首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species of Cestrum L. (Solanaceae) exhibit large variability in the accumulation of repetitive DNA, although their species possess a stable diploid number with 2n = 16. In this study, we used chromosome banding and fluorescence in situ hybridization (FISH) to characterize the karyotypes and populations of two species, Cestrum nocturnum L. and C. mariquitense Kunth. We also performed a karyotype comparison using 16 idiograms, of which 4 were developed in this study and 12 were obtained from the literature. Cestrum nocturnum displayed more bands than C. mariquitense, but the latter exhibited greater interpopulational variation in the band patterns. There was a tendency for large bands to be located at intercalary/terminal regions and for small bands to be located at intermediate/proximal regions. The idiogram comparison revealed a large variation in the amount, distribution, and size of heterochromatic bands. FISH with rDNA probes revealed stability in the number and location of 5S sites, while 45S was more variable in size and number of sites. Although 45S rDNA always appeared in the subterminal regions, this DNA family exhibited a mobility among chromosome pairs. These data highlight the dynamic of repetitive DNA families in these genomes, as well as the contribution for intra- and interspecific karyotype differentiation in Cestrum.  相似文献   

2.
Three endemic Centaurea species from North Africa are investigated for the first time by chromomycin fluorochrome banding for GC-rich DNA distribution, fluorescence in situ hybridization for physical mapping of rRNA genes, and flow cytometry for genome-size assessment. Investigated species belong to three different sections and possess three basic chromosome numbers: C. tougourensis subsp. tougourensis 2n = 4x = 36 (x = 9), C. musimonum 2n = 2x = 20 (x = 10), and C. maroccana 2n = 2x = 24 (x = 12). The number and distribution of chromomycin positive bands (CMA+) and 18S-5.8S-26S (35S) rDNA loci were different among investigated species and ranged from 6 to 80 chromomycin bands and from 2 to 6 35S rDNA loci. The three species have just one 5S rDNA locus at intercalary position on a separate chromosome pairs, except in the case of C. musimonum in which both rDNA loci were localized on the same chromosome. All rDNA loci were co-localized with CMA+ bands, except three 35S in C. musimonum. Genome size ranged from 2C = 1.66 to 2C = 2.86 pg in diploid species (C. musimonum and C. maroccana, respectively) and to 2C = 4.51 pg in tetraploid C. tougourensis subsp. tougourensis.  相似文献   

3.
The chromosomal loci of 5S and 45S ribosomal DNAs (rDNAs) and the activity of nucleolar‐organizing regions (NORs) were analysed in perennial oats of the genera Ammophila, Amphibromus, Arrhenatherum, Avena, Deschampsia, and Helictotrichon s.l. (Poaceae: Aveneae) using fluorescence in situ hybridization, staining with chromomycin/4′,6‐diamidino‐2‐phenylindole (DAPI), and silver impregnation. All chromosomes with a secondary constriction were nucleolar active. In chromosomes without a secondary constriction, NORs corresponded exclusively to broad bands of 45S rDNA with chromomycin‐positive, DAPI‐negative, and silver‐positive stainability. Additional minor bands of 45S rDNA showed no nucleolar activity. 5S rDNA was localized mostly in loci different from the nucleolar‐active 45S rDNA. If both rDNAs occurred within the same chromosome, they were at largely corresponding distances from the centromere, irrespective of their particular localization in either the same chromosome arm or in opposite arms. In the latter case, 5S rDNA was never more distal to the centromere than 45S rDNA. A new model was devised to explain this non‐random distribution of both rDNAs in nucleolar‐organizing chromosomes, which identified the Rabl orientation of chromosomes as ensuring a spatial proximity of 5S to 45S rDNA in interphase nuclei, even if they were localized in opposite arms. The possible role of the Rabl orientation in determining the spread and accumulation of 5S rDNA sequences in further chromosomes of the genome was discussed. B chromosomes were devoid of 5S rDNA, but most contained 45S rDNA and were nucleolar active. In some large groups of species, the number and arrangement of 5S and 45S rDNA sites in the chromosomes were remarkably uniform, especially in Helictotrichon subgenus Helictotrichon and Helictotrichon subgenus Pratavenastrum. Such distribution patterns have survived many speciation processes and have also remained widely unchanged in polyploids. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 155 , 193–210.  相似文献   

4.
Fluorochrome C-banding ofPinus radiata andP. taeda metaphase chromosomes showed many pericentromeric DAPI bands and interstitial CMA bands inP. radiata, and centromeric and interstitial CMA bands inP. taeda. Giemsa C-band patterns differed between the species with centromeric bands inP. radiata but no consistent bands inP. taeda. A karyotype ofP. radiata was developed based on banding patterns that distinguished all but two of the 12 pairs of chromosomes. In situ hybridization (ISH) using probes for high-copy ribosomal DNA (rDNA) showed 10 pairs of 18S–25S sites and two pairs of 5S sites in both species. Most of the sites were interstitial or centromeric.  相似文献   

5.
The pattern of localization of the ribosomal genes was studied by means of fluorescence in situ hybridization in 39 species of the tribe Harpalini. Most of them show one pair of autosomes carrying the ribosomal genes in a distal position of a single chromosome arm. This pattern is hypothesized to be ancestral for the whole tribe. Both, chromosome number and the number and localization of rDNA loci, show little variation and are therefore of little phylogenetic value. Only in the subtribe Ditomina is there enough variation to characterize phyletic relationships. The stability of rDNA loci is even higher than the constancy of chromosome number, as most species of Ditomina (genera Dixus, Eocarterus, Carterus, Odontocarus and Ditomus) have the usual pair of autosomes with rDNA loci, in spite of remarkable differences in the diploid number. Only Dixus sphaerocephalus and Dixus clypeatus have two autosomal pairs with a fluorescent signal. These results do not support the hypothesis that the high chromosome numbers found within Ditomina are the result of polyploid change from the ancestral 2n = 37 karyotype of the tribe Harpalini. Chromosomal translocations or the presence of mobile genetic elements are plausible sources of the few cases of intraspecific polymorphism in the rDNA loci found in species of Harpalus.  相似文献   

6.
Here, we study karyotype divergence in the closely related genera Brasiliorchis, Christensonella and Trigonidium belonging to subtribe Maxillariinae of subfamily Epidendroideae (Orchidaceae). We compare karyotypes in 15 species by (1) measuring 1C genome sizes, (2) mapping the distribution of 4′,6‐diamidino‐2‐phenylindole and chromomycin A3 chromosome bands and (3) localizing 5S and 45S nuclear ribosomal DNA (rDNA) sequences using fluorescent in situ hybridization. Recently, phylogenetic studies have been conducted to resolve species and genera relationships in subtribe Maxillariinae. We used these phylogenetic trees to map the cytogenetic characters in an evolutionary framework. This has enabled a better understanding of the patterns of genomic divergence in the group. Genome sizes range from 1C = 1.85 to 4.1 pg. The largest, B. schunkeana, shows evidence of genome upsizing, probably through the acquisition of tandem repeats that now form large 4′,6‐diamidino‐2‐phenylindole‐positive blocks of heterochromatin. Our cytogenetic data are consistent with a base chromosome number of 2n = 40, although Christensonella is characterized by a dysploid reduction in chromosome number to 2n = 36. The number of 5S and 45S rDNA sites is variable between species, consistent with high rates of karyotype divergence. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 29–39.  相似文献   

7.
The localization of 18S ribosomal RNA genes (rDNA) by fluorescence in situ hybridization (FISH) had been performed for some species of Paeonla. However, the pattern of 18S rDNA loci among populations Is Indistinct. In the present study, we localized 18S rDNA loci on meiotic or mitotic chromosomes of six populations of Paeonla obovata Maxim. (Paeonlaceae). Different numbers of rDNA loci were found with different diploid (2n=10) populations, namely eight (Lushl and Mt. JIuhua populations), 10 (Mt. Talbal population), and seven (Mt. Guandl population), whereas tetraplold (2n=20) populations were all found with 16 loci. Aii rDNA loci were mapped near teiomeres of mitotic chromosomes and there was no chromosome with two loci. The present results show that molecular cytological polymorphlsm exists among P. obovata diploid populations, Indicating that structural variations occurred frequently during the evolutionary history of this species, accompanied with differentiation among populations.  相似文献   

8.
Two closely related spruces, Picea abies and Picea omorika, a Balkan paleoendemic species, often share habitats, yet never hybridize in nature. The present study adresses their characteristics such as nuclear DNA content, base composition, heterochromatin and rDNA pattern. The genome size of P. abies was 10% larger than that of P. omorika when assessed by flow cytometry, respectively 2C=37.2 pg and 33.8 pg; although when estimated as total chromosome length it was virtually the same. The heterochromatin Chromomycin-A (CMA)/ DAPI fluorochrome banding patterns of both P. abies and P. omorika are given here for the first time. Simultaneous FISH (fluorescent in situ hybridization) using 18S-26S and 5S rDNA probes revealed 16 18S rDNA sites in P. omorika, 12 18S rDNA sites in P. abies, and a single 5S rDNA locus in both species. The genomes have about 41% GC. The number and position of CMA/DAPI bands and rDNA loci provide good chromosome markers to clarify the karyotypes of the two species. Received: 18 October 2000 / 14 June 2001  相似文献   

9.
Conventional and molecular chromosomal analyses were carried out on three populations of Apareiodon ibitiensis sampled from the hydrographic basins of the São Francisco River and Upper Paraná River (Brazil). The results reveal a conserved diploid number (2n = 54 chromosomes), a karyotype formula consisting of 50 m‐sm + 4st and a ZZ/ZW sex chromosome system that has not been previously identified for the species. C‐banding analysis with propidium iodide staining revealed centromeric and terminal bands located in the chromosomes of the specimens from the three populations and allowed the identification of heteromorphism of heterochromatin regions in the Z and W chromosomes. The number of 18S sites located through fluorescent in situ hybridization (FISH) varied between the populations of the São Francisco and Upper Paraná Rivers. The location of 5S rDNA sites proved comparable in one pair of metacentric chromosomes. Thus, the present study proposes a ZZ/ZW sex chromosome system for A. ibitiensis among the Parodontidae, and a hypothesis is presented regarding possible W chromosome differentiation stages in this species through DNA accumulation, showing geographical variations for this characteristic, possibly as a consequence of geographical reproductive isolation.  相似文献   

10.
To explore an effective and reliable karyotyping method in Brassica crop plants, Cot-1 DNA was isolated from Brassica oleracea genome, labeled as probe with Biotin-Nick Translation Mix kit, in situ hybridized to mitotic spreads, and where specific fluorescent bands showed on each chromosome pair. 25S and 5S rDNA were labeled as probes with DIG-Nick Translation Mix kit and Biotin-Nick Translation Mix kit, respectively, in situ hybridized to mitotic preparations, where 25S rDNA could be detected on two chromosome pairs and 5S rDNA on only one. Cot-1 DNA contains rDNA and chromosome sites identity between Cot-1 DNA and 25S rDNA was determined by dual-colour fluorescence in situ hybridization. All these showed that the karyotyping technique based on a combination of rDNA and Cot-1 DNA chromosome landmarks is superior to all but one. A more exact karyotype of B. oleracea has been analyzed based on a combination of rDNA sites, Cot-1 DNA fluorescent bands, chromosome lengths and arm ratios. __________ Translated from Journal of Wuhan University (Nat. Sci. Ed.), 2006, 52(2): 230–234 [译自: 武汉大学学报 (理学版)]  相似文献   

11.
Several chromosome types have been recognized in Citrus and related genera by chromomycin A3 (CMA) banding patterns and fluorescent in situ hybridization (FISH). They can be used to characterize cultivars and species or as markers in hybridization and backcrossing experiments. In the present work, characterization of six cultivars of P. trifoliata (“Barnes”, “Fawcett”, “Flying Dragon”, “Pomeroy”, “Rubidoux”, “USDA”) and one P. trifoliata × C. limonia hybrid was performed by sequential analyses of CMA banding and FISH using 5S and 45S rDNA as probes. All six cultivars showed a similar CMA+ banding pattern with the karyotype formula 4B + 8D + 6F. The capital letters indicate chromosomal types: B, a chromosome with one telomeric and one proximal band; D, with only one telomeric band; F, without bands. In situ hybridization labeling was also similar among cultivars. Three chromosome pairs displayed a closely linked set of 5S and 45S rDNA sites, two of them co-located with the proximal band of the B type chromosomes (B/5S-45S) and the third one co-located with the terminal band of a D pair (D/5S-45S). The B/5S-45S chromosome has never been found in any citrus accessions investigated so far. Therefore, this B chromosome can be used as a marker to recognize the intergeneric Poncirus × Citrus hybrids. The intergeneric hybrid analyzed here displayed the karyotype formula 4B + 8D + 6F, with two chromosome types B/5S-45S and two D/5S-45S. The karyotype formula and the presence of two B/5S-45S chromosomes clearly indicate that the plant investigated is a symmetric hybrid. It also demonstrates the suitability of karyotype analyses to differentiate zygotic embryos or somatic cell fusions involving trifoliate orange germplasm. During the submission of this paper, we analyzed 25 other citrus cultivars with the same methodology and we found that the chromosome marker reported here can indeed distinguish Poncirus trifoliata from grapefruits, pummelos, and one variegated access of Citrus, besides the previously reported access of limes, limons, citrons, and sweet-oranges. However, among 14 mandarin cultivars, two of them displayed a single B/5S-45S chromosome, whereas in Citrus hystrix D.C., a far related species belonging to the Papeda subgenus, this chromosome type was found in homozygosis. Since these two mandarin cultivars are probably of hybrid origin, we assume that for almost all commercial cultivars and species of the subgenus Citrus this B type chromosome is a useful genetic marker.  相似文献   

12.
Abstract

Fluorescent in situ hybridisation (FISH) of 5S and 18S-5.8S-26S ribosomal DNA was carried out in two species of the genus Artemisia, belonging to the subgenera Artemisia (A. medioxima) and Absinthium (A. lagocephala), each one showing both low and high ploidy levels (2x, 4x and 16x, and 2x and 6x, respectively). Both species have a base chromosome number of x = 9. Linkage of both rDNA genes has been observed confirming previous results. Diploid A. lagocephala (2n = 18) shows three rDNA loci, and the hexaploid six. Also in A. medioxima, the number of rDNA loci does not increase in the proportion given by the ploidy level, and a relative loss is found. In this species, the diploid population shows two rDNA loci, the tetraploid four, and the hexaidecaploid has around 20. The results evidence a relative loss of rDNA loci and heterochromatin, a phenomenon that is more pronounced at higher ploidy levels. Nevertheless, the DAPI banding pattern of A. lagocephala does not follow this trend, as it shows a spectacular increase of heterochromatic bands at the hexaploid level. These results are discussed in the light of possible chromosome restructuring and gene silencing mechanisms that take place during polyploidy, and more especially allopolyploid formation.  相似文献   

13.
The genomic organisation of the seven cultivated Vigna species, V. unguiculata, V. subterranea, V. angularis, V. umbellata, V. radiata, V. mungo and V. aconitifolia, was determined using sequential combined PI and DAPI (CPD) staining and dual‐colour fluorescence in situ hybridisation (FISH) with 5S and 45S rDNA probes. For phylogenetic analyses, comparative genomic in situ hybridisation (cGISH) onto somatic chromosomes and sequence analysis of the internal transcribed spacer (ITS) of 45S rDNA were used. Quantitative karyotypes were established using chromosome measurements, fluorochrome bands and rDNA FISH signals. All species had symmetrical karyotypes composed of only metacentric or metacentric and submetacentric chromosomes. Distinct heterochromatin differentiation was revealed by CPD staining and DAPI counterstaining after FISH. The rDNA sites among all species differed in their number, location and size. cGISH of V. umbellata genomic DNA to the chromosomes of all species produced strong signals in all centromeric regions of V. umbellata and V. angularis, weak signals in all pericentromeric regions of V. aconitifolia, and CPD‐banded proximal regions of V. mungo var. mungo. Molecular phylogenetic trees showed that V. angularis and V. umbellata were the closest relatives, and V. mungo and V. aconitifolia were relatively closely related; these species formed a group that was separated from another group comprising V. radiata, V. unguiculata ssp. sesquipedalis and V. subterranea. This result was consistent with the phylogenetic relationships inferred from the heterochromatin and cGISH patterns; thus, fluorochrome banding and cGISH are efficient tools for the phylogenetic analysis of Vigna species.  相似文献   

14.
Cardiospermum L. belongs to the Paullinieae tribe (Sapindaceae) and comprises 16 species. Of these, 12 species are present in South America and all occur in Brazil. Cardiospermum shows the most variable chromosome number of the tribe. Phylogenetic relationships within the genus Cardiospermum, especially with other species of the tribe, are poorly understood. This research focuses on characterisation of the karyotypic features of Cardiospermum using conventional cytogenetic methods, CMA/DAPI chromosome banding and fluorescence in situ hybridisation (FISH). To elucidate the phylogeny of the genus, the nuclear markers ITS1 and ITS2 were sequenced and analysed using maximum parsimony and Bayesian inference. Cardiospermum shows important diversity in basic numbers, with x = 7, 9, 10, 11 and 12. All species studied have metacentric and submetacentric chromosomes, some species have subtelocentric chromosomes, while telocentric chromosomes are absent. The interphase nuclei differentiate the Cardiospermum species into two groups. The CMA3/DAPI chromosome banding revealed the presence of an AT‐rich terminal region in C. corindum, C. grandiflorum and C. urvilleoides, whereas GC‐rich regions were found in C. grandiflorum, C. halicacabum var. halicacabum, C. halicacabum var. microcarpum, C. heringeri and C. integerrimum. FISH revealed syntenic and non‐syntenic distribution of the 18‐5.8‐26S and 5S rDNA. The syntenic distribution always occurred in the short arms of the same chromosome in all of the species. The phylogenetic relationships reveal, in part, the taxonomic arrangement of the genus Cardiospermum.  相似文献   

15.
The karyotypes of five Brazilian species of Echinodorus; E. bolivianus, E. grandiflorus, E. longipetalus, E. macrophyllus and E. tenellus (Alismataceae); were studied using C-banding, CMA3/DAPI banding and fluorescence in situ hybridization with a 45S rDNA probe. There were few differences in the G-C rich regions of the five species, but marked differences were seen in the number and position of C-bands, A-T rich regions and 45S rDNA sites. Overall, these characteristics were species-specific, with the exception of E. bolivianus and E. tenellus, which were highly similar in all of the karyotypic characteristics studied.  相似文献   

16.
Chromosome number variations play an important role in the genus Medicago. In addition to polyploidy there are cases of dysploidy as evidenced by two basic numbers, x = 8 and x = 7, the latter limited to five annual species having 2n = 14. Annuals are diploid with the exception of Medicago scutellata and Medicago rugosa which have 2n = 30 and are considered the result of crosses between the 2n = 16 and 2n = 14 species. However, this hypothesis has never been tested. This study was carried out to investigate the 2n = 14 and 2n = 30 karyotypes and verify the allopolyploid origin of M. scutellata and M. rugosa. Fluorescence in situ hybridization (FISH) of rDNA probes and genomic in situ hybridization (GISH) were performed. FISH showed that all five diploids with 2n = 14 have one pair of 45S and one pair of 5S rDNA sites. M. scutellata displayed four sites of 45S and four sites of 5S rDNA, while in M. rugosa only one pair of each of these sites was found. GISH did not produce signals useful to identify the presumed progenitors with 14 chromosomes. This result suggests alternative evolutionary pathways, such as the formation of tetraploids (2n = 32) and subsequent dysploidy events leading to the chromosome number reduction.  相似文献   

17.
Abstract

Serjania Mill. (Paullinieae) is considered the most important neotropical genus of Sapindaceae due to species number and its widespread distribution. In this study, 14 species belonging to three sections were analyzed using conventional staining, C/CMA/DAPI banding, and fluorescence in situ hybridization (FISH) with a 18S-5.8S-26S rDNA probe. New chromosome counts are reported for Serjania crassifolia, Serjania platycarpa, and Serjania regnellii, all with 2n = 24, which is remarkably constant for Serjania. The karyotypes are moderately asymmetric, and variations observed in A1 and A2 indices show resemblances between S. platycarpa, Serjania hebecarpa, and S. crassifolia, and between Serjania communis, Serjania gracilis, and S. regnellii. The banding pattern was homogeneous in Serjania. C/DAPI bands (AT-rich sites) were not clearly evidenced, but changes in the number and position of GC-rich sites (CMA bands) were observed. These segments were associated with 18S-5.8S-26S rDNA sites. The significance of the results is discussed in relation to chromosomal data available for the genus and in regard to the infrageneric treatment of Serjania.  相似文献   

18.
Identification of individual chromosomes in Lupinus is not possible due to gradient in size and similar morphology. To overcome this problem, molecular cytogenetics was developed for Lupinus. As an initial step in karyotype analysis, fluorescent in situ hybridization (FISH) was performed to determine genomic distribution of rRNA genes in L. hispanicus, L. luteus and L. × hispanicoluteus. It was found that all three diploid species posses two chromosome pairs carrying 18S-5.8S-25S rDNA and one chromosome pair carrying 5S rDNA. The use of probes for rDNA permitted unambiguous identification of three different pairs of chromosomes and revealed conservation of the number of rDNA loci among the three species. The study represents the first step in physical mapping of Lupinus genome through FISH by providing distinct chromosome landmarks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Karyotype, sex chromosome system and cytogenetics characteristics of an unidentified species of the genus Apareiodon originating from Piquiri River (Paraná State, Brazil) were investigated using differential staining techniques (C-banding and Ag-staining) and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes. The diploid chromosome number was 2n = 54 with 25 pairs of meta- (m) to submetacentric (sm) and 2 pairs of subtelocentric (st) chromosomes. The major ribosomal rDNA sites as revealed by Ag-staining and FISH with 18S rDNA probe were found in distal region of longer arm of st chromosome pair 26, while minor 5S sites were observed in the interstitial sites on chromosome pairs 2 (smaller cluster) and 7 (larger one). The C-positive heterochromatin had pericentromeric and telomeric distribution. The heteromorphic sex chromosome system consisted of male ZZ (pair 21) and female middle-sized m/st Z/W chromosomes. The pericentric inversion of heterochromatinized short arm of ancestral Z followed by multiplication of heterochromatin segments is hypothesized for origin of W chromosome. The observed karyotype and chromosomal markers corresponded to those found in other species of the genus.  相似文献   

20.
The physical mapping of three abundant tandemly repeated DNA sequences, CON1, CON2, and COM2, and the distributional pattern of AT- and GC-rich regions in the chromosomes of 32 species of the grass family Poaceae have been established by means of fluorescence in situ hybridization and fluorochrome banding with chromomycin and DAPI. Additionally, locations of 5S, 35S rDNA, and the C-banding pattern were examined. All satellite DNAs (satDNA) tested are situated predominantly subtelomerically in the chromosomes, but occur also colocalized with 35S and 5S ribosomal DNAs (rDNA). Especially, CON2 is most often colocalized with the 5S rDNA, but is evolutionarily not derived from it. Subtelomeric heterochromatin bands are frequently, but not always correlated with satDNA bands. Moreover, the DAPI- or rarely chromomycin-positive stainability of heterochromatin is not caused by these satDNAs as revealed by their sequence organization, showing too few clusters of AT or GC base pairs as required for binding of the fluorochromes. The occurrence of satDNAs is not correlated with that of other components of the heterochromatin. Proportions of satDNAs and other sequences of the heterochromatin relative to the entire genome appear subjected to a much faster evolutionary change than the rather stable proportions of the rDNAs. Heteromorphism in banding patterns found in many species is related in most instances with breeding system and life form. The independent evolution and amplification of different satDNAs is discussed in relation to molecular phylogenetic data. The value and limitations of satDNA data in addressing systematic questions in grasses is exemplified for several grass subfamilies and tribes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号