酯(TMRE)孵育测定线粒体膜电位值;分离线粒体测定线粒体渗透性转换孔开放程度。结果:与缺氧/复氧组相比,葛根素(0.24mmol/L)预处理5min可明显增加心肌细胞的存活率,线粒体ATP敏感性钾通道抑制剂5-羟基癸酸(100μmol/L,预处理20min)或线粒体钙激活钾通道阻断剂paxilline(1μmol/L,预处理5min)均可拮抗葛根素的作用。葛根素预处理可明显减弱缺氧引起的线粒体膜电位的耗损,5-羟基癸酸和paxilline都能明显拮抗其作用。在分离心肌线粒体模型上,葛根素显著减弱CaCl2诱导的线粒体在A520处吸光度降低,其作用与单独应用线粒体渗透性转换孔抑制剂环孢菌素A相似;5-羟基癸酸和paxilline可拮抗葛根素的保护作用。结论:在大鼠分离心肌细胞模型或分离线粒体模型上,葛根素预处理具有抗缺氧/复氧损伤的作用,这种保护作用可能与其促进线粒体ATP敏感性钾通道和线粒体钙激活钾通道的开放,进而稳定线粒体膜电位,抑制线粒体渗透性转换孔开放有关。  相似文献   

20.
在真核细胞中,除了线粒体和叶绿体ATPase的功能是合成ATP外,其余部位ATPase是水解ATP以获取生物能量的代谢酶,在生物体细胞内广泛存在。探索ATPase在细胞中的分布状态是研究细胞生理状态的一种重要手段。ATPase在细胞中的多少可反映出细胞当时的生活状态,这一特征已被初步用于探索小麦和水稻雄性不育的细胞生物学研究中,希望通过比较可育花药和不育花药中ATPase的分布差异寻找雄性不育的机理,发现  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号