首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
One of the limitations to conducting maize Agrobacterium-mediated transformation using explants of immature zygotic embryos routinely is the availability of the explants. To produce immature embryos routinely and continuously requires a well-equipped greenhouse and laborious artificial pollination. To overcome this limitation, an Agrobacterium-mediated transformation system using explants of type II embryogenic calli was developed. Once the type II embryogenic calli are produced, they can be subcultured and/or proliferated conveniently. The objectives of this study were to demonstrate a stable Agrobacterium-mediated transformation of maize using explants of type II embryonic calli and to evaluate the efficiency of the protocol in order to develop herbicide-resistant maize. The type II embryogenic calli were inoculated with Agrobacterium tumefaciens strain C58C1 carrying binary vector pTF102, and then were subsequently cultured on the following media: co-cultivation medium for 1 day, delay medium for 7 days, selection medium for 4 × 14 days, regeneration medium, and finally on germination medium. The T-DNA of the vector carried two cassettes (Ubi promoter-EPSPs ORF-nos and 35S promoter–bar ORF-nos). The EPSPs conferred resistance to glyphosate and bar conferred resistance to phosphinothricin. The confirmation of stable transformation and the efficiency of transformation was based on the resistance to phosphinothricin indicated by the growth of putative transgenic calli on selection medium amended with 4 mg l?1 phosphinothricin, northern blot analysis of bar gene, and leaf painting assay for detection of bar gene-based herbicide resistance. Northern blot analysis and leaf painting assay confirmed the expression of bar transgenes in the R1 generation. The average transformation efficiency was 0.60%. Based on northern blot analysis and leaf painting assay, line 31 was selected as an elite line of maize resistant to herbicide.  相似文献   

2.
用基因枪法将玉米矮花叶病毒外壳蛋白基因导入玉米自交系综31幼胚诱导的愈伤组织中,在含有Bialaphos 6 mg·L-1的选择培养基上经过3个月的抗性筛选,抗性愈伤组织在分化培养基上生成可育再生植株。PCR、PCR-Southern blot及DNA点杂交结果表明,外源基因已导入到玉米基因组中。转基因T1和T2代植株在大田表现出对MDMV的抗性,可以降低发病率,减轻发病程度。  相似文献   

3.
A highly efficient and reproducible transformation system for orchardgrass (Dactylis glomerata L. cv. Rapido, 2n=42=28) was established using microprojectile bombardment of highly regenerative, green tissues derived from mature seeds. These tissues, induced from embryogenic callus, were bombarded with a mixture of three plasmids containing the hygromycin phosphotransferase (hpt), phosphinothricin acetyltransferase (bar) and #-glucuronidase (uidA; gus) genes. From 147 individual explants bombarded, 11 independent hygromycin-resistant lines (7.5%) were obtained after an 8- to 16-week selection period using 30-50 mg/l hygromycin B. Of the 11 independent lines, ten (91%) were regenerable. The presence and integration of the transgene(s) were assessed using PCR and DNA blot hybridization. Coexpression frequency of the three transgenes (hpt/bar/uidA) in T0 plants was 20%, and of two transgenes, either hpt/bar or hpt/uidA, 45-60%. Due to greenhouse conditions optimized for the growth of other species, T1 seed has not been obtained from these plants. While the inability to analyze progeny plants precludes the conclusive demonstration of stable transformation, the results of all molecular and biochemical analyses of T0 plants are consistent with the production of stably transformed plants. Frequent change in ploidy level was observed in transformed T0 orchardgrass plants. Plants from only three of the ten independent lines analyzed had the normal tetraploid number of chromosomes (2n=42=28), while plants from seven lines (70%) were octaploid (2n=82=56). The octaploid plants had abnormal morphological features, such as narrower, thicker and more upright leaves.  相似文献   

4.
Improved gene transfer techniques are necessary to obtain adequatenumbers of stable transgenic wheat plants needed for practical purposes.Considering that wheat transformation is genotype-dependent, we used cv. Combiin all experiments, which had been selected from agronomically important Germanspring wheat cultivars because of its high transformation ability. In mostwheatgene transfer attempts, immature embryos or embryogenic scutellar calli weremicrobombarded. We compared both methods under optimised conditions, usingbar, uidA, andgfp as markers in co-transformation attempts. Integrationof the genes mentioned above was proven by Southern blotting, expression levelswere measured by assays on phosphinothricin acetyltransferase and-glucuronidase activities, and by monitoring for green fluorescentproteinin most developmental stages. Following bombardment of scutellar calli, anaverage transformation frequency of 0.13% was attained. Using immature embryos,mean transformation frequency (1.06%) was 8-fold higher. In addition, embryotechniques were over 2 weeks faster than scutellar callus procedures.Introducing gfp as a vital marker led to an improvement ofembryo-based techniques. In a first screening, transientgfp-expressing embryos were transferred tophosphinothricincontaining callus medium. Only gfp-expressing calli whichdeveloped on it were cultured further on phosphinothricin containingregeneration medium. Shoots obtained from gfp-expressingcalli were rooted on phosphinothricin-free medium, and cultured exvitro. Average transformation frequency (4.93%) was 38-fold higherthan with scutellar callus techniques. Differences between the transformationstrategies used were of high statistical significance. Combining greenfluorescent protein screening with phosphinothricin selection in embryo-basedtechniques offers a promising system to obtain high wheat transformationfrequencies.  相似文献   

5.
Stable transformation of Eucalyptus globulus after biolisticDNA delivery was investigated using zygotic embryos as targetmaterial. Conditions for plant regeneration were first investigated.Six-day-old cultured embryos, which had shown to be a good targetfor DNA transient expression, appeared to be suitable for regeneration.Whole plants were recovered through organogenesis after particlegun bombardment. Transformation experiments were performed witha linear T-DNA fragment harbouring GUS and NPTII genes, usingthe biological and physical conditions defined for optimum transientexpression. After 2 months on a culture medium, neoformed GUS-positivecalli were obtained from the ‘T-DNA’ bombarded embryos.GUS-expressing calli were also recovered after selection withkanamycin following bombardment. The integration of both GUSand NPTII genes into the Eucalyptus genome was confirmed bySouthern blot analysis, demonstrating stable transformationof Eucalyptus globulus cells for the first time. Key words: Eucalyptus, zygotic embryos, biolistics, stable transformation, regeneration  相似文献   

6.
Variation in the inheritance of expression among subclones for an unselected (uidA) and a selected (bar) transgene was analyzed in two individual transformation events in maize. The unselectable gene (uidA) and the selectable gene (bar), on two separate plasmids, were transferred to maize (Hi-II derivative) by particle bombardment of embryogenic calli or suspension cells. A total of 188 fertile T1 plants were obtained from one transformant (transformation event BG which integrated uidA and bar). A total of 98 fertile T1 plants were obtained from a second transformant (transformation event B which integrated bar). Through self-pollination and/or cross-pollination in the greenhouse, approximately 10 000 T2 progeny were obtained from event BG, and more than 1000 T2 progeny were obtained from event B. Segregation of transgene expression was analyzed statistically in a total of 2350 T2 progeny from 40 T1 subclones of event BG and in 217 T2 progeny from six T1 subclones from event B. Variation in the inheritance of expression among subclones for the two transgenes (uidA and bar) was observed in the two transformants. A significant difference was observed between the use of the female or male as the transgenic parent in the inheritance of expression for the two transgenes in event BG. No inheritance through the pollen was observed in two of four T1 subclones analyzed in event B. Co-expression analysis of event BG showed that both transgenes were co-expressed in 67.7% of the T2 plants which expressed at least one of the two transgenes. Of the T2 expressing plants, 30.4% expressed only bar, and 1.9% expressed only uidA. Inactivation of the unselected (uidA) and the selected (bar) transgenes was observed in individual T2 plants.  相似文献   

7.
By manipulating hormone levels, light intensities and temperature, we have developed an efficient leaf-disc method for the regeneration of plants via embryogenesis and for transformation in four genotypes of Vitis vinifera L. In MS basal medium supplemented with 1 mg l-1 6-benzylaminopurine (BAP) and 0.1 mg l-1 2,4-dichlorophenoxyacetic acid, leaf discs cultured for 2 weeks under dark conditions produced calli in over 80% of the cultures. These subsequently differentiated into pro-embryos and embryos only if kept under conditions of low light intensity (15 µE m-2 s-1) for 2 weeks before being transferred to conditions of high light intensity (60 µE m-2 s-1). If the calli were directly transferred to high light intensity, the differentiation into embryos was blocked and the calli turned pink. The somatic embryos germinated at a frequency of about 10% on NN basal medium and about 32% on NN medium supplemented with 1 mg l-1BAP and 0.1 mg l-1 indole-3-butyric acid. The embryos, however, germinated when pre-exposed to a low temperature of 4°C for 2 weeks. If they were transferred directly to room temperature under conditions of high light intensity (60 µE m-2 s-1), shoot buds were produced, whereas under conditions of low light intensity (15 µE m-2 s-1) secondary embryogenesis was induced. About 90-95% of the in vitro grown plantlets could be successfully transferred to soil. The above method was also applicable for developing transgenic embryos whose transgenic nature was monitored using #-glucuronidase as a reporter gene.  相似文献   

8.
Two new methods of transformation for recalcitrant maize elite inbreds (B73 and a Pioneer Hi-Bred inbred) were successfully developed using shoot meristematic cultures (SMCs) derived from germinated seedlings. One of the methods - the sector proliferation method - involved in vitro induction and proliferation of SMCs from transgenic sectors. These transgenic sectors derived from the bombardment of shoot apical meristems in immature embryos. Using this method, transgenic T1 and T2 progeny were obtained from the Pioneer Hi-Bred maize inbred, PHTE4. The other method - the SMC method - involved direct bombardment of SMCs. Using the second method, transgenic T1 and T2 progeny were produced from the publicly held maize inbred B73. Cellular and molecular analyses showed that SMCs were mainly induced from the nodal regions within the elongating in vitro stem tissues. The induced SMCs, characterized by large numbers of cells expressing KN1, have the potential to produce multiple adventitious shoot meristems. The use of induction and maintenance media containing higher levels of Cu2+ or Zn2+, not needed in earlier investigations on sweet corn, was found to be critical for the successful in vitro culture and transformation of some maize inbreds.  相似文献   

9.
Transgenic maize plants by tissue electroporation.   总被引:24,自引:1,他引:23       下载免费PDF全文
In this paper, we describe the transformation of regenerable maize tissues by electroporation. In many maize lines, immature zygotic embryos can give rise to embryogenic callus cultures from which plants can be regenerated. Immature zygotic embryos or embryogenic type I calli were wounded either enzymatically or mechanically and subsequently electroporated with a chimeric gene encoding neomycin phosphotransferase (neo). Transformed embryogenic calli were selected from electroporated tissues on kanamycin-containing media and fertile transgenic maize plants were regenerated. The neo gene was transmitted to the progeny of kanamycin-resistant transformants in a Mendelian fashion. This showed that all transformants were nonchimeric, suggesting that transformation and regeneration are a single-cell event. The maize transformation procedure presented here does not require the establishment of genotype-dependent embryogenic type II callus or cell suspension cultures and facilitates the engineering of new traits into agronomically relevant maize inbred lines.  相似文献   

10.
An optimized procedure for transformation of wheat with the use of a Biolistic Particle Delivery System PDS 1000/He to deliver foreign DNA is described in detail. The bacterial uidA and bar genes (both driven by plant promoters) were utilized as the reporter and selectable marker genes, respectively. Moderately high gas pressure appeared to be most important to achieve the highest level of transient GUS expression in target tissues. There was, however, no apparent correlation between transient and stable GUS expression. The presence of telomeric DNA sequences in an uidA gene-containing vector did not influence transient GUS expression but, apparently, prevented its stable expression. Mechanical lesions caused by the bombardment (tungsten particles) seemed to be less severe when embryo- derived calli, instead of freshly excised immature embryos, were used as the target tissue. The limited ability of callus cells for regeneration, together with a restricted number of cells that receive the foreign DNA by particle bombardment, result in a low efficiency of wheat stable transformation.  相似文献   

11.
Three antibiotics were evaluated for their effects on the elimination of Agrobacterium tumefaciens during the genetic transformation of loblolly pine ( Pinus taeda L.) using mature zygotic embryos as targets. Agrobacterium tumefaciens strains, EHA105, GV3101, and LBA 4404, all harbouring the plasmid pCAMBIA1301, which carries the selectable marker gene, hygromycin phosphotransferase ( hpt) controlled by the cauliflower mosaic virus 35S promoter and terminator, and the uidA reporter gene (GUS) driven by the cauliflower mosaic virus 35S promoter and the terminator of nopaline synthase gene, were used in this study. Exposure to 350 mg l-1 carbenicillin, claforan, and timentin respectively for up to 6 weeks did not eliminate the Agrobacterium, while antibiotics at 500 mg l-1 eradicated them from the co-cultivated zygotic embryos. All three antibiotics increased callus growth and shoot regeneration at 350 and 500 mg l-1 each, but reduced callus growth and shoot regeneration at 650 mg l-1 when compared with controls. Putative transgenic calli were selected for continued proliferation and differentiation on 4.5 mg l-1 hygromycin-containing medium. Transformed calli and transgenic plants produced on a selection medium containing 4.5 mg l-1 hygromycin were confirmed by GUS histochemical assays, by polymerase chain reaction (PCR), and by Southern blot analysis. These results are useful for future studies on optimizing genetic transformation procedures in loblolly pine.  相似文献   

12.
Agrobacterium tumefaciens-mediated genetic transformation and the regeneration of transgenic plants was achieved in Hevea brasiliensis. Immature anther-derived calli were used to develop transgenic plants. These calli were co-cultured with A. tumefaciens harboring a plasmid vector containing the H. brasiliensis superoxide dismutase gene (HbSOD) under the control of the CaMV 35S promoter. The -glucuronidase gene (uidA) was used for screening and the neomycin phosphotransferase gene (nptII) was used for selection of the transformed calli. Factors such as co-cultivation time, co-cultivation media and kanamycin concentration were assessed to establish optimal conditions for the selection of transformed callus lines. Transformed calli surviving on medium containing 300 mg l-1 kanamycin showed a strong GUS-positive reaction. Somatic embryos were then regenerated from these transgenic calli on MS2 medium containing 2.0 mg l-1 spermine and 0.1 mg l-1 abscisic acid. Mature embryos were germinated and developed into plantlets on MS4 medium supplemented with 0.2 mg l-1 gibberellic acid, 0.2 mg l-1 kinetin (KIN) and 0.1 mg l-1 indole-3-acetic acid. A transformation frequency of 4% was achieved. The morphology of the transgenic plants was similar to that of untransformed plants. Histochemical GUS assay revealed the expression of the uidA gene in embryos as well as leaves of transgenic plants. The presence of the uidA, nptII and HbSOD genes in the Hevea genome was confirmed by polymerase chain reaction amplification and genomic Southern blot hybridization analyses.Communicated by L. Peña  相似文献   

13.
A selectable marker system for plant transformation that does not require the use of antibiotics or herbicides was developed. The selectable marker consists of the manA gene from Escherichia coli under the control of a plant promoter that encodes for phosphomannose isomerase, pmi. Only transgenic plants were able to metabolize the selection agent, mannose, into a usable source of carbon, fructose. Transgenic plants were produced efficiently after delivery by Biolistics™ of the pmi gene into maize and wheat tissues, with mean transformation frequencies of 45% for maize and 20% for wheat. Adjustment of the sucrose and mannose levels in the selection medium essentially eliminated escapes. Transgenic events can be identified as early as 2 months for wheat and 4 months for maize. A simple test, a modified chlorophenol red assay, was used for early identification of transgenic events expressing the pmi gene. Transformation frequencies for both crops exceeded those obtained with the bar and pat genes with selection on either Basta® or bialaphos.  相似文献   

14.
The consumption and assimilation rates of the woodlouse Armadillidium vulgare were measured on leaf litters from five herb species grown and naturally senesced at 350 and 700 µl l-1 CO2. Each type of litter was tested separately after 12, 30 and 45 days of decomposition at 18°C. The effects of elevated CO2 differed depending on the plant species. In Medicago minima (Fabaceae), the CO2 treatment had no significant effect on consumption and assimilation. In Tyrimnus leucographus (Asteraceae), the CO2 treatment had no significant effect on consumption, but the elevated CO2 litter was assimilated at a lower rate than the ambient CO2 litter after 30 days of decomposition. In the three other species, Galactites tomentosa (Asteraceae), Trifolium angustifolium (Fabaceae) and Lolium rigidum (Poaceae), the elevated CO2 litter was consumed and/or assimilated at a higher rate than the ambient CO2 litter. Examination of the nitrogen contents in these three species of litter did not support the hypothesis of compensatory feeding, i.e. an increase in woodlouse consumption to compensate for low nitrogen content of the food. Rather, the results suggest that in herbs that were unpalatable at the start of the experiment (Galactites, Trifolium and Lolium), more of the the litter produced at 700 µl l-1 CO2 was consumed than of that produced at 350 µl l-1 because inhibitory factors were eliminated faster during decomposition.  相似文献   

15.
A system for the production of transgenic papaya (Carica papaya L.) plants using zygotic embryos and embryogenic callus as target cells for particle bombardment is described. Phosphinothricin (bar ) and kanamycin (npt II) resistance genes were used as selectable markers, and the gus gene (uidA) as a reporter gene. Selection with 100 mg/l kanamycin and 4 mg/l phosphinothricin (PPT) yielded a total of over 90 resistant embryogenic colonies from three independent experiments using embryogenic callus as a target tissue. This represents an efficiency of 60 transgenic clones per gram of fresh weight callus bombarded. The efficiency of genetic transformation using zygotic embryos was lower, as only 8 independent resistant clones were recovered out of 645 bombarded zygotic embryos, giving a efficiency of 1.24%. Subsequent subculture of transgenic somatic embryos both from zygotic embryos and embryogenic callus led to the development of plants with apparently normal morphology. Histological, fluorimetric assay for GUS, NPT II assay and DNA analysis (Southern hybridization) showed that kanamycin /PPT resistant plants carried and expressed the transgenes.Abbreviations Gus -glucuronidase - NPTII neomycin phophotransferase II - bar phophinothricin acetyl transferase gene - Pat phosphinothricin acetyl transferase - PPT phosphinothricin - Km kanamycin - 2,4-D 2,4-dichlorophenoxyacetic acid - K kinetin - BAP benzylaminopurine - IBA indolbutyric acid  相似文献   

16.
Callus was induced from immature and mature embryos of barley(cv. Haruna Nijo) on Murashige and Skoog medium containing 2mg l-1 2,4-D and 5 mg l-1 picloram, respectively. Paraffin sections(10 µm thick) were prepared for histology during callusinitiation and plant regeneration. Meristems were regeneratedfrom nodular compact callus (NC) derived from scutellar epidermisin immature embryos, whereas they were regenerated from NC derivedfrom epidermal cells of leaf or coleoptile bases in mature embryos.Regardless of the explant source, regeneration was predominantlythrough organogenesis, although regeneration through somaticembryogenesis infrequently occurred. Thus, the callus inducedfrom immature and mature embryos of barley was regarded as 'nodularcompact' rather than 'embryogenic'.Copyright 1995, 1999 AcademicPress Barley, callus, Hordeum vulgare, histology, immature embryo, mature embryo, regeneration  相似文献   

17.
Formation of somatic embryos was dependent on concentrationof specific auxin and mineral nutrient formulation. On N6 mediumwith low levels of 2,4-D somatic embryos were obtained fromunemerged inflorescences and immature embryos. Direct differentiationof somatic embryos, a rare feature of regeneration in graminaceousplants, was more apparent from immature embryos than from inflorescences.On the other hand, on MS medium with different levels of 2,4-Dcompact callus-like masses appeared which regenerated to formplantlets on auxin-free medium. At higher levels of 2,4-D andalso on N6 medium compact tissues (morphogenic calli) appearedwhich were made up of thallus-like structures. Echinochloa, immature embryo, unemerged inflorescence, somatic embryo  相似文献   

18.
A very efficient transformation system, using biolistic bombardment, has been developed for the production of transgenic plants of Kentucky bluegrass (Poa pratensis L.). Embryogenic calli, initiated from immature embryos, were transformed either with pAct1IHPT-4 containing the hygromycin phosphotransferase (hpt) gene or with pDM803 containing the phosphinothricin acetyltransferase (bar) gene and the β-glucuronidase (uidA) gene. In total 119 independent transgenic plants were recovered from 153 hygromycin-resistant lines. Bialaphos selection yielded a total of 99 bialaphos-resistant lines and from these 34 independent transgenic plants were recovered. Southern blot analysis demonstrated the independent nature of the transgenic plants and also revealed a complex transgene integration pattern with multiple insertions. The first two author contributed equally to this work  相似文献   

19.
以红皮云杉未成熟胚为外植体进行胚性愈伤组织诱导实验,利用L16(42×2)混合水平正交设计研究基础培养基、光照条件、未成熟胚采集时期对胚性愈伤组织诱导的影响,以此为基础对不同的培养温度梯度进行了筛选。结果表明:改良RJW基本培养基为最适宜的基础培养基,光照条件以暗培养为宜,未成熟胚的最适宜的采集时间7月20日,适宜培养温度为22℃。当未成熟胚在添加1.0 mg·L-1 BA,5.0 mg·L-1 NAA,20 g·L-1蔗糖,450 mg·L-1 L-谷氨酰胺、750 mg·L-1水解酪蛋白的改良RJW培养基,22℃下暗培养时,胚性愈伤组织诱导率最高,达到81.3%。  相似文献   

20.
Xiao  L.  Ha  S.-B. 《Plant cell reports》1997,16(12):874-878
We have established an efficient genetic transformation system for creeping bentgrass (Agrostis palustris Huds.) using particle bombardment. The transformation was performed using the plasmid pZO1052 which contains the reporter β-glucuronidase (uidA) gene and the selectable marker hygromycin phosphotransferase (hph) gene. Transformed calli and plants were obtained via particle bombardment followed by selection of transformants on medium containing 200 mg/l of hygromycin. An average of 4.6 resistant colonies per bombardment were obtained. Southern analysis confirmed the integration of foreign genes in 19 of 21 putative transformants, indicating that selection by hygromycin was highly effective. Received: 6 February 1997 / Revision received: 16 April 1997 / Accepted: 9 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号