首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of young songbirds after fledging is one of the least understood phases of the breeding cycle, although parental provisioning rates and movement of fledglings are key to understanding life history evolution. We studied Cordilleran Flycatchers (Empidonax occidentalis) at two sites in southwestern Colorado, USA, from 2012 to 2017. We banded and sexed breeding adults to determine the relative contributions of males and females to nestling and fledgling care, and attached radio‐transmitters to nestlings to facilitate observations of brood behavior after fledging. Females made 60% and 78% of total observed feedings of nestlings and fledglings, respectively. Parental provisioning rates increased with nestling age, and per‐nestling provisioning rates increased with brood size. Parental provisioning rates declined just before fledging, then increased just after fledging. Fledging times of individuals in broods were asynchronous and concentrated during the late afternoon and early evening. Males stopped caring for fledglings before females even though this species is single‐brooded, with some late‐season broods being abandoned by males. Broods spent the first three weeks after fledging within 400 m of nests, after which they began to disperse. Most aspects of the breeding biology of Cordilleran Flycatchers in our study, including the duration of nestling and fledging periods, female‐dominated provisioning, and movement patterns of fledglings, were similar to those of other Empidonax species. However, the times when young fledged were not concentrated in the morning as reported in most other songbirds, and this result warrants additional study of the timing of fledging in ecologically and taxonomically similar species. The increased per‐nestling provisioning rate with increasing brood size was unexpected, and additional study is needed to determine if this increase results from a trade‐off between adult annual survival and productivity favoring increased provisioning of young in larger broods, or from the existence of high‐quality individuals where larger clutches and higher provisioning rates are linked.  相似文献   

2.
Fledging is a critical event in the avian breeding cycle, but remains unstudied in almost all species. As a result, little is known about factors that cause nestlings to leave nests. We documented fledging behavior in a box‐nesting population of Mountain Bluebirds (Sialia currucoides) using radio‐frequency identification. We attached a passive integrated transponder (PIT tag) to the leg of each nestling in 40 nests. An antenna checked for the presence of a transponder signal (i.e., a nestling) at nest‐box entrances every 2 s. The time of last detection of a nestling was taken as the time that nestling fledged. We found that fledging began when the oldest nestlings were 15–22 d old. Broods that were ahead in development, as measured by primary feather length, fledged at relatively younger ages. All nestlings fledged on the same day at 33 nests (83%) and over 2 d at remaining nests. When all nestlings fledged on the same day, fledging usually began in the morning and median time between the first and last fledging was 55 min (range = 2.3 min–10.6 h). When young fledged over 2 d, fledging always began >8 h after sunrise and usually just one nestling fledged the first day, suggesting that this fledging may have been accidental. Clutches in our population often hatch asynchronously, which sets up a hierarchy within broods in developmental state, size, and competitive ability. In such situations, fledging may be initiated by one of the most‐developed and hence most‐competitive nestlings in a brood, presumably when it reaches a certain threshold state of development. Alternatively, fledging may begin when a less‐developed, less‐competitive, and probably hungrier nestling leaves the nest, presumably to gain better access to food. We used the proportion of time that a nestling was able to occupy the nest‐box entrance late in the nestling stage, waiting to intercept parents with food, as an index of nestling competitive ability. Assuming that the number of nest entrance detections reliably indicates nestling competitive ability, we found that the most‐competitive nestling fledged first at over half of all nests, supporting the notion that fledging usually begins when oldest nestlings reach a threshold state of development.  相似文献   

3.
What causes young birds to leave nests remains unclear for almost all altricial species. For many years, the assumption was that parents often controlled the time of fledging by coaxing young from nests, e.g., by holding food within view, but out of reach, of nestlings. This assumption, though, was based solely on scattered anecdotal reports of such behavior. We used continuous video‐recording of nests to assess the role of parents, if any, in the timing and process of fledging of cavity‐nesting Mountain Bluebirds (Sialis currucoides). We placed perches ~50 cm in front of nest‐box entrances to give parents ample opportunity to display food to nestlings. We found no evidence that parents routinely initiated the fledging process. On the day of fledging, parents did not perch on supplemental perches with food more often, or for longer periods of time, than on the day before fledging. Also, after going to nest‐box entrances, parents never held food away from a nestling reaching for the food. Parents were usually absent (16 of 19 cases) when the first nestling fledged. In the remaining three cases, a parent perched with food in view of a nestling for 8, 15 and 65 s, respectively, just before that nestling fledged. Although these might have appeared to be attempts at coaxing, in each case, the parent was encountering, for the first time, a nestling partially emerging from the nest entrance. Parents may simply have hesitated to approach nests because the nestling's position prevented parents from delivering food in the normal manner. Finally, the rate at which parents fed nestlings on the day of fledging did not differ from the rate the day before, suggesting that parents do not try to use hunger to induce fledging. Our results are consistent with previous research suggesting that, in Mountain Bluebirds, it is a nestling that initiates fledging, typically when it reaches some threshold state of development.  相似文献   

4.
Little is known about the process or causes of fledging or nest‐leaving in passerine birds because researchers can rarely predict when fledging will occur in a given nest. We used continuous videotaping of nests to both document the process of fledging in the house wren, Troglodytes aedon, a small, cavity‐nesting songbird, and test hypotheses as to what might cause fledging to begin. Fledging began any time from 14 to 19 d after hatching commenced. Slower‐developing broods fledged later than faster‐developing broods. Fledging typically began within 5 h of sunrise and over 80% of all nestlings fledged before noon. All nestlings fledged on the same day at 65% of nests and over two consecutive days in most other nests. We found no evidence that fledging was triggered by changes in parental behaviour. Parental rate of food delivery to nestlings did not decline during a 3‐h period leading up to the first fledging, nor was the rate of feeding just prior to the first fledging lower than the rate at the same time the day before. Moreover, parents did not slow the rate of food delivery to nests after part of the brood had fledged. Hatching is asynchronous in our study population which creates a marked age/size hierarchy within broods. At most nests, the first nestling to fledge was the most well‐developed nestling in the brood or nearly so (as measured by feather length). This suggests that fledging typically begins when the most well‐developed nestlings in the brood reach some threshold size. However, at about one‐fifth of nests, the first nestling to fledge was only moderate in size. At these nests, severe competition for food may have caused smaller, less competitive nestlings to fledge first to increase their access to food. We found no strong support for the suggestion that the oldest nestlings delay fledging until their least‐developed nestmate reaches some minimum size, although further experimental work on this question is warranted.  相似文献   

5.
Nests of cavity‐nesting birds usually harbor some species of haematophagous ectoparasites that feed on the incubating adults and nestlings. Given the negative impact of ectoparasites on nestlings there will be selection on hosts to reduce parasite infestations through behavioural means. We have experimentally reduced the abundance of all ectoparasites in nests of pied flycatchers Ficedula hypoleuca to explore both whether there are changes in the frequency and duration of putative anti‐parasite behaviours by tending adults, as well as whether such anti‐parasite behaviours are able to compensate for the deleterious effects that parasites may have on nestlings. Heat treatment of nests substantially decreased the density of ectoparasites, and thereby positively affected nestling growth. The frequency and intensity of female grooming and nest sanitation behaviours during the incubation and nestling periods decreased as a consequence of the experimental reduction of ectoparasite infestation. Although nestlings begged more intensely in infested nests, the experiment had no significant effect on parental provisioning effort. Reduction of parasites resulted in larger nestlings shortly before fledging and increased fledging success. This study shows a clear effect of a complete natural nest ectoparasite fauna on parental behaviour at the nest and nestling growth in a cavity‐nesting bird. Although ectoparasites induce anti‐parasite behaviours in females, these behaviours are not able to fully remove parasite's deleterious effects on nestling growth and survival.  相似文献   

6.
Uniparental offspring desertion occurs in a wide variety of avian taxa and usually reflects sexual conflict over parental care. In many species, desertion yields immediate reproductive benefits for deserters if they can re‐mate and breed again during the same nesting season; in such cases desertion may be selectively advantageous even if it significantly reduces the fitness of the current brood. However, in many other species, parents desert late‐season offspring when opportunities to re‐nest are absent. In these cases, any reproductive benefits of desertion are delayed, and desertion is unlikely to be advantageous unless the deserted parent can compensate for the loss of its partner and minimize costs to the current brood. We tested this parental compensation hypothesis in Hooded Warblers Setophaga citrina, a species in which males regularly desert late‐season nestlings and fledglings during moult. Females from deserted nests effectively doubled their provisioning efforts, and nestlings from deserted nests received just as much food, gained mass at the same rate, and were no more likely to die from either complete nest predation or brood reduction as young from biparental nests. The female provisioning response, however, was significantly related to nestling age; females undercompensated for male desertion when the nestlings were young, but overcompensated as nestlings approached fledging age, probably because of time constraints that brooding imposed on females with young nestlings. Overall, our results indicate that female Hooded Warblers completely compensate for male moult‐associated nest desertion, and that deserting males pay no reproductive cost for desertion, at least up to the point of fledging. Along with other studies, our findings support the general conclusion that late‐season offspring desertion is likely to evolve only when parental compensation by the deserted partner can minimize costs to the current brood.  相似文献   

7.
Michael Coslovsky  Heinz Richner 《Oikos》2012,121(10):1691-1701
Experimental studies incorporating multiple trophic levels are scarce but of increasing interest for understanding ecological communities. Here we investigated interactive effects of perceived predation risk and parasite pressure on life‐history traits in a hole‐nesting bird, and the effects of predation risk on parasite success. In a 3 × 2 experimental design we increased perceived predation risk for breeding great tits Parus major via simulations of either nest‐predators (woodpeckers) or post‐fledging predators (sparrowhawks) close to nests, and used a non‐predatory species (song thrush) as a control. Concurrently, half of the nests in each treatment were either infested with ectoparasites, or kept parasite‐free. Regarding the predation risk – parasite interaction, exposure to nest‐predators tended to lower wing and sternum growth rates of nestlings in the absence, but not the presence, of parasites. In the presence of parasites, exposure to a post‐fledging, but not to a nest‐predator, led to significantly reduced wing growth. Mass and tarsus length were not affected by predator exposure, but ectoparasites had slight positive effects on mass gain. In the last third of the nestling period, overall nestling size was significantly smaller when exposed to a post‐fledging predator than to a nest‐predator, but neither differed from the control. Parental feeding rates were not affected by the treatments, but parents became less selective towards food items under either predation risk. Hen‐flea population sizes (adult or larvae) in nests were not affected by predation risk treatment of hosts. In summary, we found some evidence for an interactive effect of predation risk and parasite pressure on nestling growth. The complexity of the interaction, combined with certain inconsistencies of the effects and potential statistical artifacts, prevent however a straightforward interpretation of the results. The insights from the study are useful for designing additional experiments to further investigate the complexity of predator–parasite interactions in wild populations.  相似文献   

8.
We examined avoidance, tolerance, and resistance strategies of nestling and adult tree swallows Tachycineta bicolor in response to ectoparasitic blowflies Protocalliphora sialia. Tree swallows avoided settling in north‐facing nest boxes early in the breeding season. These boxes were more likely to be parasitized later in the season, suggesting that box selection may facilitate blowfly avoidance. After experimentally manipulating blowfly intensity, we found that nestlings were generally tolerant of parasitism. Parasites significantly reduced nestling blood hemoglobin but had no effect on nestling body mass, primary feather growth, age at fledging, or fledging success. Parents of parasitized nestlings did not increase their food provisioning rate to promote nestling tolerance. Adult female tree swallows demonstrated both tolerance and resistance: blowfly parasitism had no effect on adult hemoglobin and body mass, and those with higher P. sialia‐binding antibody levels had fewer blowfly larvae in their nests. Nestling antibodies were unrelated to blowfly intensity. Despite considerable variation among years, our results suggest that the costs of blowfly parasitism to nestling and adult tree swallows are modest, and limited to blood loss in nestlings. Future work should examine the effects of reduced blood hemoglobin on fledgling survival and the importance of parasite‐specific antibodies.  相似文献   

9.
When benefits exceed costs, natural selection may favor adults that develop the ability to recognize and preferentially direct care toward their own offspring to maximize their fitness. Investigations into the ability of adults to recognize offspring in offspring's early development period may help to understand when the ability of kin recognition starts to develop. In birds, studies of offspring recognition have mainly been conducted on bi‐parental breeding species, but relatively seldom on cooperative breeding species, despite that kin recognition may be of particular importance for cooperative breeders. The silver‐throated tit Aegithalos glaucogularis is a small passerine in which some nests have helpers during breeding. We tested whether silver‐throated tit parents and helpers were able to distinguish between their own and alien nestlings 2–5 d before fledging when recognition mechanisms were likely to have been developed. Through two forced choice experiments, of which one was conducted right beside the experimental nests (<0.8 m) and the other far away from the experimental nests (~6 m), we found that neither parents nor helpers discriminatively fed their own and alien nestlings, which suggested that at least during the experimental nestling age, and within the 6‐m‐radius area around the nests, they might not have the ability to recognize offspring. The possibility that silver‐throated tits use a larger area (>6 m radius) around their nests as a location‐based cue for offspring recognition, or would develop an offspring recognition ability at an older nestling age and/or even after fledging, warrants future studies.  相似文献   

10.
ABSTRACT Fruit‐eating birds are important seed dispersers in tropical forests, but little is known about the extent to which they rely on insects or how their diets vary seasonally. We used field observations of focal adults to quantify the diets of adult and nestling Black‐headed Trogons (Trogon melanocephalus) at nine nests in a lowland dry forest in Costa Rica. From May 2004 to August 2004, we documented 540 food deliveries to nests and 1080 food items consumed by adults. Adult and nestling trogons were largely insectivorous, feeding mainly on moth caterpillars (Lepidoptera). Fruit accounted for only 10.5% of items consumed by adults and 2.2% of items delivered to nestlings (6.1% and 0.6% of estimated dry mass, respectively). Adult and nestling diets differed significantly in both composition and prey size, with adults consuming more fruit and fewer large insects (Phasmatodea and Mantodea) than nestlings and eating more types of arthropods and fruit. Although both adults and nestlings relied heavily on moth larvae, adults preferentially consumed small caterpillars and delivered large ones to their nestlings. In addition, the proportion of large caterpillars delivered to nests remained constant throughout the nestling period, whereas the proportion of large caterpillars eaten by adults declined significantly with nestling age. Overall, arthropods delivered to nests averaged 70% heavier than those consumed by adults (estimated dry mass). Our results suggest that Black‐headed Trogons time reproduction to coincide with arthropod rather than fruit abundance, a pattern that may be more common among omnivorous forest birds than previously recognized.  相似文献   

11.
In many avian species, nestlings have evolved striking plumage, behaviours and mouth colours to obtain a greater share of parental investment. Studies revealing parental feeding preferences for nestlings with red gapes have proposed that red mouth colour in songbirds can act as a signal of nestling need or condition. Alternative hypotheses suggest that bright nestling mouths in cavity-nesting birds evolved to increase nestling detectability by the parents. We tested whether nestling mouth colour affects parental feeding preferences in great tits, Parus major L. In broods of six young, we experimentally painted mouth gapes and flanges either red or yellow and tested the effect of mouth colour on nestlings' mass gain under two lighting conditions. In nests with high luminosity, there was no significant effect of mouth colour on mass gain. In nests with low luminosity, nestlings with red gapes and flanges gained less mass than nestlings with red gapes and yellow flanges or both yellow gapes and flanges. Our results suggest that, in nests with low luminosity, red mouths decreased nestling detectability to the feeding parents and support the hypothesis that poor luminosity in nesting cavities can select for pale mouths. Overall, our results do not support the hypothesis that red mouth colour signals nestling need or condition to parent great tits.  相似文献   

12.
Bruce E. Young 《Oecologia》1993,93(2):256-262
I studied the life cycle of a botfly (Diptera: Muscidae: Philornis carinatus) and examined the effects of botfly ectoparasitism on nestling house wrens (Passeriformes: Troglodytidae: Troglodytes aedon) during three years in Costa Rica. At three study sites, I found that nestlings were relatively unaffected by botflies, in contrast to all other studies of birds infected with philornid botflies. At Monteverde, the main study site, infected chicks grew slightly slower and had slightly shorter tarsi and wing chords than uninfected chicks, but both groups fledged at similar weights. Since weight at fledging is the only growth character associated with post-fledging survivorship, botfly infections likely cost wrens little in terms of fitness. At all sites, fledging success did not differ between infected and uninfected nests. Botfly infections were more prevalent at two lower elevation sites than at the high elevation Monteverde side. Infection prevalence increased during the nesting season at all study sites, which suggests a botfly life cycle in which adult population levels increase during the wren breeding season and then decline during a dormant period when wrens are not nesting. Finally, botflies may attack chicks throughout the period before fledging, but there is no indication they locate nests before hatching. In sum, botfly parasitism on wrens appears to be benign, perhaps because the study sites are at the edge of the botfly's range or because wrens are not a preferred host.  相似文献   

13.
Capsule Vegetation structure and invertebrate abundance interact to influence both foraging sites and nestling provisioning rate; when invertebrate availability is low, adults may take greater risks to provide food for their young.

Aims To investigate nesting and foraging ecology in a declining farmland bird whose fledging success is influenced by the availability of invertebrate prey suitable for feeding to offspring, and where perceived predation risk during foraging can be mediated by vegetation structure.

Methods Provisioning rates of adult Yellowhammers feeding nestlings were measured at nests on arable farmland. Foraging sites were compared with control sites of both the same and different microhabitats; provisioning rate was related to habitat features of foraging‐sites.

Results Foraging sites had low vegetation density, probably enhancing detection of predators, or high invertebrate abundance at high vegetation density. Parental provisioning rate decreased with increasing vegetation cover at foraging sites with high invertebrate abundance; conversely, where invertebrate abundance was low, provisioning rate increased with increasing vegetation cover.

Conclusions Vegetation structure at foraging sites suggests that a trade‐off between predator detection and prey availability influences foraging site selection in Yellowhammers. Associations between parental provisioning rate and vegetation variables suggest that where invertebrate abundance is high birds increase time spent scanning for predators at higher vegetation densities; however, when prey are scarce, adults may take more risks to provide food for their young.  相似文献   

14.
Despite the broad consensus that force‐fledging of nestling songbirds lowers their probability of survival and therefore should be generally avoided by researchers, that presumption has not been tested. We used radiotelemetry to monitor the survival of fledglings of Ovenbirds Seiurus aurocapilla and Golden‐winged Warblers Vermivora chrysoptera that we unintentionally force‐fledged (i.e. nestlings left the nest in response to our research activities at typical fledging age), that fledged prematurely (i.e. nestlings left the nest earlier than typical fledging age), and that fledged independently of our activities. Force‐fledged Ovenbirds experienced significantly higher survival than those that fledged independent of our activities, and prematurely fledged Ovenbirds had a similarly high survival to those that force‐fledged at typical fledging age. We observed a similar, though not statistically significant, pattern in Golden‐winged Warbler fledgling survival. Our results suggest that investigator‐induced force‐fledging of nestlings, even when deemed premature, does not necessarily result in reduced fledgling survival in these species. Instead, our results suggest that a propensity or ability to fledge in response to disturbance may be a predictor of a higher probability of fledgling survival.  相似文献   

15.
Several bird species, including cavity-nesters such as European starlings Sturnus vulgaris , add to their nests green sprigs of plants such as yarrow Achillea millefolium that are rich in volatile compounds. In this field study on another cavity-nester, tree swallows Tachycineta bicolor , we tested whether yarrow reduced ectoparasite loads (the nest protection hypothesis), stimulated nestling immune systems (the drug hypothesis), or had other consequences for nestling growth or parental reproductive success (predicted by both preceding hypotheses). Tree swallows do not naturally add greenery to their nests, and thus offer several advantages in testing for effects of greenery independent of other potentially confounding explanations for the behaviour. We placed fresh yarrow in 23 swallow nests on the day the first egg was laid, replenishing every two days until clutch completion (=three times), and at 44 control nests, nesting material was simply touched. At 12 days of age, we measured nestling body size and mass, and took blood smears to do differential white blood cell counts. We subsequently determined the number and proportion of young fledging from nests and the number of fleas remaining after fledging. Higher humidity was associated with higher flea numbers whereas number of feathers in the nest was not. Our most significant finding was that an average of 773 fleas Ceratophyllus idius was found in control nests, versus 419 in yarrow nests. Possibly, parents compensate for blood that nestlings lose to ectoparasites by increasing food delivery, because we detected no differences between treatments in nestling mass, nestling leukocyte profiles, or proportion of young fledging, or relative to flea numbers. Our results provide no support for the drug hypothesis and strong support for the nest protection hypothesis.  相似文献   

16.
Parasitic botfly larvae (Philornis ssp., Diptera: Muscidae) are found in nests of several bird taxa, although prevalence and impact on nestling survival vary considerably among species. Here we describe patterns of botfly infestation in blue‐black grassquit Volatinia jacarina nestlings. We identified the most typically affected nestling body parts and assessed parasite prevalence, impact on nestling survival, and changes in nestling body shape. Additionally, we tested whether climatic conditions, nest morphology and habitat characteristics are associated with larvae abundance. Blue‐black grassquits had low breeding success (16% of eggs/nestlings survived to fledged; 19% of the nests fledged at least one), but most failures resulted from predation by vertebrate predators. We estimated that 1% of nestlings died due to botfly infestation, and the number of subcutaneous larvae (range 1–18) in a nestling's body did not predict fledging success. Infected chicks exhibited higher tarsus asymmetry. Thus, we argue that although botflies had a small impact on offspring survival, they may reduce fitness in adulthood. There was no evidence that environmental conditions and nest morphology are linked to the number of larvae on nestlings. Nesting areas with higher food supply had lower infestation rates. Possibly, food‐rich habitats allow parents to invest more time in offspring care (brooding nestlings), thus protecting them from fly attacks. Alternatively, vegetation composition could influence local invertebrate diversity, which could provide a natural trophic buffer against adult Philornis. The present study brings to light new perspectives concerning bird–botfly interaction.  相似文献   

17.
Summary The use of green nesting material is widespred among birds. Recent evidence suggests that birds use secondary chemicals contained in green plants to control ectoparasites. We manipulated green nesting material and ectoparasites of European starlings (Sturnus vulgaris) to test two hypotheses: (1) ectoparasites adversely affect prefledging survival and morphometrics or postfledging survival, and (2) green nesting material ameliorates the effects of ectoparasites. We recorded fat score, numbers of scabs, tarsal length, body mass, and hematocrit level on each nestling 17 days after hatching. We also fitted each nestling with unique patagial tags and resighted the starlings for 6–8 weeks after fledging to estimate survival and sighting rates. Nests devoid of green nesting material and dusted with the insecticide, carbaryl, had fewer high ectoparasite infestations, and nestlings had significantly lower scab scores, and significantly higher body masses than nestlings in undusted boxes. However, there was no difference in postfledging survival between birds from carbaryl-treated and undusted nests. There also was no difference in prefledging survival and morphometrics or postfledging survival between nestlings from boxes with and without green nesting material. These results do not support the hypothesis that starlings use green nesting material to control nest ectoparasites. We suggest an alternative hypothesis; green nesting material is used for mate selection or pairbonding in the starling.  相似文献   

18.
Inequality in male and female numbers may affect population dynamics and extinction probabilities and so has significant conservation implications. We previously demonstrated that Brown‐headed Cowbird Molothrus ater brood parasitism of Song Sparrows Melospiza melodia results in a 50% reduction in the proportion of female host offspring by day 6 post‐hatch and at fledging, which modelling demonstrated is as significant as nest predation in affecting demography. Many avian brood parasites possess special adaptations to parasitize specific hosts so this sex‐ratio effect could be specific to the interaction between these two species. Alternatively, perturbations associated with brood parasitism per se (e.g. the addition of an extra, larger, unrelated nestling), rather than a Cowbird nestling specifically, may be responsible. We experimentally eliminated the effects of Cowbird‐specific traits by parasitizing nests with a conspecific nestling rather than a Cowbird, while otherwise emulating the circumstances of Cowbird parasitism by adding an extra, larger (2‐day‐older), unrelated Song Sparrow nestling to Song Sparrow nests. Our parasitism treatment led to few host offspring deaths and no evidence of male‐biased sex ratios by day 6 post‐hatch. However, after day 6, female nestling mortality rates increased significantly in experimentally parasitized nests, resulting in a 60% reduction in the proportion of females fledging. Cowbird‐specific traits are thus not necessary to cause female‐biased host nestling mortality and far more general features associated with Cowbird parasitism instead appear responsible. Our results suggest, however, that Cowbird‐specific traits may help accelerate the pace of female host deaths. The conservation implications of our results could be wide reaching. Cowbirds are unrelated to all their hosts, are larger than the great majority, and a Cowbird nestling's presence can mean there is an extra mouth to feed. Thus, sex‐biased mortality in parasitized nests could be occurring across a range of host species.  相似文献   

19.
Wild birds are rarely found with active arbovirus infections, and relatively little is known about the patterns of viremia they exhibit under field conditions or how infection varies with date, bird age, or other factors that potentially affect transmission dynamics. Buggy Creek virus (BCRV; Togaviridae, Alphavirus) is an arbovirus associated with colonially nesting Cliff Swallows (Petrochelidon pyrrhonota) and transmitted by its vector, the hematophagous swallow bug (Oeciacus vicarius), an ectoparasite of the Cliff Swallow. Introduced House Sparrows (Passer domesticus) that have occupied swallow nests at colony sites in peridomestic settings are also exposed to BCRV when fed upon by swallow bugs. We used data from 882 nestling House Sparrows in western Nebraska from 2006 to 2008 to examine seasonal variation and age-related correlates of virus infection in the field. Over 17% of nestling House Sparrows had active infections. Prevalence was higher in 2007 than in 2008 when birds from all colony sites were analyzed, but there was no significant difference between years for sites sampled in both seasons. Buggy Creek virus prevalence was similar in early and late summer, with a peak in midsummer, coinciding with the greatest swallow bug abundance. Nestlings 10 days of age and younger were most commonly infected, and the likelihood of BCRV infection declined for older nestlings. Average viremia titers also declined with age (but did not vary with date) and were high enough at all nestling ages to likely infect blood-feeding arthropods (swallow bugs). Length of viremia for nestlings in the field was ≥4 days, in agreement with an earlier study of BCRV. Nestling birds offer many advantages for field studies of arbovirus amplification and transmission.  相似文献   

20.
BRIAN J. GILL 《Ibis》1982,124(2):123-147
I studied the breeding of Grey Warblers Gerygone igata (Muscicapidae: Acanthizinae) in forest near Kaikoura, New Zealand, between 1976 and 1979. Only males sang and singing occurred all year. From late July to January pairs defended self-contained territories of 0·25–1·73 ha but they occupied larger home ranges when not breeding. Territorial adults were strictly sedentary all year. The average annual mortality of breeding adults was 18·5% and the predicted life-expectancy 4·9 years, which is remarkable in a bird weighing 6–7 g. The breeding season from first building to last fledging was six months long and it began early. Exceptionally, Grey Warblers may build and lay before the shortest day. As the season progressed warblers nested lower on average, both in absolute terms and relative to the tree nested in and canopy at the site. Warblers built in 7–27 days then delayed up to eight days before laying. Only females built and at no stage of breeding did males feed their mates. Both sexes fed the young. Grey Warblers laid for 15–16 weeks of the year and first clutches were laid asynchronously during 5–6 weeks. Eggs of a clutch appeared at two-day intervals and each egg weighed 1·5 g when fresh (23% of mean adult weight). Clutch size was nearly constant (mean 3·9, mode 4, range 3–5). The incubation period was 17–21 days (mean 19·5 days) and the nestling period 15–19 days (mean 17·2 days). On average the clutch hatched over 1·4 days, even though incubation commenced with the laying of the last egg. Nestlings reached maximum weight on Days 13–14 on average and then receded in weight by 4%, apparently through loss of water. All healthy nestlings exceeded mean adult weight during development by up to 39%. Nestlings from broods of two were at first lighter on average than those from larger broods, but in the second half of the nestling period twins were significantly the heaviest. Grey Warblers were fed for 28–35 days after fledging and they survived well while dependent on parents. Fledglings dispersed up to 3 km or more at independence and only 5% per annum joined the breeding population. Of nests that received eggs, 42% produced at least one fledgling. On average each breeding adult raised 2·0 fledglings per season. Of 265 eggs in 73 nests 70% hatched and 38% produced fledglings. Of 185 nestlings 54% fledged. Probably the main cause of mortality of eggs and nestlings was predation by introduced rodents and mustelids. Grey Warblers raise two small broods slowly during a long breeding season, rather than investing in one large quickly-reared brood. In New Zealand's mild climate the warbler's food supply may not decline severely in winter, and the population of warblers may remain so close to the limit set by food that extra for breeding is hard to obtain. Thus the breeding strategy may be adapted to a restricted food supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号