首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The derivation of alanine in fibroin was investigated using NMR and selective isotopic labelling. 2H2O infused orally into 5th instar larvae was incorporated into the proton of the methyl group of alanine in fibroin. Proton exchange among alanine, glycine and serine was also found. Incorporation of 13C from [2-(13)C]acetate into alanine C2 and C3 and glycine C2 in fibroin, and also C4 of free glutamine plus glutamate was observed in vivo. Hemolymph contained a peak for C4 of glutamate plus glutamine, and an alanine C3 peak appeared transiently. Thus, it is suggested that the C-skeleton of alanine formed was derived from L-malate via the TCA-cycle, and that this alanine is utilized in part for fibroin synthesis. Spectra of the hemolymph extract of larvae infused orally with [15N2]urea showed no 15N-compounds, whereas those of larvae injected subcutaneously showed only one peak of urea, whose intensity decreased with time, as shown in the in vivo spectra of a living larva infused with [15N2]urea. The solution NMR spectrum of fibroin showed no 15N-labelled compounds. Temporal changes in the peak intensities of six compounds in the spectra of a living larva infused with [15N]ammonium demonstrated a process in which 15N was incorporated into fibroin containing 15N-alanine through the amide group of glutamine and the amino group of glutamate. Thus, alanine biosynthesis from the TCA-cycle originates mainly from water, L-malate and ammonium. The fact that no 15N-urea was detected in the hemolymph extract of larvae infused with [15N]ammonium suggests that 15N-urea found in the above in vivo spectra may be that accumulated in the hindgut. Thus, excess ammonium in the body causes the production of urea by the urea-cycle. In Samia larvae, urea was not reutilized but excreted. The metabolic relationships between the assimilation of ammonium and the function of the urea-cycle are discussed.  相似文献   

2.
Nakazawa Y  Asakura T 《FEBS letters》2002,529(2-3):188-192
The structure and structural transition of the glycine residue adjacent to the N-terminal alanine residue of the poly(L-alanine), (Ala)(12-13), region in Samia cynthia ricini silk fibroin was studied using (13)C nuclear magnetic resonance (NMR). Most of the glycine carbonyl peaks in the (13)C solution NMR spectrum of [1-(13)C]glycine-silk fibroin could be assigned to the primary structure from the comparison of the (13)C chemical shifts of seven glycine-containing tripeptides. The slow exchange between helix and coil forms in the NMR time scale was observed with increasing temperature exclusively for the underlined glycine residue in the Gly-Gly-(Ala)(12-13) sequence during fast helix-coil transition of the (Ala)(12-13) region.  相似文献   

3.
The formation of aggregates including amyloid fibrils in the peptide fragment of non-amyloid-beta component (NAC(1-13)) was investigated under a variety of solution conditions. Two types of sample preparation method from neutral and acidic conditions were examined. Electron microscopy observation showed amorphous aggregates in the sample at pH 4.5 adjusted from the neutral condition. The CD and HPLC quantitative analyses indicated that the formation of the amorphous aggregate did not accompany a conformational conversion from a random coil in the sample solution. The analyses of pKa values determined by pH titration experiments in NMR spectroscopy indicated that the protonation of the carboxyl group of the N-terminal glutamic acid triggers the aggregation of NAC(1-13). On the other hand, electron microscopy observation showed that the samples at pH 2.2 and 4.5 adjusted from an initial pH of 2.2 form fibrils. A beta-structure was detected by CD spectroscopy in the 1 mM NAC(1-13) at pH 2.2 immediately after preparation. The CD analyses of samples at different concentrations and temperatures indicated that 1 mM NAC(1-13) immediately after preparation at pH 2.2 was oligomerized. The quantity of the beta-structure was increased depending on the Incubation time. The results strongly suggested that the beta-conformational oligomers play a critical role for the fibril nucleus.  相似文献   

4.
Osanai M  Okudaira M 《Amino acids》2001,20(2):113-121
Summary. It was observed by solution-state 13C NMR spectroscopy that a great portion of the 13C of [1-13C]L-serine fed to the 5th instar larvae of the silkworm, Bombyx mori was incorporated into C1 of glycine in silk fibroin. [1-13C]Glycine was detected along with [1-13C]serine in fibroin of the posterior silkgland cultured in a medium containing [1-13C]serine. This formation of [1-13C]glycine was inhibited by addition of aminopterin to the culture medium. These findings suggest that an active conversion from serine to glycine, which needs tetrahydrofolate, occurs in the posterior silkgland for fibroin synthesis. Moreover, the solid-state 13C CP/MAS spectrum of the fibroin prepared from cocoons spun by larvae fed with [13C]formate revealed that serine C3 was labelled specifically with 13C, suggesting that the reverse conversion from glycine to serine took place in the silkworm. The posterior silkgland has the ability to synthesize not only fibroin but also its major materials, glycine and serine. Received May 4, 1999 Accepted December 10, 1999  相似文献   

5.
Human myelin basic protein (MBP) was fractionated into several of its charge isomers (components). Of these, the secondary structures of four isomers before and after phosphorylation have been studied by circular dichroism (CD). None of the four showed any alpha-helical structure. All of the components showed varying amounts of beta-structure, random structure, and turns. Component 1 (C-1), the most cationic of the components, showed 13%; component 2 (C-2) had 19%; C-3, 17%; and C-4, 24% of beta-structure. Each of the four components was phosphorylated with protein kinase C, from human brain. The extent of phosphorylation varied considerably from 2.8 +/- 0.6 mol of PO4/mol of protein in C-1 to 5.2 +/- 0.8 mol of PO4/mol of protein in C-4. The effect of phosphorylation on the secondary structure was to induce beta-structure in all the components. The largest change in beta-structure was in C-1 and the least in C-4. The surprising result is that although the components were phosphorylated to different extents, the amount of beta-structure in all four components increased to a final proportion of 35-40%. Treatment of phosphorylated C-1 with acid phosphatase removed 50% of the total radioactivity. Although the remainder represented approximately 1 mol of PO4/mol of protein, the proportion of beta-structure was unaltered. We concluded that a single phosphorylation site identified as residues 5-13 represented a critical size for stabilization of beta-structure of MBP in solution and that phosphorylation at the other sites had little influence on secondary structure.  相似文献   

6.
A procedure has been developed to obtain native fibroin in a pure state from the reservoir part of the silk gland. The purified protein has a sedimentation coefficient of 10 S as determined on sucrose density gradients and the amino acid composition is similar to that reported for fibroin from the cocoons. The effects of various solvents has been studied; lithium thiocyanate was found to be the solvent of choice. By in vivo labeling of fibroin with [3H]glycine and [14C]alanine it was demonstrated that fibroin synthesized in the posterior part of the gland and that stored in the reservoir part are identical.  相似文献   

7.
The amino acid acceptor activities and the electrophoretic patterns of tRNAs from the normal posterior silkgland producing fibroin and from the posterior silkgland of mutant (symbolized as Nd-s) which secretes little fibroin were compared. The tRNA from the normal silkgland incorporated much [14C]glycine and [14C]alanine, and less [14C]leucine and [14C]lysine, which reflects the amino acid composition of fibroin. However, this was not observed with the silkgland tRNA of the Nd-s mutant of the silkworm. In the case of two-dimensional electrophoresis of the silkgland tRNA of the Nd-s mutant, fewer isoacceptors were recognized compared with tRNA from the normal silkgland, especially regarding isoacceptors of glycyl-, and alanyl-tRNAs.  相似文献   

8.
It is well established that by introducing the cell-adhesive sequence Arg-Gly-Asp (RGD) from fibronectin into Bombyx mori silk fibroin by covalent coupling or bioengineering techniques, excellent biomaterials have been developed with the modified silk fibroin. However, there is no report about the structure and dynamics of the RGD moiety in the silk fibroin. To clarify the origin of such a high cell adhesion character and to design new recombinant silk protein with higher cell adhesion ability, it is necessary to characterize the structure and dynamics of the RGD moiety introduced into silk fibroin. In this study, the structure and dynamics of the RGD moiety in a recombinant silk-like protein, SLPF(10), consisting of the repeated silk fibroin sequence (AGSGAG)(3) and the sequence ASTGRGDSPA including the RGD moiety, were studied using solution NMR. The (1)H, (15)N, and (13)C chemical shifts indicate that the RGD moiety, as well as the silk fibroin sequence, takes a random coil form with high mobility in aqueous solution. Next, a (13)C solid-state NMR study was performed on a (13)C selectively labeled model peptide, AGSGAG[3-(13)C]A(7)GSGAGAGSGGT[2-(13)C]G(19)R[1-(13)C]G(21)DSPAGGGAGAGSGAG. After formic acid treatment, an increase in the β-sheet fraction for the AGSGAG sequence and peak narrowing of the residues around the RGD moiety were observed in the dry state. The latter indicates a decrease in the chemical shift distribution although the RGD moiety is still in random coil. A decrease in the peak intensities of the RGD moiety in the swollen state after immersing it in distilled water was observed, indicating high mobility of the RGD sequence in the peptide in the swollen state. Thus, the random coil state of the RGD moiety in the recombinant silk-like protein is maintained in aqueous solution and also in both dry and swollen state. This is similar to the case of the RGD moiety in fibronectin. The presence of the linker ASTG at the N-terminus and SPAGG at the C-terminus seems important to maintain the random coil form and the flexible state of the RGD sequence in order to permit access for binding to various integrins.  相似文献   

9.
Bombyx mori silk fibroin is a fibrous protein whose fiber is extremely strong and tough, although it is produced by the silkworm at room temperature and from an aqueous solution. The primary structure is mainly Ala-Gly alternative copolypeptide, but Gly-Ala-Ala-Ser units appear frequently and periodically. Thus, this study aims at elucidating the role of such Gly-Ala-Ala-Ser units on the secondary structure. The sequential model peptides containing Gly-Ala-Ala-Ser units selected from the primary structure of B. mori silk fibroin were synthesized, and their secondary structure was studied with (13)C CP/MAS NMR and wide-angle X-ray scattering. The (13)C isotope labeling of the peptides and the (13)C conformation-dependent chemical shifts were used for the purpose. The Ala-Ala units take antiparallel beta-sheet structure locally, and the introduction of one Ala-Ala unit in (Ala-Gly)(15) chain promotes dramatical structural changes from silk I (repeated beta-turn type II structure) to silk II (antiparallel beta-sheet structure). Thus, the presence of Ala-Ala units in B. mori silk fibroin chain will be one of the inducing factors of the structural transition for silk fiber formation. The role of Tyr residue in the peptide chain was also studied and clarified to induce "locally nonordered structure."  相似文献   

10.
Bombyx mori silk fibroin from the silkworm was found to be soluble in a calcium nitrate-methanol system. Fibroin dissolves in 75% w/v Ca(NO3)2/MeOH solution at a temperature of 67°C. The viscometric behavior of the fibroin-salt solution was analyzed and the fibroin's secondary structures were determined via 13C solution nmr. Fourier transform ir, solid state 13C-nmr, x-ray diffraction, differential scanning calorimetry, scanning electron microscopy (SEM), and polarizing microscopy were used to characterize regenerated films and fibers. A compositional phase diagram of fibroin in the salt solution was constructed. Viscosity data indicate that there is aggregation of fibroin chains within the salt solution. The extremely high value of intrinsic viscosity of 8.7 dL/g at 298 K may be due to aggregation. Aggregation may be caused by the complexing of calcium ions with the fibroin chains at their amide linkages. The energy required for viscous flow for the fibroin solution (ΔHvis = 9.03 kcal/mol) is greater than that of the solvent (ΔHvis = 7.01 kcal/mol). Chain entanglements may be hindering the free motion of chains thus increasing the energy required for the viscous flow. 13C-nmr shows that fibroin chains exist in two independent conformational environments. While most of the molecule is in a random coil conformation, there is evidence of some order within the chains of fibroin. In as-cast regenerated films, the fibroin chains are in a random coil/α-helix conformation with some β-sheet content. Crystallinity induced by immersion of thin films in methanol is evidenced via x-ray diffraction, which shows lattice spacings at 4.042 Å. Thin films have a fibrillar morphology that is clearly shown under the SEM and the polarizing microscope. Fibers were hand pulled from the concentrated fibroin-salt solutions and coagulated with acetone and methanol. A microscopic analysis was done using the polarizer. © 1997 John Wiley & Sons, Inc. Biopoly 42: 61–74, 1997  相似文献   

11.
Sequence-specific assignments of the 1H-nuclear magnetic resonance (NMR) spectra of the cardiotoxins CTXIIa and CTXIIb from Naja mossambica mossambica were obtained using two-dimensional NMR experiments at 500 MHz and the independently determined amino acid sequences. Assignments were obtained from data at 25 degrees C and 45 degrees C for all but one backbone proton of the 60 residues in each protein. Complete or partial assignments are also reported for the side-chain protons. These assignments supercede those published previously for the toxin preparation VII2 [Hosur, R. V., Wider, G. & Wüthrich K. (1983) Eur. J. Biochem. 130, 497-508]. The 1H/2H-exchange kinetics were measured in 2H2O at 20 degrees C for the amide protons and the N-terminal amino group. These and additional NMR data enabled the determination of the secondary structure in aqueous solution, which is virtually identical in CTXIIa and CTXIIb. Both proteins contain a short double-stranded antiparallel beta-sheet comprising the residues 2-4 and 11-13, and a triple-stranded antiparallel beta-sheet consisting of the residues 20-26, 35-39, and 49-55. The two peripheral strands of the triple-stranded beta-structure were found to be connected by a right-handed cross-over, and the locations of several tight turns were also identified.  相似文献   

12.
Conformation of the antifreeze glycoprotein of polar fish   总被引:5,自引:0,他引:5  
High-field proton and 13C NMR spectroscopy has been used to test and refine the recent proposal, based on vacuum uv circular dichroism results, of a threefold left-handed helical conformation for antifreeze glycoprotein (AFGP). Partial assignment of the protons of the glycotripeptide repeating unit has been made by comparison with spectra of model compounds, by selective decoupling, and by measurements of nuclear Overhauser effect (nOe). At 40 degrees C, AFGP fraction 8 (Mr 2600) shows 2-Hz linewidths which broaden at lower temperature. Neither 1H nor 13C chemical shifts depend strongly on temperature, suggesting no abrupt conformational transition. The nOe between alanine alpha and beta protons vary with temperature and with field strength, from small positive enhancements at 50 degrees C and 80 MHz to large negative effects at 3 degrees C and 300 MHz, indicating a substantial change of rotational correlation time with temperature. The higher-molecular-weight fraction 1-4 shows negative nOe at all temperatures. The CD spectra of fraction 1-4 show bands characteristic of the polyproline II structure at both 3 and 50 degrees C, while those bands in fraction 8 are weaker at 50 than 3 degrees C. The 1H nOe, the 13C T1, and CD data are interpreted as indicating that AFGP fraction 8 is an extended "rod-like" conformation at low temperature which becomes a flexible coil at high temperature, while fraction 1-4 is a flexible rod with sufficient segmental mobility to eliminate any long-range order.  相似文献   

13.
Myelin basic protein isolated from normal human brain was resolved into its various components (charge isomers) by CM-52 column chromatography. Two of the components C-1 and C-4, were phosphorylated in vitro with a soluble preparation of brain protein kinase C. For each component, the peptides phosphorylated were identified. In both components a major site of phosphorylation was found at Ser7 in the N-terminal portion of the protein. Both the specific activity and the rate of phosphorylation were greatest at this site in both components when compared with the other sites. The rate of phosphorylation of peptide 5-13 was approximately 10 times greater than that of any of the other peptides derived from C-1, while the rate of phosphorylation of peptide 5-13 derived from C-4 was 10-20 times greater than that of any of the other peptides derived from C-4. In addition, peptide 5-13, which contained a major phosphorylation site in both C-1 and C-4, was phosphorylated at a faster rate in C-4 (460 cpm/nM/min) compared with C-1 (285 cpm/nM/min). Both the specific activity and the rate data presented in the present communication were correlated with the proportion of beta-structure in a previous study. In that study, C-1, which contained about 13% beta-structure before phosphorylation, increased to approximately 40% after phosphorylation. Construction of a model peptide of this N-terminal region, which included the phosphorylation site at Ser7, demonstrated that the beta-structure was stabilized by electrostatic interactions between the phosphate on Ser7 and the guanidyl groups of Arg5 and Arg9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Araneoid spiders use specialized abdominal glands to manufacture up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode egg case fibers (cover silk for the egg case sac) and the secondary structure of these threads have not been previously determined. In this study, MALDI tandem TOF mass spectrometry (MS/MS) and reverse genetics were used to isolate the first egg case fibroin, named tubuliform spidroin 1 (TuSp1), from the black widow spider, Latrodectus hesperus. Real-time quantitative PCR analysis demonstrates TuSp1 is selectively expressed in the tubuliform gland. Analysis of the amino acid composition of raw egg case silk closely aligns with the predicted amino acid composition from the primary sequence of TuSp1, which supports the assertion that TuSp1 represents a major component of egg case fibers. TuSp1 is composed of highly homogeneous repeats that are 184 amino acids in length. The long stretches of polyalanine and glycine-alanine subrepeats, which account for the crystalline regions of minor ampullate and major ampullate fibers, are very poorly represented in TuSp1. However, polyserine blocks and short polyalanine stretches were highly iterated within the primary sequence, and (13)C NMR spectroscopy demonstrated that the majority of alanine was found in a beta-sheet structure in post-spun egg case silk. The TuSp1 repeat unit does not display substantial sequence similarity to any previously described fibroin genes or proteins, suggesting that TuSp1 is a highly divergent member of the spider silk gene family.  相似文献   

15.
Regenerated silk fibroin materials show properties dependent on the methods used to process them. The molecular structures of B. mori silk fibroin both in solution and in solid states were studied and compared using X-ray diffraction, FTIR, and (13)C NMR spectroscopy. Some portion of fibroin protein molecules dissolved in formic acid already have a beta-sheet structure, whereas those dissolved in TFA have some helical conformation. Moreover, fibroin molecules were spontaneously assembled into an ordered structure as the acidic solvents were removed from the fibroin-acidic solvent systems. This may be responsible for the improved physical properties of regenerated fibroin materials from acidic solvents. Regenerated fibroin materials have shown poor mechanical properties and brittleness compared to their original form. These problems were technically solved by improving the fiber forming process according to a method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the native silk fiber and their physical and chemical properties were characterized by X-ray diffraction, solid state (13)C NMR spectroscopy, SinTech tensile testing, and SEM.  相似文献   

16.
Employing high-resolution (13)C solution NMR and circular dichroism (CD) spectroscopic techniques, the distinctive influence of two intimately related hexafluoro solvents, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and hexafluoroacetone trihydrate (HFA), on the structural characteristics of Bombyx mori (B. mori) silk fibroin, the chymotrypsin precipitate (C(p)) fraction, and two synthetic peptides, (AGSGAG)(5) and (AG)(15), is described. The observed (13)C solution NMR and CD spectra of these polypeptides in HFIP and HFA revealed a distinctive influence on their conformational characteristics. The (13)C NMR spectra, as analyzed from the unique chemical shifts of C(alpha) and C(beta) resonances of constituent residues revealed that fibroin largely assumes helical conformation(s) in both solvents. However, the peak shifts were greater for the samples in HFIP, indicating that the types of helical structure(s) may be different from the one populated in HFA. Similar structural tendencies of these polypeptides were reflected in CD spectra. The observed CD patterns, i.e., a strong positive band at approximately 190 nm and negative bands at approximately 206 and 222 nm, have been attributed to the preponderance of helical structures. Of the two prevalent helical structures, alpha-helix and 3(10)-helix, the evidence emerged for the fibroin protein in favor of 3(10)-helical structure stabilization in HFIP and its significant disruption in HFA, as deduced from the characteristic R1 (=[theta](190)/[theta](202)) and R2 (=[theta](222)/[theta](206)) ratios, determined from the CD data. Conversely, the native polypeptides and synthetic peptide fragments derived from highly crystalline regions of the silk fibroin protein sustained predominantly an unordered structure in HFA solvent.  相似文献   

17.
There are many kinds of silks spun by silkworms and spiders, which are suitable to study the structure-property relationship for molecular design of fibers with high strength and high elasticity. In this review, we mainly focus on the structural determination of two well-known silk fibroin proteins that are from the domesticated silkworm, Bombyx mori, and the wild silkworm, Samia cynthia ricini, respectively. The structures of B. mori silk fibroin before and after spinning were determined by using an appropriate model peptide, (AG)(15), with several solid-state NMR methods; (13)C two-dimensional spin-diffusion solid-state NMR and rotational echo double resonance (REDOR) NMR techniques along with the quantitative use of the conformation-dependent (13)C CP/MAS chemical shifts. The structure of S. c. ricini silk fibroin before spinning was also determined by using a model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, with the solid-state NMR methods. The transition from the structure of B. mori silk fibroin before spinning to the structure after spinning was studied with molecular dynamics calculation by taking into account several external forces applied to the silk fibroin in the silkworm.  相似文献   

18.
The HIV gp41 protein mediates fusion with target host cells. The region primarily involved in directing fusion, the fusion peptide (FP), is poorly understood at the level of structure and function due to its toxic effect in expression systems. To overcome this, we used a synthetic approach to generate the N70 construct, whereby the FP is stabilized in context of the adjacent auto oligomerization domain. The amide I profile of unlabeled N70 in membranes reveals prominent alpha-helical contribution, along with significant beta-structure. By truncating the N terminus (FP region) of N70, beta-structure is eliminated, suggesting that the FP adopts a beta-structure in membranes. To assess this directly, (13)C Fourier-transformed infra-red analysis was carried out to map secondary structure of the 16 N-terminal hydrophobic residues of the fusion peptide (FP16). The (13)C isotope shifted absorbance of the FP was filtered from the global secondary structure of the 70 residue construct (N70). On the basis of the peak shift induced by the (13)C-labeled residues of FP16, we directly assign beta-sheet structure in ordered membranes. A differential labeling scheme in FP16 allows us to distinguish the type of beta-sheet structure as parallel. Dilution of each FP16-labeled N70 peptide, by mixing with unlabeled N70, shows directly that the FP16 beta-strand region self-assembles. We discuss our structural findings in the context of the prevailing gp41 fusion paradigm. Specifically, we address the role of the FP region in organizing supramolecular gp41 assembly, and we also discuss the mechanism by which exogenous, free FP constructs inhibit gp41-induced fusion.  相似文献   

19.
Asakura T  Sugino R  Yao J  Takashima H  Kishore R 《Biochemistry》2002,41(13):4415-4424
The solid-state (13)C CP-MAS NMR spectra of biosynthetically labeled [(13)C(alpha)]Tyr, [(13)C(beta)]Tyr, and [(13)C(alpha)]Val silk fibroin samples of Bombyx mori, in silk I (the solid-state structure before spinning) and silk II (the solid-state structure after spinning) forms, have been examined to gain insight into the conformational preferences of the semicrystalline regions. To establish the relationship between the primary structure of B. mori silk fibroin and the "local" structure, the conformation-dependent (13)C chemical shift contour plots for Tyr C(alpha), Tyr C(beta), and Val C(alpha) carbons were generated from the atomic coordinates of high-resolution crystal structures of 40 proteins and their characteristic (13)C isotropic NMR chemical shifts. From comparison of the observed Tyr C(alpha) and Tyr C(beta) chemical shifts with those predicted by the contour plots, there is strong evidence in favor of an antiparallel beta-sheet structure of the Tyr residues in the silk fibroin fibers. On the other hand, Tyr residues take a random coil conformation in the fibroin film with a silk I form. The Val residues are likely to assume a structure similar to those of Tyr residues in silk fiber and film. Solid-state (2)H NMR measurements of [3,3-(2)H(2)]Tyr-labeled B. mori silk fibroin indicate that the local mobility of the backbone and the C(alpha)-C(beta) bond is essentially "static" in both silk I and silk II forms. The orientation-dependent (i.e., parallel and perpendicular to the magnetic field) solid-state (15)N NMR spectra of biosynthetically labeled [(15)N]Tyr and [(15)N]Val silk fibers reveal the presence of highly oriented semicrystalline regions.  相似文献   

20.
Metabolic alterations that accompany parasitism of invertebrate animals can play an important role in parasite development. Employing 13C NMR, this study examined pyruvate cycling from (2-(13)C)pyruvate in the lepidopteran insect Manduca sexta, and the effects of parasitism by the hymenopteran Cotesia congregata on the gluconeogenic formation of trehalose, the haemolymph or blood sugar of insects. Larvae were maintained on a semi-synthetic sucrose-free diet, or on the same diet with sucrose at 8.5 g/l. Pyruvate cycling was evident from the 13C enrichment in C3 of alanine, derived following carboxylation to oxaloacetate, and was similar in parasitized and normal insects regardless of diet. Trehalose was formed following de novo synthesis of glucose, and net synthesis was estimated from the 13C distribution in trehalose and alanine. The 13C-enrichment ratio [2trehalose C6/alanine C3] is an indicator of the level of gluconeogenesis relative to glycolysis, both enrichments were derived from (2-(13)C)pyruvate in the same manner. The ratio was greater than unity in all insects, regardless of diet, but was significantly greater in parasitized larvae, demonstrating an enhanced level of gluconeogenesis. This was confirmed by analysis of the 13C distribution in trehalose and glutamine derived from (3-(13)C)alanine. Despite enhanced de novo trehalose formation in parasitized insects, the haemolymph sugar level was similar to that of normal larvae. Because haemolymph trehalose regulates dietary carbohydrate intake, but not gluconeogenesis, the results suggest that accelerated induction of gluconeogenesis is an adaptive response to parasitism that provides increased carbohydrate for parasite growth and simultaneously maintains nutrient intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号