首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Short chain fatty acids (SCFA), principally butyrate, propionate, and acetate, are produced in the gut through the fermentation of dietary fiber by the colonic microbiotica. Butyrate in particular is the preferred energy source for the cells in the colonic mucosa and has been demonstrated to induce apoptosis in colorectal cancer cell lines. We have used proteomics, specifically 2D-DIGE and mass spectrometry, to identify proteins involved in butyrate-induced apoptosis in HCT116 cells and also to identify proteins involved in the development of butyrate insensitivity in its derivative, the HCT116-BR cells. The HCT116-BR cell line was characterized as being less responsive to the apoptotic effects of butyrate in comparison to its parent cell line. Our analysis has revealed that butyrate likely induces a cellular stress response in HCT116 cells characterized by p38 MAPK activation and an endoplasmic reticulum (ER) stress response, resulting in caspase 3/7 activation and cell death. Adaptive cellular responses to stress-induced apoptosis in HCT116-BR cells may be responsible for the development of resistance to apoptosis in this cell line. We also report for the first time additional cellular processes altered by butyrate, such as heme biosynthesis and dysregulated expression of nuclear lamina proteins, which may be involved in the apoptotic response observed in these cell lines.  相似文献   

3.
Tumour necrosis factor-alpha (TNF-alpha)-induced intestinal epithelial cell apoptosis may contribute to mucosal injury in inflammatory bowel disease. Inhibition of TNF-alpha-induced apoptosis, using specific caspase inhibitors could, therefore, be of benefit in the treatment of disease. In vitro, CaCo-2 colonic epithelial cells are refractory to apoptosis induced by TNF-alpha alone; however, TNF-alpha can act synergistically with the short-chain fatty acid (SCFA) and colonic fermentation product, butyrate, to promote apoptosis. TNF-alpha/butyrate-induced apoptosis was characterised by nuclear condensation and fragmentation and caspase-3 activation. Inhibitors of caspase-8 (z-IETD.fmk) and caspase-10 (z-AEVD.fmk) significantly reduced TNF-alpha/butyrate-induced apoptosis, based on nuclear morphology and terminal deoxynucleotide transferase-mediated dUTP-biotin nick-end labelling (TUNEL), although caspase inhibition was associated with a significant increase in cells demonstrating atypical nuclear condensation. Inclusion of atypical cells in calculations of total cell death, still demonstrated that z-IETD.fmk and z-AEVD.fmk (in combination) significantly reduced cell death. Reduction in cell death was associated with maintenance of viable cell number. Transmembrane resistance was also used a measure of the ability of caspase inhibitors to prevent TNF-alpha/butyrate-mediated damage to epithelial monolayers. TNF-alpha/butyrate resulted in a significant fall in transmembrane resistance, which was prevented by pre-treatment with z-IETD.fmk, but not z-AEVD.fmk. In conclusion, synthetic caspase inhibitors can reduce the apoptotic response of CaCo-2 colonic epithelial cells to TNF-alpha/butyrate, improve the maintenance of viable cell numbers and block loss of transmembrane resistance. We hypothesise that caspase inhibition could be a useful therapeutic goal in the treatment of inflammatory bowel conditions, such as ulcerative colitis.  相似文献   

4.

Background

Tumor cells become addicted to both activated oncogenes and to proliferative and pro-survival signals provided by the abnormal tumor microenvironment. Although numerous soluble factors have been identified that shape the crosstalk between tumor cells and stroma, it has not been established how oncogenic mutations in the tumor cells alter their interaction with normal cells in the tumor microenvironment.

Principal Findings

We showed that the isogenic HCT116 and Hke-3 cells, which differ only by the presence of the mutant kRas allele, both stimulate macrophages to produce IL1β. In turn, macrophages enhanced Wnt signaling, proliferation and survival in both HCT116 and Hke-3 cells, demonstrating that signaling by oncogenic kRas in tumor cells does not impact their interaction with macrophages. HCT116 cells are heterozygous for β-catenin (HCT116WT/MT), harboring one wild type (WT) and one mutant (MT) allele, but isogenic lines that carry only the WT (HCT116WT) or MT β-catenin allele (HCT116MT) have been generated. We showed that macrophages promoted Wnt signaling in cells that carry the MT β-catenin allele, but not in HCT116WT cells. Consistent with this observation, macrophages and IL1β failed to stabilize Snail in HCT116WT cells, and to protect these cells from TRAIL-induced apoptosis. Finally, we demonstrated that HCT116 cells expressing dominant negative TCF4 (dnTCF4) or HCT116 cells with silenced Snail failed to stimulate IL1β production in macrophages, demonstrating that tumor cells activate macrophages via a Wnt-dependent factor.

Significance

Our data demonstrate that oncogenic β-catenin mutations in tumor cells, and subsequent activation of Wnt signaling, not only trigger cell-intrinsic alterations, but also have a significant impact on the crosstalk of tumor cells with the tumor associated macrophages.  相似文献   

5.
Short-chain fatty acids play a critical role in colonic homeostasis because they stimulate pathways of growth arrest, differentiation, and apoptosis. These effects have been well characterized in colonic cell lines in vitro. We investigated the role of beta-catenin-Tcf signaling in these responses to butyrate and other well-characterized inducers of apoptosis of colonic epithelial cells. Unlike wild-type APC, which down-regulates Tcf activity, butyrate, as well as sulindac and trichostatin A, all inducers of G0-G1 cell cycle arrest and apoptosis in the SW620 colonic carcinoma cell line, up-regulate Tcf activity. In contrast, structural analogues of butyrate that do not induce cell cycle arrest or apoptosis and curcumin, which stimulates G2-M arrest without inducing apoptosis, do not alter Tcf activity. Similar to the cell cycle arrest and apoptotic cascade induced by butyrate, the up-regulation of Tcf activity is dependent upon the presence of a mitochondrial membrane potential, unlike the APC-induced down-regulation, which is insensitive to collapse of the mitochondrial membrane potential. Moreover, the butyrate-induced increase in Tcf activity, which is reflected in an increase in beta-catenin-Tcf complex formation, is independent of the down-regulation caused by expression of wild-type APC. Thus, butyrate and wild-type APC have different and independent effects on beta-catenin-Tcf signaling. These data are consistent with other reports that suggest that the absence of wild-type APC, associated with the up-regulation of this signaling pathway, is linked to the probability of a colonic epithelial cell entering an apoptotic cascade.  相似文献   

6.
Expression and release of IL-18 binding protein in response to IFN-gamma.   总被引:6,自引:0,他引:6  
IL-18 and IL-18 binding protein (IL-18BP) are two newly described opponents in the cytokine network. Local concentrations of these two players may determine biological functions of IL-18 in the context of inflammation, infection, and cancer. As IL-18 appears to be involved in the pathogenesis of Crohn's disease and may modulate tumor growth, we investigated the IL-18/IL-18BPa system in the human colon carcinoma/epithelial cell line DLD-1. In this study, we report that IFN-gamma induces expression and release of IL-18BPa from DLD-1 cells. mRNA induction and secretion of IL-18BPa immunoreactivity were associated with an activity that significantly impaired release of IFN-gamma by IL-12/IL-18-stimulated PBMC. Inducibility of IL-18BPa by IFN-gamma was also observed in LoVo, Caco-2, and HCT116 human colon carcinoma cell lines and in the human keratinocyte cell line HaCaT. Induction of IL-18BPa in colon carcinoma/epithelial cell lines was suppressed by coincubation with sodium butyrate. IFN-gamma-mediated IL-18BPa and its suppression by sodium butyrate were confirmed in organ cultures of intestinal colonic biopsy specimens. In contrast, sodium butyrate did not modulate expression of IL-18. The present data suggest that IFN-gamma may limit biological functions of IL-18 at sites of colonic immune activation by inducing IL-18BPa production. Down-regulation of IL-18BPa by sodium butyrate suggests that reinforcement of local IL-18 activity may contribute to actions of this short-chain fatty acid in the colonic microenvironment.  相似文献   

7.
Treatment of cells with the anti-cancer drug camptothecin (CPT) induces topoisomerase I (Top1)-mediated DNA damage, which in turn affects cell proliferation and survival. In this report, we demonstrate that treatment of the wild-type HCT116 (wt HCT116) human colon cancer cell line and the isogenic p53(-/-) HCT116 and p21(-/-) HCT116 cell lines with a high concentration (250 nm) of CPT resulted in apoptosis, indicating that apoptosis occurred by a p53- and p21-independent mechanism. In contrast, treatment with a low concentration (20 nm) of CPT induced cell cycle arrest and senescence of the wt HCT116 cells, but apoptosis of the p53(-/-) HCT116 and p21(-/-) HCT116 cells. Further investigations indicated that p53-dependent expression of p21 blocked apoptosis of wt HCT116 cells treated with 20 nm, but not 250 nm CPT. Interestingly, blocking of the apoptotic pathway, by Z-VAD-FMK, in p21(-/-) HCT116 cells following treatment with 20 nm CPT did not permit the cells to develop properties of senescence. These observations demonstrated that p21 was required for senescence development of HCT116 cells following treatment with low concentrations of CPT.  相似文献   

8.
9.
Caco-2 cells differentiate spontaneously when cultured in confluence and on exposure to the physiologically relevant short-chain fatty acid, butyrate. This study aimed to compare the phenotype induced by these pathways and their relations to cell turnover. Caco-2 cells were treated with butyrate at a nontoxic concentration of 2 mM for 3 days, or allowed to spontaneously differentiate for 0-21 days. Brush border hydrolase activities and carcinoembryonic antigen (CEA) expression, transepithelial resistance and dome formation, expression of components of the urokinase system, and cell turnover by flow cytometry, and the degree of DNA fragmentation were quantified. Butyrate induced increases in alkaline phosphatase activity and CEA expression but not the activities of other hydrolases, while culture alone induced progressive increases in the activities/expression of all markers. Butyrate induced a significantly greater increase in transepithelial resistance (TER) than occurred during culture alone but the densities of domes were similar. Butyrate induced a ninefold increase in urokinase receptor expression and twofold increase in urokinase activity, while culture alone induced a significantly smaller increase in receptor expression, an increase in plasminogen activator inhibitor-1 but no change in activity. While both stimuli induced cell cycle arrest, only butyrate increased the proportion of cells undergoing apoptosis. In conclusion, differentiation of Caco-2 cells can proceed along multiple pathways but does not necessarily lead to apoptosis. The phenotypic changes during spontaneous differentiation mimic those that occur in normal colonic epithelial cells in vivo during their migration from the crypt base to neck, while butyrate-induced effects more closely follow those occurring when normal colonic epithelial cells migrate from crypt neck to the surface compartment.  相似文献   

10.
The aim of this study was to evaluate the participation of the Jak-1 and STAT-1 proteins in sodium butyrate-induced apoptosis in 2C4 cells derived from human fibrosarcoma. Making use of Jak-1 or STAT-1 deficient cell lines, we demonstrated that the apoptotic process induced by butyrate is independent of the presence of these proteins. In addition, this work showed that, although the constitutive expression of pro-caspases-2 and -3 is reduced in STAT-1 cells, the activity of caspase-3 is preserved in both Jak-1 and STAT-1 deficient cells and is similar to that seen in 2C4 parental cells. In conclusion, we demonstrated that the absence of functionally active Jak-1 or STAT-1 protein directly affects the TNF-alpha-induced apoptosis, but does not alter the sodium butyrate-induced apoptosis in cells derived from human fibrosarcoma.  相似文献   

11.
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.  相似文献   

12.
Activating mutations of the RAS family of small GTPases are among the most common genetic events in human tumorigenesis. Constitutive activation of the three canonical family members, KRAS, NRAS, and HRAS segregate strongly by tissue type. Of these, KRAS mutations predominate in human tumors, including those arising from the colon and lung. We sought to compare the oncogenic contributions of different RAS isoforms in a comparable genetic setting and to explore downstream molecular changes that may explain the apparent differential oncogenic effects of the various RAS family members. We utilized colorectal cancer cell lines characterized by oncogenic KRAS in parallel with isogenically derived lines in which the mutant allele has been disrupted. We additionally attempted to reconstitute the isogenic derivatives with oncogenic forms of other RAS family members and analyze them in parallel. Pairwise analysis of HCT 116 and DLD-1 cell lines as well as their isogenic derivatives reveals distinct K-RAS(G13D) signatures despite the genetic similarities of these cell lines. In DLD-1, for example, oncogenic K-RAS enhances the motility of these cells by downregulation of Rap1 activity, yet is not associated with increased ERK1/2 phosphorylation. In HCT 116, however, ERK1/2 phosphorylation is elevated relative to the isogenic derivative, but Rap1 activity is unchanged. K-RAS is uniquely oncogenic in the colonic epithelium, though the molecular aspects of its oncogenic contribution are not necessarily conserved across cell lines. We therefore conclude that the oncogenic contribution of K-RAS is a function of its multifaceted functionality and is highly context-dependent.  相似文献   

13.
Small synthetic compounds have been implicated in treatment of human cancers. We have synthesized a small compound, BPR1K0609S1 (hereafter, BP), which inhibits Aurora-A kinase. In the present study, we studied the mechanism of BP suppression of tumorigenesis induced by Aurora-A. Given our previous results that inactivation of p53 accelerates MMTV-Aurora-A-mediated tumorigenesis in vivo, we studied the roles of p53 pathway using the isogenic human colon carcinoma cell lines of HCT116, in which p53, Puma, Bax, p21 or Chk2 is deleted. When these isogenic cell lines are treated with BP for 48 h, accumulation of G2M phase and aneuploidy are commonly observed, and HCT116 p21(-) cells show increase in apoptosis. In xenograft assay, s.c. injection of BP efficiently inhibits tumorigenesis of HCT116 deficient for Chk2 or p21. Re-transplantation of BP-resistant tumors indicates that these resistant cells do not acquire advanced tumor growth. Significantly, 5-FU (5-fluorouracil) treatment further induces apoptosis of BP-resistant HCT116 deficient for Chk2 or Puma. These results demonstrate that p21 deficiency enhances BP-mediated suppression of tumor growth, and that BP and 5-FU can collaborate for tumor regression.  相似文献   

14.
The emergence of resistance to cisplatin is a serious drawback of cancer therapy. To help elucidate the molecular basis of this resistance, we examined matched ovarian cancer cell lines that differ in their DNA mismatch repair (MMR) status and the response to cisplatin. Checkpoint activation by cisplatin was identical in both lines. However, sensitive cells delayed S-phase transition, arrested at G2/M and died by apoptosis. The G2/M block was characterized by selective disappearance of homologous recombination (HR) proteins, which likely resulted in incomplete repair of the cisplatin adducts. In contrast, resistant cells transiently arrested at G2/M, maintained constant levels of HR proteins and ultimately resumed cell cycle progression. The net contribution of MMR to the cisplatin response was examined using matched semi-isogenic (HCT116±chr3) or strictly isogenic (293T-Lα-/+) cell lines. Delayed transition through S-phase in response to cisplatin was also observed in the MMR-proficient HCT116+chr3 cells. Unlike in the ovarian cell lines, however, both HCT116+chr3 and HCT116 permanently arrested at G2/M with an intact complement of HR proteins and died by apoptosis. A similar G2/M arrest was observed in the strictly isogenic 293T-Lα-/+ cells. This confirmed that although MMR undoubtedly contributes towards the cytotoxicity of cisplatin, it is only one of several pathways that modulate the cellular response to this drug. However, our data highlighted the importance of HR to cisplatin cytotoxicity and suggested that HR status might represent a novel prognostic marker and possibly also a therapeutic target, the inhibition of which would substantially sensitize cells to cisplatin chemotherapy.  相似文献   

15.
Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell's sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.  相似文献   

16.
To produce erythropoietin (EPO), Chinese hamster ovary (CHO) cells were first cultured in a medium containing FBS (growth medium) and then in a serum-free medium containing sodium butyrate (production medium). Sodium butyrate increases recombinant protein production, but also induces apoptosis, which reduces cell viability and productivity. In a previous study, we found that silkworm hemolymph (SH), an insect serum, inhibits the apoptosis of insect and mammalian cells. To overcome sodium butyrate-induced apoptosis, we added SH to growth medium. This pretreatment with SH inhibited the sodium butyrate-induced apoptosis of CHO cells and consequently increased their longevity and their ability to produce EPO. As a result, the volumetric productivity of EPO was increased five-fold. SH was found to inhibit cytochrome c release from mitochondria into the cytosol, and prevented the activation of caspase-3 and other subsequent caspase reactions.  相似文献   

17.
The antiapoptotic role of pregnane X receptor in human colon cancer cells   总被引:1,自引:0,他引:1  
The orphan nuclear receptor pregnane X receptor (PXR) plays an important role in the detoxification of foreign and endogenous chemicals, including bile acids. PXR promotes bile acid elimination by activating bile acid-detoxifying enzymes and transporters. Certain bile acids are known to promote colonic carcinogenesis by inducing colon cancer cell apoptosis. However, whether and how PXR plays a role in colon cancer apoptosis has not been reported. In this study, we showed that activation of PXR by genetic (using a constitutively activated PXR) or pharmacological (using PXR agonist rifampicin) means protected the PXR-overexpressing colon cancer HCT116 cells from deoxycholic acid-induced apoptosis. Interestingly, activation of PXR also protected HCT116 cells from adriamycin-induced cell death, suggesting that the antiapoptotic effect of PXR was not bile acid specific. Moreover, the antiapoptotic effect of PXR in HCT116 cells appeared to be independent of xenobiotic enzyme regulation, because these cells had little basal and inducible expression of bile acid-detoxifying enzymes. Instead, SuperArray analysis showed that PXR-mediated deoxycholic acid resistance was associated with up-regulation of multiple antiapoptotic genes, including BAG3, BIRC2, and MCL-1, and down-regulation of proapoptotic genes, such as BAK1 and TP53/p53. Treatment with rifampicin in colon cancer LS180 cells, a cell line known to express endogenous PXR, also inhibited apoptosis. Activation of PXR in transgenic mice inhibited bile acid-induced colonic epithelial apoptosis and sensitized mice to dimethylhydrazine-induced colonic carcinogenesis, suggesting that the antiapoptotic effect of PXR is conserved in normal colon epithelium. In summary, our results have established the antiapoptotic role of PXR in both human colon cancer cells and normal mouse colon epithelium.  相似文献   

18.
Butyric acid and sphingomyelin (SM) affect colonic tumorigenesis. We examined the potential link between butyrate stimulation and SM metabolism in colonic and hepatic cancer cell lines. After incubating HT29 and HepG2 cells with butyrate and other short-chain fatty acids, we found that butyrate increased acid but not neutral or alkaline sphingomyelinase (SMase) activity by 10- to 20-fold. The effects occurred after 16 h of incubation and were associated with reduced SM and phosphatidylcholine contents and increased ceramide levels. Northern blotting showed increased acid SMase mRNA levels in these cells after butyrate stimulation. Propionate was less potent, and acetate had no effect. No similar changes of acid phosphatase could be identified. At concentrations that increased acid SMase expression, butyrate inhibited cell proliferation, activated caspase 3, and induced apoptosis. However, the antiproliferative and apoptotic effects of butyrate preceded the changes of acid SMase and were not affected by knocking down acid SMase expression by small, interfering RNA. In addition, butyrate-induced acid SMase expression was not affected by blocking the caspase pathway. In conclusion, butyrate regulates SM metabolism by stimulating acid SMase expression in colon and liver cancer cells, but the increased acid SMase is not a critical mechanism for initiating the anticancer effects of butyrate.  相似文献   

19.
Activin A has been reported to play a role in the progression of colorectal cancer. Because dietary fiber protects against colorectal cancer, we hypothesized that butyrate, a fermentation product of dietary fiber, may affect the expression of activin A in colon cancer cells. Semiquantitative RT-PCR demonstrated that the activin A gene was upregulated by sodium butyrate in the human colon cancer cell lines HT-29 and Caco-2 in a concentration- and time-dependent manner. However, the activin A gene did not respond to sodium butyrate in the human normal colonic cell line FHC, rat normal intestinal epithelial cell (IEC) line IEC-6, and the explant of rat colon. Flow cytometry and agarose gel electrophoresis of genomic DNA revealed that cell cycle arrest and apoptosis were induced by sodium butyrate but not exogenous activin A in HT-29 cells, indicating that activin A could not act as an autocrine factor in colon cancer cells. By assuming that activin A promotes colorectal cancer spread as a paracrine factor, our findings suggest that butyrate could act as a tumor promoter in some circumstances.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号