首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The sexes’ share in parental care and the social mating system in a marked population of the single‐brooded Lesser Spotted Woodpecker Dendrocopos minor were studied in 17 woodpecker territories in southern Sweden during 10 years. The birds showed a very strong mate fidelity between years; the divorce rate was 3.4%. In monogamous pairs, the male provided more parental care than the female. The male did most of the nest building and all incubation and brooding at night. Daytime incubation and brooding were shared equally by the sexes, and biparental care at these early breeding stages is probably necessary for successful breeding. In 42% of the nests, however, though still alive the female deserted the brood the last week of the nestling period, whereas the male invariably fed until fledging and fully compensated for the absent female. Post‐fledging care could not be quantified, but was likely shared by both parents. Females who ceased feeding at the late nestling stage resumed care after fledging. We argue that the high premium on breeding with the same mate for consecutive years and the overall lower survival of females have shaped this male‐biased organisation of parental care. In the six years with best data, most social matings were monogamous, but 8.5% of the females (N=59) exhibited simultaneous multi‐nest (classical) polyandry and 2.9% of the males (N=68) exhibited multi‐nest polygyny. Polyandrous females raised 39% more young than monogamous pairs. These females invested equal amounts of parental care at all their nests, but their investment at each nest was lower than that of monogamous females. The polyandrously mated males fully compensated for this lower female investment. Polygynous males invested mainly in their primary nest and appeared to be less successful than polyandrous females. Polyandry and polygyny occurred only when the population sex ratio was biased, and due to strong intra‐sexual competition this is likely a prerequisite for polygamous mating in Lesser Spotted Woodpeckers.  相似文献   

3.
Fledging is a critical event in the avian breeding cycle, but remains unstudied in almost all species. As a result, little is known about factors that cause nestlings to leave nests. We documented fledging behavior in a box‐nesting population of Mountain Bluebirds (Sialia currucoides) using radio‐frequency identification. We attached a passive integrated transponder (PIT tag) to the leg of each nestling in 40 nests. An antenna checked for the presence of a transponder signal (i.e., a nestling) at nest‐box entrances every 2 s. The time of last detection of a nestling was taken as the time that nestling fledged. We found that fledging began when the oldest nestlings were 15–22 d old. Broods that were ahead in development, as measured by primary feather length, fledged at relatively younger ages. All nestlings fledged on the same day at 33 nests (83%) and over 2 d at remaining nests. When all nestlings fledged on the same day, fledging usually began in the morning and median time between the first and last fledging was 55 min (range = 2.3 min–10.6 h). When young fledged over 2 d, fledging always began >8 h after sunrise and usually just one nestling fledged the first day, suggesting that this fledging may have been accidental. Clutches in our population often hatch asynchronously, which sets up a hierarchy within broods in developmental state, size, and competitive ability. In such situations, fledging may be initiated by one of the most‐developed and hence most‐competitive nestlings in a brood, presumably when it reaches a certain threshold state of development. Alternatively, fledging may begin when a less‐developed, less‐competitive, and probably hungrier nestling leaves the nest, presumably to gain better access to food. We used the proportion of time that a nestling was able to occupy the nest‐box entrance late in the nestling stage, waiting to intercept parents with food, as an index of nestling competitive ability. Assuming that the number of nest entrance detections reliably indicates nestling competitive ability, we found that the most‐competitive nestling fledged first at over half of all nests, supporting the notion that fledging usually begins when oldest nestlings reach a threshold state of development.  相似文献   

4.
ABSTRACT Multiple factors potentially affect nestling survival and maternal reproductive success. However, little is known about the relative importance of different factors when operating simultaneously or whether the same factors are important for nestlings and their mothers. We determined the effect of hatching asynchrony, individual egg size, mean egg size, nestling sex, and clutch initiation date on the survival of individual nestlings and on maternal reproductive success in Common Grackles (Quiscalus quiscula) from 2004 to 2006 in central Illinois. Factors most important to maternal success differed from those important for individual nestling growth and survival. Hatching asynchrony had the greatest within‐nest influence on the fate of nestlings; the earlier a nestling hatched relative to siblings, the greater its mass and likelihood of fledging. Clutch size had the greatest influence on maternal reproductive success, with females with larger clutches fledging more young. Thus, both nestling survival and maternal success were largely determined by a single, albeit different, factor. A possible explanation for the apparent unimportance of most factors we measured in determining maternal success is that we did not consider variation among females. Individual variation in maternal attributes such as condition, size, age, experience, or mate quality may result in females tailoring clutch attributes (i.e., egg size, sex, and degree of hatching asynchrony) in ways that allow them to maximize their reproductive success. The discordance between factors that benefited mothers versus their offspring illustrates the importance of considering the maternal consequences of any factor that appears to affect offspring survival. Factors that increase the mass and survival of some offspring may not result in increased maternal reproductive success.  相似文献   

5.
The behavior of young songbirds after fledging is one of the least understood phases of the breeding cycle, although parental provisioning rates and movement of fledglings are key to understanding life history evolution. We studied Cordilleran Flycatchers (Empidonax occidentalis) at two sites in southwestern Colorado, USA, from 2012 to 2017. We banded and sexed breeding adults to determine the relative contributions of males and females to nestling and fledgling care, and attached radio‐transmitters to nestlings to facilitate observations of brood behavior after fledging. Females made 60% and 78% of total observed feedings of nestlings and fledglings, respectively. Parental provisioning rates increased with nestling age, and per‐nestling provisioning rates increased with brood size. Parental provisioning rates declined just before fledging, then increased just after fledging. Fledging times of individuals in broods were asynchronous and concentrated during the late afternoon and early evening. Males stopped caring for fledglings before females even though this species is single‐brooded, with some late‐season broods being abandoned by males. Broods spent the first three weeks after fledging within 400 m of nests, after which they began to disperse. Most aspects of the breeding biology of Cordilleran Flycatchers in our study, including the duration of nestling and fledging periods, female‐dominated provisioning, and movement patterns of fledglings, were similar to those of other Empidonax species. However, the times when young fledged were not concentrated in the morning as reported in most other songbirds, and this result warrants additional study of the timing of fledging in ecologically and taxonomically similar species. The increased per‐nestling provisioning rate with increasing brood size was unexpected, and additional study is needed to determine if this increase results from a trade‐off between adult annual survival and productivity favoring increased provisioning of young in larger broods, or from the existence of high‐quality individuals where larger clutches and higher provisioning rates are linked.  相似文献   

6.
Mothers can adjust the phenotype of their offspring to the local environment through a modification of their egg investment and/or nestling provisioning. However, offspring health may be severely impaired if the conditions experienced by nestlings do not match with those anticipated by the mother. If maternal effects differentially affect the sexes or if one sex is more strongly affected by an environmental stressor, fitness benefits may also differ between male and female offspring. Here, we study maternal effects in male and female great tit Parus major nestlings by means of an ectoparasite treatment before egg‐laying combined with a partial cross‐foster experiment between broods of infested and uninfested nests. Nestlings that were raised in their own nest experienced the same conditions before and after cross‐fostering (either in parasite infested or uninfested nests), while cross‐fostered ones experienced different conditions (either changing from infested to uninfested or the other way around). We measured effects on nestling plasma levels of oxidative stress [reactive oxygen metabolites (ROMs) and total antioxidant capacity (OXY)], body condition (body size and mass) and post‐fledging survival. Daughters, but not sons, from matching conditions showed the lowest ROM and high OXY levels when exposed to parasites, while there was no effect of parasite exposure in any of both sexes in case of a mismatch. In contrast, body condition and post‐fledging survival were not (or only slightly) affected by any of the experimental treatments. Results of this study show that maternal effects can affect oxidative stress levels of nestlings in a sex‐specific way and that the outcome depends on the exposure to environmental stressors, such as parasites.  相似文献   

7.
The behavior of adults and young at the time of fledging is one of the least understood aspects of the breeding ecology of birds. Current hypotheses propose that fledging occurs either as a result of parent‐offspring conflict or nestling choice. We used video recordings to monitor the behavior of nestling and adult grassland songbirds at the time of fledging. We observed 525 nestlings from 166 nests of 15 bird species nesting in grasslands of Alberta, Canada, and Wisconsin, USA. Overall, 78% of nestlings used terrestrial locomotion for fledging and 22% used wing‐assisted locomotion. Species varied in propensity for using wing‐assisted locomotion when fledging, with nestling Grasshopper Sparrows (Ammodramus savannarum) and Henslow's Sparrows (Centronyx henslowii) often doing so (47% of fledgings) and nestling Song Sparrows (Melospiza melodia), Common Yellowthroats (Geothlypis trichas), and Chestnut‐collared Longspurs (Calcarius ornatus) rarely doing so (3.5% of fledgings). For 390 fledging events at 127 nests, camera placement allowed adults near nests to be observed. Of these, most young fledged (81.5%) when no adult was present at nests. Of 72 fledging events that occurred when an adult was either at or approaching a nest, 49 (68.1%) involved feeding. Of those 49 fledgings, 30 (62.1%) occurred when one or more nestlings jumped or ran from nests to be fed as an adult approached nests. The low probability of nestlings fledging while an adult was at nests, and the tendency of young to jump or run from nests when adults did approach nests with food minimize opportunities for parents to withhold food to motivate nestlings to fledge. These results suggest that the nestling choice hypothesis best explains fledging by nestlings of ground‐nesting grassland songbirds, and fledging results in families shifting from being place‐based to being mobile and spatially dispersed.  相似文献   

8.
GRO BJRNSTAD  JAN T. LIFJELD 《Ibis》1996,138(2):229-235
The importance of male parental care to female reproductive success was investigated in the monogamous Willow Warbler Phylloscopus trochilus by removing the male parent at two different stages of the breeding cycle. Females that were widowed at the start of egg-laying continued breeding and managed to raise their brood on their own with no apparent reductions in numbers fledged or fledgling body-mass. The widowed females compensated for the loss of male assistance by increasing their own food provisioning rate as compared with control females. However, widows spent less time brooding the small young, and the growth rate of nestlings was reduced. In nests where the male parent was removed 7 days after the eggs hatched, the subsequent growth rate of nestlings was still affected, which suggests that male care is influential throughout the nestling period. On average, broods reared by widows fledged 2 days later than did broods of control females. An extension of the nestling period may appreciably affect reproductive success, since 68% of nests failed due to predation, mostly during the nestling period. We suggest that the main role of male parental care in the Willow Warbler is to assure a high growth rate of nestlings, which leads to early fledging and hence a reduced risk of nest predation.  相似文献   

9.
Nests of cavity‐nesting birds usually harbor some species of haematophagous ectoparasites that feed on the incubating adults and nestlings. Given the negative impact of ectoparasites on nestlings there will be selection on hosts to reduce parasite infestations through behavioural means. We have experimentally reduced the abundance of all ectoparasites in nests of pied flycatchers Ficedula hypoleuca to explore both whether there are changes in the frequency and duration of putative anti‐parasite behaviours by tending adults, as well as whether such anti‐parasite behaviours are able to compensate for the deleterious effects that parasites may have on nestlings. Heat treatment of nests substantially decreased the density of ectoparasites, and thereby positively affected nestling growth. The frequency and intensity of female grooming and nest sanitation behaviours during the incubation and nestling periods decreased as a consequence of the experimental reduction of ectoparasite infestation. Although nestlings begged more intensely in infested nests, the experiment had no significant effect on parental provisioning effort. Reduction of parasites resulted in larger nestlings shortly before fledging and increased fledging success. This study shows a clear effect of a complete natural nest ectoparasite fauna on parental behaviour at the nest and nestling growth in a cavity‐nesting bird. Although ectoparasites induce anti‐parasite behaviours in females, these behaviours are not able to fully remove parasite's deleterious effects on nestling growth and survival.  相似文献   

10.
What causes young birds to leave nests remains unclear for almost all altricial species. For many years, the assumption was that parents often controlled the time of fledging by coaxing young from nests, e.g., by holding food within view, but out of reach, of nestlings. This assumption, though, was based solely on scattered anecdotal reports of such behavior. We used continuous video‐recording of nests to assess the role of parents, if any, in the timing and process of fledging of cavity‐nesting Mountain Bluebirds (Sialis currucoides). We placed perches ~50 cm in front of nest‐box entrances to give parents ample opportunity to display food to nestlings. We found no evidence that parents routinely initiated the fledging process. On the day of fledging, parents did not perch on supplemental perches with food more often, or for longer periods of time, than on the day before fledging. Also, after going to nest‐box entrances, parents never held food away from a nestling reaching for the food. Parents were usually absent (16 of 19 cases) when the first nestling fledged. In the remaining three cases, a parent perched with food in view of a nestling for 8, 15 and 65 s, respectively, just before that nestling fledged. Although these might have appeared to be attempts at coaxing, in each case, the parent was encountering, for the first time, a nestling partially emerging from the nest entrance. Parents may simply have hesitated to approach nests because the nestling's position prevented parents from delivering food in the normal manner. Finally, the rate at which parents fed nestlings on the day of fledging did not differ from the rate the day before, suggesting that parents do not try to use hunger to induce fledging. Our results are consistent with previous research suggesting that, in Mountain Bluebirds, it is a nestling that initiates fledging, typically when it reaches some threshold state of development.  相似文献   

11.
Uniparental offspring desertion occurs in a wide variety of avian taxa and usually reflects sexual conflict over parental care. In many species, desertion yields immediate reproductive benefits for deserters if they can re‐mate and breed again during the same nesting season; in such cases desertion may be selectively advantageous even if it significantly reduces the fitness of the current brood. However, in many other species, parents desert late‐season offspring when opportunities to re‐nest are absent. In these cases, any reproductive benefits of desertion are delayed, and desertion is unlikely to be advantageous unless the deserted parent can compensate for the loss of its partner and minimize costs to the current brood. We tested this parental compensation hypothesis in Hooded Warblers Setophaga citrina, a species in which males regularly desert late‐season nestlings and fledglings during moult. Females from deserted nests effectively doubled their provisioning efforts, and nestlings from deserted nests received just as much food, gained mass at the same rate, and were no more likely to die from either complete nest predation or brood reduction as young from biparental nests. The female provisioning response, however, was significantly related to nestling age; females undercompensated for male desertion when the nestlings were young, but overcompensated as nestlings approached fledging age, probably because of time constraints that brooding imposed on females with young nestlings. Overall, our results indicate that female Hooded Warblers completely compensate for male moult‐associated nest desertion, and that deserting males pay no reproductive cost for desertion, at least up to the point of fledging. Along with other studies, our findings support the general conclusion that late‐season offspring desertion is likely to evolve only when parental compensation by the deserted partner can minimize costs to the current brood.  相似文献   

12.
For avian group living to be evolutionary stable, multiple fitness benefits are expected. Yet, the difficulty of tracking fledglings, and thus estimating their survival rates, limits our knowledge on how such benefits may manifest postfledging. We radio‐tagged breeding females of the Afrotropical cooperatively breeding Placid greenbul (Phyllastrephus placidus) during nesting. Tracking these females after fledging permitted us to locate juvenile birds, their parents, and any helpers present and to build individual fledgling resighting datasets without incurring mortality costs or causing premature fledging due to handling or transmitter effects. A Bayesian framework was used to infer age‐specific mortality rates in relation to group size, fledging date, maternal condition, and nestling condition. Postfledging survival was positively related to group size, with fledglings raised in groups with four helpers showing nearly 30% higher survival until independence compared with pair‐only offspring, independent of fledging date, maternal condition or nestling condition. Our results demonstrate the importance of studying the early dependency period just after fledging when assessing presumed benefits of cooperative breeding. While studying small, mobile organisms after they leave the nest remains highly challenging, we argue that the telemetric approach proposed here may be a broadly applicable method to obtain unbiased estimates of postfledging survival.  相似文献   

13.
Offspring growth and survival are predicted to be higher for older parents, due to a variety of mechanisms, such as increased breeding experience or greater investment favored by low residual reproductive value. Yet the extent to which parent age affects offspring viability is likely to vary between different aspects of growth and survival, perhaps being most pronounced at the most stressful stages of reproduction. We studied the link between parent age and nestling growth and survival in the Laysan albatross, a long-lived seabird with a mean first breeding age of 8 years. Offspring of older parents were more likely to survive to fledging. Among those that did fledge, nestlings of older parents grew more rapidly. However, parent age did not influence the eventual asymptotic size that nestlings reached before fledging: fast-growing nestlings of older parents reached 90% of asymptotic size roughly 1 week sooner, but slow-growing nestlings of younger parents eventually caught up in size before fledging. Older parents bred c . 2 days earlier than younger parents, but hatch date did not explain observed variation in offspring success. The extent to which parent age accounted for variation in size of individual nestlings was not constant but peaked near the midpoint of development. This could reflect a time period when demands on parents reveal age-based differences in parental quality. Overall, growth and survival of offspring increased with parent age in this species, even though the late age of first breeding potentially provides a 7-year period for birds to hone their foraging skills or for selection to eliminate low-quality individuals.  相似文献   

14.
Little is known about the process or causes of fledging or nest‐leaving in passerine birds because researchers can rarely predict when fledging will occur in a given nest. We used continuous videotaping of nests to both document the process of fledging in the house wren, Troglodytes aedon, a small, cavity‐nesting songbird, and test hypotheses as to what might cause fledging to begin. Fledging began any time from 14 to 19 d after hatching commenced. Slower‐developing broods fledged later than faster‐developing broods. Fledging typically began within 5 h of sunrise and over 80% of all nestlings fledged before noon. All nestlings fledged on the same day at 65% of nests and over two consecutive days in most other nests. We found no evidence that fledging was triggered by changes in parental behaviour. Parental rate of food delivery to nestlings did not decline during a 3‐h period leading up to the first fledging, nor was the rate of feeding just prior to the first fledging lower than the rate at the same time the day before. Moreover, parents did not slow the rate of food delivery to nests after part of the brood had fledged. Hatching is asynchronous in our study population which creates a marked age/size hierarchy within broods. At most nests, the first nestling to fledge was the most well‐developed nestling in the brood or nearly so (as measured by feather length). This suggests that fledging typically begins when the most well‐developed nestlings in the brood reach some threshold size. However, at about one‐fifth of nests, the first nestling to fledge was only moderate in size. At these nests, severe competition for food may have caused smaller, less competitive nestlings to fledge first to increase their access to food. We found no strong support for the suggestion that the oldest nestlings delay fledging until their least‐developed nestmate reaches some minimum size, although further experimental work on this question is warranted.  相似文献   

15.
We investigated sex-specific parental care behaviour of lesser spotted woodpeckers Picoides minor in the low mountain range Taunus, Germany. Observed parental care included incubation, nest sanitation as well as brooding and feeding of nestlings. Contributions of the two sexes to parental care changed in progress of the breeding period. During incubation and the first half of the nestling period, parental care was divided equally between partners. However, in the late nestling stage, we found males to feed their nestlings irrespective of brood size while females considerably decreased feeding rate with the number of nestlings. This behaviour culminated in desertion of small broods by females shortly before fledging. The fact that even deserted nests were successful indicates that males were able to compensate for the females' absence. Interestingly, the mating of one female with two males with separate nests could be found in the population, which confirms earlier findings of polyandry in the lesser spotted woodpecker. We conclude that biparental care is not essential in the later stage and one partner can reduce effort and thus costs of parental care, at least in small broods where the mate is able to compensate for that behaviour. Reduced care and desertion appears only in females, which might be caused by a combination of two traits: First, females might suffer higher costs of investment in terms of mortality and secondly, male-biased sex ratio in the population generally leads to higher mating probabilities for females in the following breeding season. The occurrence of polyandry seems to be a result of these conditions.  相似文献   

16.
We examined avoidance, tolerance, and resistance strategies of nestling and adult tree swallows Tachycineta bicolor in response to ectoparasitic blowflies Protocalliphora sialia. Tree swallows avoided settling in north‐facing nest boxes early in the breeding season. These boxes were more likely to be parasitized later in the season, suggesting that box selection may facilitate blowfly avoidance. After experimentally manipulating blowfly intensity, we found that nestlings were generally tolerant of parasitism. Parasites significantly reduced nestling blood hemoglobin but had no effect on nestling body mass, primary feather growth, age at fledging, or fledging success. Parents of parasitized nestlings did not increase their food provisioning rate to promote nestling tolerance. Adult female tree swallows demonstrated both tolerance and resistance: blowfly parasitism had no effect on adult hemoglobin and body mass, and those with higher P. sialia‐binding antibody levels had fewer blowfly larvae in their nests. Nestling antibodies were unrelated to blowfly intensity. Despite considerable variation among years, our results suggest that the costs of blowfly parasitism to nestling and adult tree swallows are modest, and limited to blood loss in nestlings. Future work should examine the effects of reduced blood hemoglobin on fledgling survival and the importance of parasite‐specific antibodies.  相似文献   

17.
Nestling birds often maintain nutritional reserves to ensure continual growth during interruptions in parental provisioning. However, mass-dependent flight costs require the loss of excess mass before fledging. Here we test whether individual variable mass loss prior to fledging is controlled through facultative adjustments by nestlings, or whether it reflects physiologically inflexible developmental schedules. We show that in the face of natural and experimental variation in nestling body mass and wing length, swifts always achieve very similar wing loadings (body mass per wing area) prior to fledging, presumably because this represents the optimum for flight. Experimental weights (approx. 5% body mass) temporarily attached to nestlings caused additional reductions in mass, such that final wing loadings still matched those of control siblings. Experimental reductions in nestling wing length (approx. 5% trimmed from feather tips) resulted in similar additional mass reductions, allowing wing loadings at fledging to approach control levels. We suggest that nestlings may assess their body mass relative to wing area via wing flapping and special 'push-ups' (on the tips of extended wings) performed in the nest. Thus, by facultatively adjusting body mass, but not wing growth, nestling swifts are always able to fledge with aerodynamically appropriate wing loadings.  相似文献   

18.
Begging behaviour by the young affects parental food distribution among nestlings of altricial birds. We present an analysis of two types of begging behaviour (assuming the front nest positions and gaping) based on videotaped natural nestling feeding in European common redstart (Phoenicurus phoenicurus). We test whether these types of begging support the predictions of two mathematical models: scramble competition with competitive asymmetries between nestlings [Anim. Behav. 27 (1979) 1210] or honest signalling model [Nature 352 (1991) 328]. None of the measured variables of nestling or parental behaviour were affected by body weight differences between siblings. In contrast, both gaping and nest positioning were affected by individual differences in nestling hunger. In agreement with the honest signalling model, hungrier nestlings gaped with higher probability and started to gape sooner after the arrival of the parent than did their less hungry nestmates. Those nestlings with the shortest latency to gape also received food more often. Nest positioning was related to nestling hunger in a way unforeseen by the existing models. The intervals between nestling position changes were several times longer than the intervals between parental feeding visits, and parents preferred to feed nestlings in front positions, so nestlings in front positions were always less hungry than nestlings in back. Hence the pattern of movements influenced the feeding decision in favour of the more satiated nestlings and acted against the effect of gaping. Nestling movement seemed to be caused by the less hungry nestlings moving actively from front to rear positions. Low mortality of individual nestlings within broods that survived to fledging and small within‐brood variation in fledging weights indicated low competition among nestmates. We suggest that there are two behavioural mechanisms that contribute to the equalization of fledging weights in common redstart nestlings: the signalling of need through gaping and the regular turnover of nestlings at front positions.  相似文献   

19.
In many cooperatively-breeding species, the presence of one or more helpers improves the reproductive performance of the breeding pair receiving help. Helper contributions can take many different forms, including allo-feeding, offspring provisioning, and offspring guarding or defence. Yet, most studies have focussed on single forms of helper contribution, particularly offspring provisioning, and few have evaluated the relative importance of a broader range of helper contributions to group reproductive performance. We examined helper contributions to multiple components of breeding performance in the Karoo scrub-robin Cercotrichas coryphaeus , a facultative cooperative breeder. We also tested a prediction of increased female investment in reproduction when helpers improve conditions for rearing young. Helpers assisted the breeding male in allo-feeding the incubating female, increasing allo-feeding rates. Greater allo-feeding correlated with greater female nest attentiveness during incubation. Nest predation was substantially lower among pairs breeding with a helper, resulting in a 74% increase in the probability of nest survival. Helper contributions to offspring provisioning increased nestling feeding rates, resulting in a reduced incidence of nestling starvation and increased nestling mass. Nestling mass had a strong, positive effect on post-fledging survival. Controlling for female age and habitat effects, annual production of fledged young was 130% greater among pairs breeding with a helper, and was influenced most strongly by helper correlates with nest survival, despite important helper effects on offspring provisioning. Females breeding with a helper increased clutch size, supporting the prediction of increased female investment in reproduction in response to helper benefits.  相似文献   

20.
The amount of food resources available to upper‐level consumers can show marked variations in time and space, potentially resulting in food limitation. The availability of food resources during reproduction is a key factor modulating variation in reproductive success and life‐history tradeoffs, including patterns of resource allocation to reproduction versus self‐maintenance, ultimately impacting on population dynamics. Food provisioning experiments constitute a popular approach to assess the importance of food limitation for vertebrate reproduction. In this study of a mesopredatory avian species, the lesser kestrel Falco naumanni, we provided extra food to breeding individuals from egg laying to early nestling rearing. Extra food did not significantly affect adult body condition or oxidative status. However, it increased the allocation of resources to flight feathers moult and induced females to lay heavier eggs. Concomitantly, it alleviated the costs of laying heavier eggs for females in poor body condition, and reduced their chances of nest desertion (implying complete reproductive failure). Extra food provisioning improved early nestling growth (body mass and feather development). Moreover, extra food significantly reduced the negative effects of ectoparasites on nestling body mass, while fostering forearm (a flight apparatus trait) growth among highly parasitized nestlings. Our results indicate that lesser kestrels invested the extra food mainly to improve current reproduction, suggesting that population growth in this species can be limited by food availability during the breeding season. In addition, extra food provisioning reduced the costs of the moult–breeding overlap and affected early growth tradeoffs by mitigating detrimental ectoparasite effects on growth and enhancing development of the flight apparatus with high levels of parasitism. Importantly, our findings suggest that maternal condition is a major trait modulating the benefits of extra food to reproduction, whereby such benefits mostly accrue to low‐quality females with poor body condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号