首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.  相似文献   

2.
Effects of chronic ethanol consumption, withdrawal and fasting on the free cytosolic NADP+/NADPH ratio and NADPH-regenerating enzyme activities of rat liver were studied. Ethanol consumption was shown to decrease the NADP+/NADPH ratio in non-fasted rats, and both ethanol withdrawal and fasting in ethanol-fed animals appeared to increase the ratio to the normal or higher level. Any treatment of rats caused the complex interaction on hepatic NADPH-regenerating enzyme activities, none of the enzyme activity correlating with the free cytosolic NADP+/NADPH ratio. Relationship between free cytosolic NADP+/NADPH ratio and lipogenic capacity of withdrawn rat liver is discussed, and a hypothesis for development of the fatty liver is suggested.  相似文献   

3.
Subcellular distribution of pentose-phosphate cycle enzymes in rat liver was investigated, using differential and isopycnic centrifugation. The activities of the NADP+-dependent dehydrogenases of the pentose-phosphate pathway (glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase) were detected in the purified peroxisomal fraction as well as in the cytosol. Both dehydrogenases were localized in the peroxisomal matrix. Chronic administration of the hypolipidemic drug clofibrate (ethyl-alpha-p-chlorophenoxyisobutyrate) caused a 1.5-2.5-fold increase in the amount of glucose-6-phosphate and phosphogluconate dehydrogenases in the purified peroxisomes. Clofibrate decreased the phosphogluconate dehydrogenase, but did not alter glucose-6-phosphate dehydrogenase activity in the cytosolic fraction. The results obtained indicate that the enzymes of the non-oxidative segment of the pentose cycle (transketolase, transaldolase, triosephosphate isomerase and glucose-phosphate isomerase) are present only in a soluble form in the cytosol, but not in the peroxisomes or other particles, and that ionogenic interaction of the enzymes with the mitochondrial and other membranes takes place during homogenization of the tissue in 0.25 M sucrose. Similar to catalase, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase are present in the intact peroxisomes in a latent form. The enzymes have Km values for their substrates in the millimolar range (0.2 mM for glucose-6-phosphate and 0.10-0.12 mM for 6-phosphogluconate). NADP+, but not NAD+, serves as a coenzyme for both enzymes. Glucose-6-phosphate dehydrogenase was inhibited by palmitoyl-CoA, and to a lesser extent by NADPH. Peroxisomal glucose-6-phosphate and phosphogluconate dehydrogenases have molecular mass of 280 kDa and 96 kDa, respectively. The putative functional role of pentose-phosphate cycle dehydrogenases in rat liver peroxisomes is discussed.  相似文献   

4.
Summary Male and female rat liver were studied during post-natal development. A correlation was found between biochemically determined hydroxylations and enzymhisto-chemically determined NADPH-nitro-BT reductase and Naphthol-AS-D esterase. No correlation was found between glucose-6-phosphate dehydrogenase or iso-citric acid dehydrogenase activity and hydroxylations. The difference in hydroxylating capacity between male and female rats may be caused by the fact that the number of cells with hydroxylating activity in the liver lobule, as judged by the NADPH-nitro-BT reductase and Naphthol-AS-D esterase activity, is higher in male than in female rats.List of Abbreviations NADH reduced nicotinamide adenine dinucleotide - NADPH reduced nicotinamide adenine dinucleotide phosphate - G6PD glucose-6-phosphate dehydrogenase - ICD iso-citric acid dehydrogenase - G6Pase glucose-6-phosphatase - NADPH -nitro-BT red - NADPH Nitro-blue tetrazolium reductase - SDH succinic acid dehydrogenase - TCA trichloracetic acid  相似文献   

5.
Glucose-6-phosphate dehydrogenase from Streptomyces aureofaciens exhibited activity with both NAD and NADP, the maximum reaction rate being 1.6 times higher for NAD-linked activity than for the NADP-linked one. The KM values for NAD-linked activity were 2.5 mM for glucose-6-phosphate and 0.27 mM for NAD, and for NADP-linked activity 0.8 mM for glucose-6-phosphate and 0.08 mM for NADP. NAD- and NADP-linked activities were inhibited by both NADH and NADPH. (2'-phospho-)adenosinediphospho-ribose inhibited only NAD-linked activity. The inhibition was competitive with respect to NAD and noncompetitive with respect to glucose-6-phosphate.  相似文献   

6.
L de Meis  M A Grieco  A Galina 《FEBS letters》1992,308(2):197-201
During steady-state, the Pi released in the medium is derived from glucose-6-phosphate which continuously regenerates the ATP hydrolyzed. A membrane potential (delta psi) can be built up in submitochondrial particles using glucose-6-phosphate and hexokinase as an ATP-regenerating system. The energy derived from the membrane potential thus formed, can be used to promote the energy-dependent transhydrogenation from NADH to NADP+ and the uphill electron transfer from succinate to NAD+. In spite of the large differences in the energies of hydrolysis of ATP (delta G degrees = -7.0 to -9.0 kcal/mol) and of glucose-6-phosphate (delta G degrees = -2.5 kcal/mol), the same ratio between Pi production and either NADPH or NADH formation were measured regardless of whether millimolar concentrations of ATP or a mixture of ADP, glucose-6-phosphate and hexokinase were used. Rat liver mitochondria were able to accumulate Ca2+ when incubated in a medium containing hexokinase, ADP and glucose-6-phosphate. The different reaction measured with the use of glucose-6-phosphate and hexokinase were inhibited by glucose concentrations varying from 0.2 to 2 mM. Glucose shifts the equilibrium of the reaction towards glucose-6-phosphate formation thus leading to a decrease of the ATP concentration in the medium.  相似文献   

7.
A NADPH cytochrome c oxidoreductase purified from membranes of rabbit peritoneal neutrophil was shown to behave as the NADPH dehydrogenase component of the O2- generating oxidase complex. A photoactivable derivative of NADP+, azido nitrophenyl-gamma-aminobutyryl NADP+ (NAP4-NADP+), was synthesized in its labeled [3H] form and used to photolabel the NADPH cytochrome c reductase at different stages of the purification procedure. Control assays performed in dim light indicated that the reduced form of NADP4-NADP+ generated by reduction with glucose-6-phosphate and glucose-6-phosphate dehydrogenase was oxidized at virtually the same rate as NADPH. Upon photoirradiation of the purified reductase in the presence of [3H]NAP4-NADP+ and subsequent separation of the photolabeled species by sodium dodecyl sulfate polyacrylamide gel electrophoresis, radioactivity was found to be present predominantly in a protein band with a molecular mass of 77-kDa and accessorily in bands of 67-kDa and 57-kDa. Evidence is provided that the 67-kDa and 57-kDa proteins arose from the 77-kDa protein by proteolysis. Despite removal of part of the sequence, the proteolyzed proteins were still active in catalyzing electron transport from NADPH to cytochrome c and in binding the photoactivable derivative of NADP+.  相似文献   

8.
Hypoxia relaxes endothelium-denuded bovine coronary arteries (BCA) through mechanisms that do not appear to involve reactive oxygen species, prostaglandins, or nitric oxide. Because of similarities in the relaxation of BCA to hypoxia (Po(2) = 8-10 Torr) and inhibitors of the pentose phosphate pathway (PPP) including 6-aminonicotinamide and epiandrosterone, we measured NADPH and NADP and found that hypoxia caused NADPH oxidation (decreased NADPH/NADP). The relaxation to hypoxia was similar to previously reported properties of relaxation to PPP inhibitors in that both responses were associated with glutathione oxidation and depressed intracellular calcium release and calcium influx-mediated contractile responses. Inhibitors of potassium channels had minimal effects on these relaxation responses. Relaxation to hypoxia and PPP inhibitors were attenuated by a thiol reductant (3 mM dithiothreitol) and by eliciting contraction with an activator of protein kinase C (phorbol 12,13-dibutyrate). In the presence of contraction to U-46619, relaxation to hypoxia and PPP inhibitors were attenuated by the sarco(endo)plasmic reticulum Ca(2+)-ATPase pump inhibitor 200 microM cyclopiazonic acid and by 10 mM pyruvate. Hypoxia decreased BCA levels of glucose-6-phosphate but not ATP. Pyruvate prevented the hypoxia-elicited decrease in glucose-6-phosphate and glutathione oxidation, and it increased NADPH levels under hypoxia to levels observed under normoxia. Thus hypoxia causes a metabolic stress on the PPP that promotes BCA relaxation through processes controlled by lowering the levels of cytosolic NADPH.  相似文献   

9.
Equilibrium constants for reactions catalyzed by ribulose-5-phosphate 3-epimerase, [sigma xylulose-5-P]/[sigma ribulose-5-P] = 1.82, ribose-5-phosphate isomerase, [sigma Rib-5-P]/[sigma ribulose-5-P] = 1.20, transaldolase, [sigma erythrose-4-P] [sigma Fru-6-P]/[sigma sedoheptulose-7-P] [sigma glyceraldehyde 3-P] = 0.37, and transketolase, [sigma Fru-6-P] [sigma glyceraldehyde 3-P]/[sigma erythrose-4-P] [sigma xylulose-5-P] = 29.7 and [sigma Rib-5-P] [sigma xylulose-5-P]/[sigma sedoheptulose-7-P] [sigma glyceraldehyde 3-P] = 0.48, were redetermined under physiological conditions. The equilibrium constant for the combined glucose-6-P dehydrogenase and 6-phosphoglucono-gamma-lactonase reaction, [6-phosphogluconate3-] [NADPH] [H+]2/[Glc-6-P2-] [NADP+], was found to be at least 1 X 10(-9). Using these redetermined equilibrium constants, calculated values of pentose cycle intermediates, based on near equilibrium assumptions and the tissue content of Fru-6-P and glyceraldehyde 3-P, were found to be in good agreement with measured values for male Wistar rats injected with saline, 20 mumol/g pyruvate, 20 mumol/g gluconate, and 20 mumol/g ribose. Measured and calculated values for pentose cycle intermediates in saline injected animals were ribulose-5-P; 3.8 +/- 0.4 and 2.4 +/- 0.1 nmol/g; xylulose-5-P, 5.9 +/- 0.6 nmol/g and 4.3 +/- 0.2 nmol/g; sedoheptulose-7-P, 41.5 +/- 2.4 and 37.6 +/- 2.9 nmol/g; and combined sedopheptulose-7-P and Rib-5-P, 43.0 +/- 2.8 nmol/g and 40.5 +/- 3.0 nmol/g; liver content of erythrose-4-P was less than the detection limits of the assay, 2 nmol/g. Calculated erythrose-4-P was 0.23 +/- 0.01 nmol/g. Liver content of 6-phosphogluconate was 8.5 +/- 0.7 nmol/g. The free cytosolic [NADP+]/[NADPH] ratio calculated from the 6-phosphogluconate dehydrogenase redox couple, 0.0030 +/- 0.0002, was also in good agreement with that calculated from the malic enzyme redox couple, 0.0051 +/- 0.0007, and the isocitrate dehydrogenase redox couple, 0.0066 +/- 0.0008. These data indicate the interdependence of the liver content of glycolytic intermediates and pentose cycle intermediates in ad libitum fed rats.  相似文献   

10.
The kinetic properties of placental glucose-6-phosphate dehydrogenase were studied, since this enzyme is expected to be an important component of the placental protection system. In this capacity it is also very important for the health of the fetus. The placental enzyme obeyed "Rapid Equilibrium Ordered Bi Bi" sequential kinetics with K(m) values of 40+/-8 microM for glucose-6-phosphate and 20+/-10 microM for NADP. Glucose-6-phosphate, 2-deoxyglucose-6-phosphate and galactose-6-phosphate were used with catalytic efficiencies (k(cat)/K(m)) of 7.4 x 10(6), 4.89 x 10(4) and 1.57 x 10(4) M(-1).s(-1), respectively. The K(m)app values for galactose-6-phosphate and for 2-deoxyglucose-6-phosphate were 10+/-2 and 0.87+/-0.06 mM. With galactose-6-phosphate as substrate, the same K(m) value for NADP as glucose-6-phosphate was obtained and it was independent of galactose-6-phosphate concentration. On the other hand, when 2-deoxyglucose-6-phosphate used as substrate, the K(m) for NADP decreased from 30+/-6 to 10+/-2 microM as the substrate concentration was increased from 0.3 to 1.5 mM. Deamino-NADP, but not NAD, was a coenzyme for placental glucose-6-phosphate dehydrogenase. The catalytic efficiencies of NADP and deamino-NADP (glucose-6-phosphate as substrate) were 1.48 x 10(7) and 4.80 x 10(6) M(-1)s(-1), respectively. With both coenzymes, a hyperbolic saturation and an inhibition above 300 microM coenzyme concentration, was observed. Human placental glucose-6-phosphate dehydrogenase was inhibited competitively by 2,3-diphosphoglycerate (K(i)=15+/-3 mM) and NADPH (K(i)=17.1+/-3.2 microM). The small dissociation constant for the G6PD:NADPH complex pointed to tight enzyme:NADPH binding and the important role of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

11.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase and pyruvate kinase of Candida utilis and baker's yeast, when in anionic form, were adsorbed on a cation exchanger, P-cellulose, due to affinities similar to those for the phosphoric groups of their respective substrates; thus, glucose-6-phosphate dehydrogenase was readily eluted by either NADP+ or NADPH, glutathione reductase by NADPH, 6-phosphogluconate dehydrogenase by 6-phosphogluconate, and pyruvate kinase by either ATP or ADP. This type of chromatography may be called "affinity-adsorption-elution chromatography"; the main principle is different from that of so-called affinity-elution chromatography. Based on these findings, a large-scale procedure suitable for successive purification of several enzymes having affinities for the phosphoric groups of their substrates was devised. As an example, glucose-6-phosphate dehydrogenase was highly purified from baker's yeast and crystallized.  相似文献   

12.
B-cells stimulated with glucose showed enhanced activities of NADP-isocitrate dehydrogenase, aconitase, ATP-citrate lyase and phosphoenolpyruvate carboxy-kinase, elevated cytosolic [NADPH]/[NADP+] ratio, and increased concentrations of glucose 6-phosphate, 6-phosphogluconate, citrate, phosphoenolpyruvate and cytosolic free Ca2+. Phosphoenolpyruvate induced release of Ca2+ accumulated in isolated mitochondria. Glucose is suggested to stimulate a cytosolic NADP-linked dismutation and synthesis of citrate, associated with increased cytosolic free Ca2+ concentration. Subsequent breakdown of cytosolic citrate may yield Pi (possibly related to the "phosphate flush") and phosphoenolpyruvate which potentiates the release of Ca2+ accumulated in the B-cell mitochondria.  相似文献   

13.
BACKGROUND/AIMS: The flavonoid silibinin has been reported to be beneficial in several hepatic disorders. Recent evidence also suggests that silibinin could be beneficial in the treatment of type 2 diabetes, owing to its anti-hyperglycemic properties. However, the mechanism(s) underlying these metabolic effects remains unknown. METHODS: The effects of silibinin on liver gluconeogenesis were studied by titrating hepatocytes from starved rats with sub-saturating concentrations of various exogenous substrates in a perifusion system. Hepatocytes from fed rats were also used to investigate glycogenolysis from endogenous glycogen. The effect of silibinin on glucose-6-phosphatase kinetics was determined in intact and permeabilized rat liver microsomes. RESULTS: Silibinin induced a dose-dependent inhibition of gluconeogenesis associated with a potent decrease in glucose-6-phosphate hydrolysis. This effect was demonstrated whatever the gluconeogenic substrates used, i.e. dihydroxyacetone, lactate/pyruvate, glycerol and fructose. In addition, silibinin decreased the glucagon-induced stimulation of both gluconeogenesis and glycogenolysis, this being associated with a reduction of glucose-6-phosphate hydrolysis. Silibinin inhibits glucose-6-phosphatase in rat liver microsomes in a concentration-dependent manner that could explain the decrease in glucose-6-phosphate hydrolysis seen in intact cells. CONCLUSION: The inhibitory effect of silibinin on both hepatic glucose-6-phosphatase and gluconeogenesis suggests that its use may be interesting in treatment of type 2 diabetes.  相似文献   

14.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is inactivated by trypsin, chymotrypsin, pronase E, thermolysin, 4.0 M urea, and by heating to 49 degrees C. It is protected, to varying degrees, against all these forms of inactivation by glucose 6-phosphate, NAD+, and NADP+. When these ligands are present at 10 times their respective KD concentrations, protection by NAD+ or glucose 6-phosphate is substantially greater than protection by NADP+. A detailed analysis was undertaken of the protective effects of these ligands, at varying concentrations, on proteolysis of glucose-6-phosphate dehydrogenase by thermolysin. This study confirmed the above conclusion and permitted calculation of KD values for NAD+, NADP+, and glucose 6-phosphate that agree with such values determined by independent means. For NADP+, two KD values, 6.1 microM and 8.0 mM, can be derived, associated with protection against thermolysin by low and high NADP+ concentrations, respectively. The former value is in agreement with other determinations of KD and the latter value appears to represent binding of NADP+ to a second site which causes inhibition of catalysis. A Ki value of 10.5 mM for NADP+ was derived from inhibition studies. The principal conclusion from these studies is that NAD+ binding to L. mesenteroides glucose-6-phosphate dehydrogenase results in a larger global conformational change of the enzyme than does NADP+ binding. Presumably, a substantially larger proportion of the free energy of binding of NAD+, compared to NADP+, is used to alter the enzyme's conformation, as reflected in a much higher KD value. This may play an important role in enabling this dual nucleotide-specific dehydrogenase to accommodate either NAD+ or NADP+ at the same binding site.  相似文献   

15.
An oxidative pathway of glucose-6-phosphate was found in the microsomal fraction of two extra-hepatic tissues: human placenta and pig kidney cortex. Oxidation activity in microsomes, measured by the formation of 14CO2 from [1-14C] glucose-6-phosphate, was observed only after Triton X-100 treatment and in the presence of methylene blue and NADP. Hexose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were present in a latent form and required treatment with detergent for full activation. Our results suggest that these enzymes are located in the luminal space of placental and kidney microsomes, and that, as in the liver, they generate NADPH on the inner side of the endoplasmic reticulum when G6P and NADP are available.  相似文献   

16.
As reported elsewhere (FERAUDI, 1976a & b), we have studied the mathematical relations between metabolite concentrations in the rat liver at various redox states and expressed them algebraically. In the present work we have measured the liver-cell concentrations of lactate, pyruvate, glycerol 3-phosphate, dihydroxyacetone phosphate, malate, oxaloacetate, beta-hydroxybutyrate, acetoacetate, 2-oxoglutarate, ribulose 5-phosphate as pentose phosphates, gluconate 6-phosphate, isocitrate, aspartate in untreated and treated rats (alloxan-diabetic, insulin-treated alloxan-diabetic or starved rats as well as rats fed on carbohydrate- or fat diet). Through analysis of the algebraic correlation between metabolite concentrations, we arrived at the following statements: 1. Under certain physiological conditions the concentration of some metabolites in one compartment determines their total quantity in the cell; 2. NADP and NADPH are comparted within the cytosol; 3. Reduced cosubstrate/oxidized cosubstrate ratios of some enzymic reactions are under certain physiological conditions in mutual equilibrium; 4. Such relationships are first verified after treatment and therefore characterize the metabolite status.  相似文献   

17.
The short term metabolic effects of the in vivo administration of platelet-derived growth factor have been examined in the liver of the rat. Meal-fed male Wistar rats weighing between 150-180 g received an intraperitoneal injection of platelet-derived growth factor (17 units/100 g weight), transforming growth factor-beta (185 ng/100 g weight), or saline. At 5 min after injection, the livers were freeze-clamped. Samples of the tissue were subsequently assayed for metabolite content and enzyme activities. Platelet-derived growth factor injection caused an elevation in the liver content of pyruvate from 0.14 +/- 0.012 to 0.19 +/- 0.009 mumol/g wet weight liver (p less than or equal to 0.01) and an increase in the cytosolic phosphorylation potential [sigma ATP]/[sigma ADP][sigma Pi] from 6670 +/- 540 to 8970 +/- 750 (p less than or equal to 0.01). In addition an increase in the hepatic content of the hexose monophosphate pathway metabolites, 6-phosphogluconate (0.027 +/- 0.004 to 0.037 +/- 0.005 mumol/g wet weight) (p less than or equal to 0.05), ribulose 5-phosphate (0.013 +/- 0.001 to 0.017 +/- 0.001 mumol/g wet weight) (p less than or equal to 0.05) and combined sedoheptulose 7-phosphate and ribose 5-phosphate (0.052 +/- 0.007 to 0.062 +/- 0.004 mumol/g wet weight) (p less than or equal to 0.05) was observed. The elevation in the hexose monophosphate pathway metabolites resulted from a 1.3-fold elevation in the activity of glucose-6-phosphate dehydrogenase [EC 1.1.1.49] when measured in a crude homogenate. Kinetic analysis performed on partially purified glucose-6-phosphate dehydrogenase demonstrated no significant change in the Km of the enzyme for either NADP+ or glucose 6-phosphate, while a 2.4-fold increase in the Vmax was observed. In view of the rapidity of the change in total measured enzyme activity and increase in the Vmax of glucose-6-phosphate dehydrogenase, it is postulated that platelet-derived growth factor causes a covalent modification of the existing enzyme. Transforming growth factor-beta caused no change in the hepatic metabolite content in the treated animals when compared to saline treated controls.  相似文献   

18.
The aim of this study was to examine: the 24 h variation of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase activities, key enzymes for the maintenance of intracellular NADPH concentration, in rat liver in control and streptozotocin-induced diabetic animals. Adult male rats were fed ad libitum and synchronized on a 12:12 h light-dark cycle (lights on 08:00 h). One group of animals was treated with streptozotocin (STZ, 55 mg/kg, intraperitoneal) to induce experimental diabetes. Eight weeks after STZ injection, the animals were sacrificed at six different times of day—1, 5, 9, 13, 17 and 21 Hours After Lights On (HALO)—and livers were obtained. Enzyme activities were determined spectrophotometrically in triplicate in liver homogenates and expressed as units per mg protein. 6-phosphogluconate dehydrogenase activity was measured by substituting 6-phosphogluconate as substrate. Glucose-6-phosphate dehydrogenase activity was determined by monitoring NADPH production. Treatment, circadian time, and interaction between treatment and circadian time factors were tested by either one or two way analysis of variance (ANOVA). Two-way ANOVA revealed that 6-phosphogluconate dehydrogenase activity significantly depended on both the treatment and time of sacrifice. 6-phosphogluconate dehydrogenase activity was higher in control than diabetic animals; whereas, glucose-6-phosphate dehydrogenase activity did not vary over the 24 h in animals made diabetic by STZ treatment. Circadian variation in the activity of 6-phosphogluconate dehydrogenase was also detected in both the control and STZ treatment groups (one-way ANOVA). Time-dependent variation in glucose-6-phosphate dehydrogenase activity during the 24 h was detected in control but not in diabetic rats. No significant interaction was detected between STZ-treatment and time of sacrifice for both hepatic enzyme activities. These results suggest that the activities of NADPH-generating enzymes exhibit 24 h variation, which is not influenced by diabetes.  相似文献   

19.
The activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) FROM SPINACH CHLOROPLASTS IS STRONGLY REGULATED BY THE RATIO OF NADPH/NADP+, with the extent of this regulation controlled by the concentration of ribulose 1,5-diphosphate. Other metabolites of the reductive pentose phosphate cycle are far less effective in mediating the regulation of the enzyme activity by NADPH/NADP+ ratio. With a ratio of NADPH/NADP+ of 2, and a concentration of ribulose 1,5-diphosphate of 0.6 mM, the activity of the enzyme is completely inhibited. This level of ribulose 1,5-diphosphate is well within the concentration range which has been reported for unicellular green algae photosynthesizing in vivo. Ratios of NADPH/NADP+ of 2.0 have been measured for isolated spinach chloroplasts in the light and under physiological conditions. Since ribulose 1,5-diphosphate is a metabolite unique to the reductive pentose phosphate cycle and inhibits glucose-6-phosphate dehydrogenase in the presence of NADPH/NADP+ ratios found in chloroplasts in the light, it is proposed that regulation of the oxidative pentose phosphate cycle is accomplished in vivo by the levels of ribulose 1,5-diphosphate, NADPH, and NADP+. It already has been shown that several key reactions of the reductive pentose phosphate cycle in chloroplasts are regulated by levels of NADPH/NADP+ or other electron-carrying cofactors, and at least one key-regulated step, the carboxylation reaction is strongly affected by 6-phosphogluconate, the metabolic unique to the oxidative pentose phosphate cycle. Thus there is an interesting inverse regulation system in chloroplasts, in which reduced/oxidized coenzymes provide a general regulatory mechanism. The reductive cycle is activated at high NADPH/NADP+ ratios where the oxidative cycle is inhibited, and ribulose 1,5-diphosphate and 6-phosphogluconate provide further control of the cycles, each regulating the cycle in which it is not a metabolite.  相似文献   

20.
The kinetic mechanism of the reaction catalyzed by glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from Dicentrarchus labrax liver was examined using initial velocity studies, NADPH and glucosamine 6-phosphate inhibition and alternate coenzyme experiments. The results are consistent with a steady-state ordered sequential mechanism in which NADP+ binds first to the enzyme and NADPH is released last. Replots of NADPH inhibition show an uncommon parabolic pattern for this enzyme that has not been previously described. A kinetic model is proposed in agreement with our kinetic results and with previously published structural studies (Bautista et al. (1988) Biochem. Soc. Trans. 16, 903-904). The kinetic mechanism presented provides a possible explanation for the regulation of the enzyme by the [NADPH]/[NADP+] ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号