首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Substantial amounts of algal crusts were collected from five different desert experimental sites aged 42, 34, 17, 8 and 4 years, respectively, at Shapotou (China) and analyzed at a 0.1 mm microscale of depth. It was found that the vertical distribution of cyanobacteria and microalgae in the crusts was distinctly laminated into an inorganic-layer (ca.0.00–0.02 mm, with few algae), an algae-dense-layer (ca.0.02–1.0 mm) and an algae-sparse-layer (ca.1.0–5.0 mm). It was interesting to note that in all crusts Scytonema javanicum Born et Flah (or Nostoc sp., cyanobacterium), Desmococcus olivaceus (Pers ex Ach., green alga) Laundon and Microcoleus vaginatus Gom. (cyanobacterium) dominated at the depth of 0.02–0.05, 0.05–0.1 and 0.1–1.0 mm, respectively, from the surface. Phormidium tenue Gom. (or Lyngbya cryptovaginatus Schk., cyanobacterium) and Navicula cryptocephala Kutz.(or Hantzschia amphioxys (Ehr.) Grun. and N. cryptocephala together, diatom) dominated at the depth of 1.0–3.0 and 3.5–4.0 mm, respectively, of the crusts from the 42 and 34 year old sites. It was apparent that in more developed crusts there were more green algae and the niches of Nostoc sp., Chlorella vulgaris Beij., M. vaginatus, N. cryptocephala and fungi were nearer to the surface. If lichens and mosses accounted for less than 41.5% of the crust surface, algal biovolume was bigger when the crust was older, but the opposite was true when the cryptogams other than algae covered more than 70%. In addition to detailed species composition and biovolume, analyses of soil physicochemical properties, micromorphologies and mineral components were also performed. It was found that the concentration of organic matter and nutrients, electric conductivity, silt, clay, secondary minerals were higher and there were more micro-beddings in the older crusts than the less developed ones. Possible mechanisms for the algal vertical microdistribtion at different stages and the impact of soil topography on crust development are discussed. It is concluded that biomethods (such as fine species distribution and biovolume) were more precise than mineralogical approaches in judging algal crust development and thus could be a better means to measure the potentiality of algal crusts in desert amelioration.  相似文献   

2.
生物结皮粗糙特征——以古尔班通古特沙漠为例   总被引:1,自引:0,他引:1  
王雪芹  张元明  张伟民  杨东亮 《生态学报》2011,31(14):4153-4160
摘要:空气动力粗糙度可以反映地表气流与下垫面的相互作用。古尔班通古特沙漠是我国最大的固定、半固定沙漠,其间广泛分布的生物结皮在稳定地表和改善环境方面意义重大。对未经扰动的4种类型生物结皮进行表面微形态观察,并通过风洞实验确定动力粗糙度Z0和摩阻风速u*,结果表明:(1)不同生物结皮类型,其组成和表面微形态等都具有明显差异。藻结皮以表面致密光滑为显著特征,由藻类分泌物和藻丝体粘结细粒物质所形成;地衣结皮表面藻类和真菌形成的叶状体匍匐沙面生长,呈现三维生长方式,形成有明显凹凸的壳状覆被;苔藓结皮以苔藓植物体密集丛生为特点,地上部分出现了茎叶分化,有一定的柔韧性。(2)就动力粗糙度的大小而言,是按地衣结皮>藻类-地衣结皮>苔藓结皮>藻结皮的顺序排列的,Z0平均值依次为(6.5890.850)mm、(4.1790.239)mm、(2.5420.357)mm和(0.3930.220)mm,与定床裸沙面的(0.0420.019)mm相比,生物结皮Z0值提高了10—150倍。随着风速的增大Z0值有所减小,其中以地衣结皮的减小趋势较为明显。(3)由风速廓线对比发现,四类生物结皮对气流阻滞作用的差异主要局限于4 cm以下的高度范围,风速越大这种差异也越大。各类生物结皮摩阻风速u*随风速增大而增大,其中藻结皮的增大速率明显低于其它三类结皮,说明藻结皮随风速增大的阻滞效应较其它三类结皮要差。(4)在净风条件下,地衣结皮具有最好的防风效果,其次为藻类-地衣结皮和苔藓结皮,藻结皮最差。当生物结皮破损后,床面结构和气流性质将发生变化,对空气动力学粗糙度和摩阻风速产生的影响将有待于进行更深入的研究。  相似文献   

3.
The objective of this study was to characterize the community structure and activity of N2-fixing microorganisms in mature and poorly developed biological soil crusts from both the Colorado Plateau and Chihuahuan Desert. Nitrogenase activity was approximately 10 and 2.5 times higher in mature crusts than in poorly developed crusts at the Colorado Plateau site and Chihuahuan Desert site, respectively. Analysis of nifH sequences by clone sequencing and the terminal restriction fragment length polymorphism technique indicated that the crust diazotrophic community was 80 to 90% heterocystous cyanobacteria most closely related to Nostoc spp. and that the composition of N2-fixing species did not vary significantly between the poorly developed and mature crusts at either site. In contrast, the abundance of nifH sequences was approximately 7.5 times greater (per microgram of total DNA) in mature crusts than in poorly developed crusts at a given site as measured by quantitative PCR. 16S rRNA gene clone sequencing and microscopic analysis of the cyanobacterial community within both crust types demonstrated a transition from a Microcoleus vaginatus-dominated, poorly developed crust to mature crusts harboring a greater percentage of Nostoc and Scytonema spp. We hypothesize that ecological factors, such as soil instability and water stress, may constrain the growth of N2-fixing microorganisms at our study sites and that the transition to a mature, nitrogen-producing crust initially requires bioengineering of the surface microenvironment by Microcoleus vaginatus.  相似文献   

4.
The blackish brown crust on the fine carvings of seven terracotta monuments of Bishnupur were studied with regards to the presence of algal species. Forty five taxa of micro algae belonging to 36 species of cyanobacteria, 5 species of chlorophyta and 4 species of bacillariophyta were found in crusts of these monuments. Among the algal groups, cyanobacteria were the dominant population growing in all the monuments with maximum diversity of 30 species in Rasmancha. Lyngbya corticicola, Scytonema schmidtii and Nostoc microscopicum were the major taxa in all crust samples. The absorption ratio of chlorophyll: carotenoid: MAAs (mycosporine-like amino acid substances) and scytonemin showed scytonemin and MAAs were more abundant than the chlorophyll pigment in all the crust. The MAAs and scytonemin of the crusts were identified as Mycosporine glycine having absorption maxima at 310 nm with retention time (RT) 4.1 min and scytonine having absorption maxima 386 nm with RT 3.2 min respectively. Among the major crust cyanobacteria cellular carbohydrate of N. microscopicum was maximum and lowest in S. schmidtii. However, the extra polymeric substance released to the medium was more in L. corticicola and so intense that the medium become coloured. The slimes of the major crust cyanobacteria plug the fine carvings of the terracotta structures which led to disfiguration of fine architecture, act as a biofilm that facilitated growth of fungi, lichens and subsequently to mosses and small plants leading to create creaks in the monuments and deteriorate these archeologically important monuments.  相似文献   

5.
Belnap J  Phillips SL  Miller ME 《Oecologia》2004,141(2):306-316
Biological soil crusts, a community of cyanobacteria, lichens, and mosses that live on the soil surface, occur in deserts throughout the world. They are a critical component of desert ecosystems, as they are important contributors to soil fertility and stability. Future climate scenarios predict alteration of the timing and amount of precipitation in desert environments. Because biological soil crust organisms are only metabolically active when wet, and as soil surfaces dry quickly in deserts during late spring, summer, and early fall, the amount and timing of precipitation is likely to have significant impacts on the physiological functioning of these communities. Using the three dominant soil crust types found in the western United States, we applied three levels of precipitation frequency (50% below-average, average, and 50% above-average) while maintaining average precipitation amount (therefore changing both timing and size of applied events). We measured the impact of these treatments on photosynthetic performance (as indicated by dark-adapted quantum yield and chlorophyll a concentrations), nitrogenase activity, and the ability of these organisms to maintain concentrations of radiation-protective pigments (scytonemin, beta-carotene, echinenone, xanthophylls, and canthaxanthin). Increased precipitation frequency produced little response after 2.5 months exposure during spring (1 April–15 June) or summer (15 June–31 August). In contrast, most of the above variables had a large, negative response after exposure to increased precipitation frequency for 6 months spring–fall (1 April–31 October) treatment. The crusts dominated by the soil lichen Collema, being dark and protruding above the surface, dried the most rapidly, followed by the dark surface cyanobacterial crusts (Nostoc-Scytonema-Microcoleus), and then by the light cyanobacterial crusts (Microcoleus). This order reflected the magnitude of the observed response: crusts dominated by the lichen Collema showed the largest decline in quantum yield, chlorophyll a, and protective pigments; crusts dominated by Nostoc-Scytonema-Microcoleus showed an intermediate decline in these variables; and the crusts dominated by Microcoleus showed the least negative response. Most previous studies of crust response to radiation stress have been short-term laboratory studies, where organisms were watered and kept under moderate temperatures. Such conditions would give crust organisms access to ample carbon to respond to imposed stresses (e.g., production of UV-protective pigments, replacement of degraded chlorophyll). In contrast, our longer-term study showed that under field conditions of high air temperatures and frequent, small precipitation events, crust organisms appear unable to produce protective pigments in response to radiation stress, as they likely dried more quickly than when they received larger, less frequent events. Reduced activity time likely resulted in less carbon available to produce or repair chlorophyll a and/or protective pigments. Our findings may partially explain the global observation that soil lichen cover and richness declines as the frequency of summer rainfall increases.  相似文献   

6.
生物结皮影响下的土壤有机质分异特征   总被引:27,自引:4,他引:23  
张元明  杨维康  王雪芹  张道远 《生态学报》2005,25(12):3420-3425
对新疆古尔班通古特沙漠生物结皮影响下的土壤有机质分异特征进行了定量研究。结果表明,该沙漠典型沙垄不同部位具有不同的土壤有机质特征,且土壤有机质含量具有明显的分层特征。无论是结皮覆盖区还是非覆盖区,土壤有机质的积累均以表层0~5cm土层为主,由表及里呈递减趋势。这种地表有机质分布的规律在该沙漠地表普遍存在。虽然如此,生物结皮却强烈影响着地表0~5cm土层有机质的含量的积累,它的存在使得该层有机质含量极显著地高于无结皮覆盖区0~5cm土层的有机质含量(t检验,p<0.01),表明生物结皮能显著增加地表0~5cm土层的有机质含量;而无论结皮覆盖区还是非结皮覆盖区,两者5~10cm土层之间和10~30cm土层之间的有机质含量无显著差异(t检验,p>0.05),说明生物结皮对土壤有机质含量的影响范围仅限于表层0~5cm,对更深层次土壤的有机质含量则无显著影响。  相似文献   

7.
Biological soil crusts dominated by lichens are common components of shrub-steppe ecosystems in northwestern US. We conducted growth chamber experiments to investigate the effects of these crusts on seed germination and initial seedling establishment of two annual grasses; the highly invasive exotic Bromus tectorum L. and the native Vulpia microstachys Nutt. We recorded germination time courses on bare soil and two types of biological soil crusts; one composed predominantly of the lichen Diploschistes muscorum (Scop.) R. Sant. (lichen crust) and the other comprised of an assortment of lichens and mosses (mixed crust). Final germination on the lichen crust for both grass species was about a third of that on the bare soil surface. Mean germination time (MGT) was 3–4 days longer on the lichen crust compared with the bare soil. In contrast, there was no difference in germination percentage or MGT between the mixed crust and bare soil, and results were similar for both grass species. For both species, root penetration of germinating seeds on the lichen crust was lower than on the bare soil or mixed crust surfaces. The combined effects of the lichen crust on germination and root penetration resulted in an overall reduction in seedling establishment of 78% for V. microstachys and 85% for B. tectorum relative to the bare soil treatment. Our results clearly demonstrate that lichen-dominated biological soil crust can inhibit germination and root penetration, but the extent of these effects depends on the composition of the crust. Responsible Editor: Tibor Kalapos  相似文献   

8.
Biological soil crusts dominated by drought-tolerant mosses are commonly found through arid and semiarid steppe communities of the northern Great Basin of North America. We conducted growth chamber experiments to investigate the effects of these crusts on the germination of four grasses: Festuca idahoensis, Festuca ovina, Elymus wawawaiensis and Bromus tectorum. For each of these species, we recorded germination time courses on bare soil and two types of biological soil crusts; one composed predominantly of the tall moss Tortula ruralis and the other dominated by the short moss Bryum argenteum. On the short-moss crust, the final germination percentage was about half of that on bare soil. Also, the mean germination time was 4 days longer on short-mosses than on bare soil. In contrast to the short-moss crust, the tall-moss crust did not reduce the final germination percentage but increased the mean germination time. Similar results were observed in the four grasses studied. To investigate the mechanism by which moss crusts affected germination, we analyzed the water status of seeds on bare soil and moss crusts. Six days after seeding, the water content of seeds on bare soil was approximately twice that of seeds on tall- or short-moss crust. Analysis of the time course of changes in seed weight and water potential in Bromus tectorum revealed that overtime seeds on tall mosses reached higher water content than those on short mosses. The increase in the water content of seeds on tall mosses occurred as the seeds gradually fell through the moss canopy. Taken together, our results indicate that biological soil crusts with distinct structural characteristics can have different effects on seed germination. Furthermore, this study revealed that a biological soil crust dominated by short mosses had a negative effect on seed water status and significantly reduced seed germination.  相似文献   

9.
荒漠地表生物土壤结皮形成与演替特征概述   总被引:11,自引:0,他引:11  
张元明  王雪芹 《生态学报》2010,30(16):4484-4492
土壤表面结皮是世界范围内干旱沙漠地区土壤表面广泛存在的自然现象,包括物理结皮和生物土壤结皮两大类型。其中,生物土壤结皮作为干旱沙漠地区特殊环境的产物,是由细菌、真菌、蓝绿藻、地衣和苔藓植物与土壤形成的有机复合体。它的形成使土壤表面在物理、化学和生物学特性上均明显不同于松散沙土,具有较强的抗风蚀功能和重要的生态效应,成为干旱沙漠地区植被演替的重要基础。随着形成生物土壤结皮的物种更替,维持结皮结构的主要胶结方式亦随之发生变化,即由胞外多糖的粘结作用逐渐转变为蓝藻和荒漠藻的藻丝体、地衣菌丝体以及苔藓植物假根的缠绕和捆绑作用,物种更替是结皮微结构和胶结方式转化的生物基础。生物土壤结皮的形成通常可以分为以下几个阶段:生物土壤结皮的早期阶段(土壤酶和土壤微生物),藻结皮阶段、地衣结皮阶段和苔藓结皮阶段。即随着土壤微生物在沙土表面的生长,随后出现丝状蓝藻和荒漠藻类植物,形成以藻类植物为主体的荒漠藻结皮;当土壤表面得到一定固定后,便开始出现地衣和苔藓植物,形成以地衣和苔藓植物为优势的生物结皮类型。其中,前一阶段的完成又为后一阶段的开始提供良好的环境条件。当环境条件适宜时,生物土壤结皮也可以不经历其中某个阶段而直接发育到更高级的阶段。  相似文献   

10.
杨军  魏江春 《菌物学报》2014,33(5):1025-1035
文章论述了荒漠地衣与“沙漠生物地毯工程”。在沙坡头结皮微型生物中发现了23种地衣,其中两个新种已发表,一属6种为中国新记录。对于在腾格里沙漠东南角沙坡头地区人工植被固沙防护体系建成后的生态演替进行了分析。由于人工植被为形成结皮的微型生物提供了适宜的生长环境而导致微型生物结皮的形成和发育。在水分平衡规律的作用下漫长生态演替过程中,具有抽水机效应的人工植被使沙土深层水分消耗殆尽,从而导致人工植被自身逐年衰退。然而,与此相反的是无抽水机效应而具有固沙、固碳和抗旱功能的结皮微型生物却逐年形成并发育。这一结果为借助于结皮微型生物的接种技术在干旱沙漠构建“沙漠生物地毯工程”的可行性提供了科学依据。为了优化“沙漠生物地毯工程”利用荒漠地衣耐旱基因以构建转基因草地植物的研究也正在进行中。该研究是“沙漠生物地毯工程”基础研究的组成部分。  相似文献   

11.
Microbiotic crusts are biological soil crusts composed of lichens, cyanobacteria, algae, mosses, and fungi. The biodiversity of these crusts is poorly understood; several cosmopolitan species dominate in most areas, but many species are confined to one or a few sites. Nitrogen fixation by organisms within the crust can be the dominant source of nitrogen input into many ecosystems, although rates of nitrogen input are limited by water availability, temperature, and nitrogen loss from the crust. Photosynthetic rates of the microbiotic crust can be 50% of those observed for higher plants, but the contribution of crusts to carbon cycling is not known. The microbiotic crust binds soil particles together, and this significantly increases soil surface stability and resistance to erosion. Greenhouse studies have found that crusts can enhance seed germination, seedling survivorship, and plant nutrient status, but further experiments are needed under field conditions. Crusts are extremely susceptible to surface disturbance and fire, and disruption of crusts can decrease soil fertility and stability resulting in lower nutrient availability for vascular plants and significant soil loss from the ecosystem.  相似文献   

12.
In this paper, chlorophytes collected from 253 biological soil crust samples in Gurbantunggut Desert in Xinjiang Autonomous Region, China were studied by field investigation and microscopical observation in lab. The flora composition, ecological distribution of chlorophytes in the desert and dynamic changes of species composition of chlorophytes in different developing stages of biological soil crusts are preliminarily analyzed. Results showed that there were 26 species belonging to 14 genera and 10 families, in which unicellular chlorophytes were dominant. There existed some differences in distribution of varied sand dune positions. The taxa of chlorophytes in leeward of sand dunes are most abundant, but the taxa in windward, interdune and the top of sand dunes reduced gradually. Chlorophytes were mainly distributed within the crust and the taxa of chlorophytes decrease obviously under the crust. In the developing stages of the biological soil crust, species diversity of chlorophytes changed a little, but species composition presented some differences. Chlorococcum humicola, Chlorella vulgaris, Chlamydomonas ovalis and Chlamydomonas sp. nearly existed in all developing stages of biological crusts. In several former stages of the biological soil crust there were spherical chlorophytes and filamentous ones. When moss crust formed, filamentous chlorophytes disappeared, such as Microspora and Ulothrix. __________ Translated from Arid Zone Research, 2006, 23(2): 189–193 [译自: 干旱区研究]  相似文献   

13.
We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4–9.4 mmol O2·m?2·h?1) and dark respiration (0.81–3.1 mmol O?2·m?2·h?1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2–3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.  相似文献   

14.
We examined the dynamics of cryptogamic soil crusts in a derived (disclimax) grassland near Orange in southeastern Australia. Changes in the cover of cryptogamic crusts and floristics and abundance of the constituent species were measured on four treatments with two levels each of grazing and cultivation. Twenty‐two lichens, mosses and liverworts were found at the study site and, of these, 13 were collected in the quadrats. Three moss species (Barbula calycina, Eccremidium arcuatum and Bryum pachytheca) and one lichen species (Cladonia tessalata) accounted for 67% of total cover‐abundance scores. Generally, cover‐abundance was significantly higher in the unvegetated microsites than in the vegetated microsites. Species richness was not significantly different between the four grazing‐cultivation treatments but, on average, there were significantly more species in the unvegetated microsites (mean = 3.2 species) than in the vegetated microsites (0.54 species). Grazing and cultivation resulted in significantly greater cover of bare ground and consequently significantly greater crust cover. Averaged across all treatments, approximately half of the area of unvegetated soil was occupied by cryptogams. Overall, the results indicate that lichens and bryophytes are important components of derived temperate grasslands, surviving in even densely vegetated swards. This study suggests that strategies which disturb the soil surface (e.g. grazing and cultivation) will stimulate the abundance and cover of soil crust organisms by increasing the availability of unvegetated microsites.  相似文献   

15.
Question: What is the nature of the relationships between cover, diversity and abundance of biological soil crusts, cover and diversity of vascular plants, and annual rainfall, soil texture and forestry practices in Callitris glaucophylla woodlands? Location: Arid and semi‐arid Callitris glaucophylla‐domi‐nated woodlands of eastern Australia. Methods: We documented soil crust‐forming mosses, lichens and liverworts at 83 woodland sites along a gradient of declining rainfall. Linear and non‐linear regression were used to examine relationships between soil crust species and attributes of vascular plant communities, and a similarity matrix (species abundance X sites) was subjected to Non‐metric Multi‐Dimensional Scaling (MDS), and Analysis of Similarities (ANOSIM) to show the degree of association between groups of taxa, and soil texture, rainfall classes and forestry practices. Results : We collected 86 taxa. Mosses were dominated by the family Pottiaceae, and lichens were dominated by squamulose forms. Average annual rainfall was highly correlated with soil crust community composition, and loamy soils supported a greater cover and diversity of taxa compared with sandy soils. Increases in tree cover were associated with significant, though weak, increases in abundance, but not diversity, of crusts. Crusts tended to be more diverse in areas that (1) had a sparse cover of ground‐storey plants; (2) were relatively stable ‐ as indicated by the proportion of perennial and/or native plants; (3) had more stable soil surfaces; and (4) were unlogged. Litter cover, overstorey thinning, and livestock grazing had no appreciable effect on crust diversity or cover. Conclusions : Callitris glaucophylla woodlands provide substantial habitat for soil crust organisms, and the dense tree cover and closed canopies of Callitris do not appear to have a major influence on the structure of biological crust communities. Unlike other woodland systems, relatively few patches would be required to reserve a high diversity of crust species.  相似文献   

16.
As the dominant cyanobacterial species in biological soil crusts (BSCs), Microcoleus vaginatus often suffer from many stress conditions, such as desiccation and high temperature. In this study, the activities of light‐harvesting complexes (LHCs) and reaction centers of photosystem II (PS II) in crust cyanobacteria M. vaginatus were monitored under high temperature and desiccation conditions using chlorophyll fluorescence technology. The results showed that all the fluorescence signals were significantly inhibited by high temperature or desiccation treatments. Under high temperature conditions, it was further demonstrated that PS II reaction centers were first destructed within the first hour, then the LHCs gradually dissociated and free phycocyanin formed within 1–5 h, and the activities of all the light harvesting and reaction center pigment proteins were fully suppressed after 24 h of high temperature treatment. Furthermore, the high temperature treated M. vaginatus lost its ability to recover photosynthetic activity. On the contrary, although desiccation also led to the loss of photosynthetic activity in M. vaginatus, after rehydration in the light the fluorescence parameters including Fo, Fv and Fv/Fm could be well recovered within 12 h. It was concluded that desiccation could provide crust cyanobacteria M. vaginatus some protection from other stresses, such as high temperature demonstrated in this experiment. The combine of temperature change and precipitation pattern in the field provide a guarantee for the alternate metabolism and inactivity in crust cyanobacteria. That may be a very important strategy for the survival of crust cyanobacteria in high temperature regions.  相似文献   

17.
《Acta Oecologica》1999,20(3):159-170
The distribution and abundance of soil crust lichens and bryophytes was examined in a patterned Callitris glaucophylla woodland in eastern Australia. Twenty-one lichen species and 26 bryophyte species were collected within thirty quadrats along a sequence of runoff, interception and runoff zones. Crust cover was significantly greatest in the interception zones (79.0 %), followed by the runoff zones (24.0 %), and lowest in the groved, runon zones (6.6 %). Lichens and bryophytes were distributed across all geomorphic zones, and, although there were significantly more moss species in the interception zones (mean = 9.1) compared with either the runoff (4.2) or runon (3.2) zones, the number of lichen species did not vary between zones. Ordination of a reduced data set of 32 species revealed a separation of taxa into distinct groups corresponding to the three geomorphic zones. Canonical correspondence analysis (CCA) of the 32 species and thirteen environmental variables revealed that the most important factors associated with the distribution of species were sheet and scarp erosion, soil stability and coherence, litter cover and crust cover. Surface cracking, microtopography and plant cover were of intermediate importance. The CCA biplot revealed that the timbered runon zones (groves) were dominated by `shade-tolerant' mosses Fissidens vittatus and Barbula hornschuchiana, whilst the heavily eroded runoff zones supported sparse populations of `erosion tolerant' lichens (Endocarpon rogersii) and mosses (Bryum argenteum and Didymodon torquatus). Interception zones supported a rich suite of `crust forming' mosses and lichens capable of tolerating moderate inundation by overland flow. Two other groups of taxa were identified by this analysis: the `pioneer' group, comprising mainly nitrogen-fixing lichens which occupy the zone of active erosion at the lower edge of the groves, and the `opportunists' dominated by liverworts, occupying the shallow depressions or bays at the margins of the groves and the interception zones. This study confirms that the non-vascular lichens and bryophytes in these arid soil crusts, are, like the vascular plants, strongly patterned according to geomorphic zone, being most strongly associated with soil surface and erosional features.  相似文献   

18.
The redistribution of water in semi-arid environments is critical for the maintenance and survival of vegetation patches. We used a systems approach to examine the interactive effects of three engineers—Stipa tenacissima, biological soil crusts, and the European rabbit (Oryctolagus cuniculus)—on infiltration processes in a model gypseous semi-arid Mediterranean grassland. We measured the early (sorptivity) and later (steady-state infiltration) stages of infiltration at two supply potentials using disk permeameters, which allowed us to determine the relative effects of different engineers and soil micropores on water flow through large macropores. We detected few effects under tension when flow was restricted to matrix pores, but under ponding, sorptivity and steady-state infiltration adjacent to Stipa tussocks were 2–3 times higher than in intact or rabbit-disturbed biological soil crusts. Structural Equation Modeling (SEM) showed that both Stipa and biological soil crust cover exerted substantial and equal positive effects on infiltration under ponding, whereas indirectly, rabbit disturbance negatively affected infiltration by reducing crust cover. Under tension, when macropores were prevented from conducting water, Stipa had a direct negative effect and biological soil crust cover was relatively unimportant. More complex SEM models demonstrated that (1) Stipa primarily influenced biological soil crusts by reducing their richness, (2) rabbits exerted a small negative effect on crust richness, and (3) lichens were negatively, and mosses positively, correlated with a derived “infiltration” axis. Our results highlight the importance of biological soil crusts as key players in the maintenance of infiltration processes in Stipa grasslands, and demonstrate the modulating role played by rabbits through their surface disturbances.  相似文献   

19.
The adaption capability of microalgae species to intense UV-B radiation is an important feature for their survival under the harsh growth conditions they have to face when used for inoculating unconsolidated sand soils in desert areas. In this study, the responses of photosynthetic activity, reactive oxygen species (ROS) generation, and DNA strand breaks to UV-B radiation in four microalgae isolated from artificially induced biological soil crusts were investigated. It was found that low UV-B doses easily inhibited the photosynthetic activity and induced serious DNA damage in Chlorella vulgaris. Microcoleus vaginatus showed the capability to withstand only moderate doses of UV-B, while Nostoc was capable of facing high doses of UV-B due to its lower generation of ROS and higher capability to repair photosystem II (PSII) and DNA damages. On the other hand, Scytonema javanicum showed additional strategies to survive UV-B irradiance, namely the closure of PSII when ROS generation increased rapidly, in addition to a high repair ability of PSII and DNA damage. The results obtained point out different resistance and defense mechanisms of the four microalgae in response to UV-B irradiance and suggest that the strain of Nostoc sp. tested is the most suitable for surviving under the high UV irradiation levels typical of desertified areas.  相似文献   

20.
Cryptogamic crusts have long been regarded as important components of desert ecosystems. In order to reduce and combat the hazards of sandstorm and desertification, it is critical to conserve cryptogamic crusts in arid desert and semiarid regions. In this study, we characterized soil physical and chemical properties after revegetation on sanddunes stabilized with straw checkerboard. Revegetation accelerated the improvement of environmental conditions leading to the establishment and propagation of cryptogams on sanddunes in the Tengger desert region. Since revegetation began 44 years ago, 24 species of algae and 5 species of moss have established on fixed sanddunes in the Shapotou region in the northwest of China, but no lichens have been observed. Algal cover and species richness were found to be positively correlated with soil pH, contents of silt and clay, concentrations of HCO3 , Cl, SO4 2-, Mg2+, soil organic carbon and N contents (p < 0.01), but were only weakly correlated with concentration of Ca2+, electrical conductivity (EC) and potassium content (K2O). The number of species and cover of mosses were positively correlated with soluble K+ and Na+ but no other relationships were apparent. The percent sand in composition of soil particle sizes, and soil bulk density were both negatively correlated to species number and cover for both cryptogam organisms. This study represents a successful example of restoration of cryptogam species diversity in arid desert regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号