首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
Heat shock exposure to NIH3T3 cells for 15 min at 45 degrees C activated Akt, which is mediated by PI3-kinase, as evidenced by the significant inhibition of heat-shock-induced phosphorylation by specific inhibitors of PI3-kinase. The phosphorylated Akt was gradually decreased to the basal level within 9 h after heat shock. This resulted in growth arrest, but cell growth could be recovered within 24 h accompanied with a high rate of proliferation. However, heat shock for 60 min failed to activate Akt, resulting in apoptosis. The recovery of cell growth after heat-shock-inducing activation of Akt was completely blocked by wortmannin. Moreover, overexpression of a dominant-negative Akt mutant significantly inhibited the apoptosis-suppressive effect of heat shock, indicating the direct involvement of heat-shock-induced Akt activation in the apoptosis suppression. The results indicate that a signal transduction pathway, namely, PI3-kinase/Akt, may contribute to an apoptosis-suppressive function after heat shock in NIH3T3 cells.  相似文献   

2.
3.
The activation of MAPKAP kinase 2 was investigated under heat-shock conditions in mouse Ehrlich ascites tumor cells and after treatment of human MO7 cells with tumor necrosis factor-α (TNF-α). MAPKAP kinase 2 activity was determined using the small heat-shock proteins (sHsps) Hsp25 and Hsp27 as substrates. In both cell types, about a threefold increase in MAPKAP kinase 2 activity could be detected in a time interval of about 10–15 min after stimulation either by heat shock or TNF-α. Phosphorylation of MAPKAP kinase 2, but not the level of MAPKAP kinase 2 mRNA, was increased after heat shock in EAT cells. It is further shown that activation of MAPKAP kinase 2 in MO7 cells is accompanied by increased MAP kinase activity. These data strongly suggest that increased phosphorylation of the sHsps after heat shock or TNF-α treatment results from phosphorylation by MAPKAP kinase 2, which itself is activated by phosphorylation through MAP kinases. Hence, we demonstrate that MAPKAP kinase 2 is responsible not only for phosphorylation of sHsps in vitro but also in vivo. The findings link sHsp phosphorylation to the MAP kinase cascade, explaining the early phosphorylation of sHsp that is stimulated by a variety of inducers such as mitogens, phorbol esters, thrombin, calcium ionophores, and heat shock.  相似文献   

4.
Insulin-like growth factor (IGF-I) has been implicated as a thermoprotective molecule for the preimplantation bovine embryo. Here, it was shown that effects of heat shock (41 degrees C for 15 hr) on induction of apoptosis and reduction in cell number in bovine embryos collected at Day 5 after fertilization were blocked by addition of 100 ng/ml IGF-I at the initiation of heat shock. This action of IGF-I to block heat shock-induced apoptosis was eliminated if embryos were cultured with either a phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin) or an Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-o-methyl-3-o-octadecylcarbonate). Immunofluorescence microscopy confirmed the expression of phosphorylated Akt for IGF-I and control embryos. Immunoblotting using an antibody to Akt (phospho S473) indicated increased phosphorylation of Akt in IGF-I-treated embryos. In conclusion, short-term treatment of embryos with IGF-I can block induction of apoptosis caused by heat shock through signaling events requiring PI3K and Akt.  相似文献   

5.
Heat shock (44 degrees C) applied for only 15 min induced the development of neurites in neuroblastoma cells 3-6 days later. During the first day after heat shock a transient increase in the rate of cytokinesis together with a synchronizing effect was observed, which led to waves of cytokinesis 14.5 h apart. Individual cell cycles were determined and showed a lengthening in the minimal cell cycle duration and a decrease in the cell cycle variance after shock. Two to 3 days after heat shock the proliferation rate decreased and then recovered. During the 6 days after heat shock, total protein synthesis was lower compared to the untreated cultures. The synthesis of heat shock proteins (100, 90, 84, 70, 68 kDa and some of lower MW) reached a maximum 6 h after heat shock. Parallel changes in the phosphorylation state of proteins were observed in an in vitro assay. Four proteins (100, 89, 67, and 15 kDa) increased and two proteins (97, 73 kDa) decreased their phosphorylation state significantly. Six days after heat shock two proteins (89, 55 kDa) increased their phosphorylation state; the 55-kDa phosphoprotein was identified as tubulin. The effect of heat shock on the intracellular calcium level was determined by measuring Fura 2 fluorescence. Six hours after shock, the Ca2+ level increased to a maximum (about three times the control value) and then dropped during the following days below the control values. We conclude from these results that a decrease in the calcium level may be causally involved in the differentiation process. The calcium effect is probably mediated by changes in the activity of different kinases. This assumption is compatible with the results of experiments with cyclic nucleotides when 10(-5) M cAMP and cGMP were added to in vitro assays of protein phosphorylation. They had different stimulating effects in heat-shocked, differentiating, and growing (control) cells.  相似文献   

6.
We have investigated the role of stress-activated signaling pathways and the small heat shock protein, Hsp27, in protecting PC12 cells from heat shock and nerve growth factor (NGF) withdrawal-induced apoptosis. PC12 cells and a stable cell line overexpressing Hsp27 (HSPC cells) were subjected to heat shock. This resulted in the rapid activation of Akt followed by p38 mitogen-activated protein kinase (MAPK) signaling, with phosphorylation and intracellular translocation of Hsp27 also detectable. Hsp27 was found to form an immunoprecipitable complex with Akt and p38 MAPK in both non-stimulated and heat shocked cells, although after heat shock there was a gradual dissociation of Akt and p38 from the Hsp27. Cells were differentiated with NGF and then subjected to NGF withdrawal, a treatment which results in substantial cell death over 24-72 h. Hsp27 was shown to be protective against this treatment, since HSPC cells which overexpress Hsp27 showed significantly less cell death than the parental PC12 cells. In addition, we observed that phosphorylation of Akt was maintained in HSPC cells subjected to heat shock and NGF withdrawal compared with the parental cells. Taken together, our results suggest that Hsp27 may protect Akt from dephosphorylation and may also act in stabilizing Akt.  相似文献   

7.
The 90-kDa heat shock protein (Hsp90) plays an important role in endothelial nitric-oxide synthase (eNOS) regulation. Besides acting as an allosteric enhancer, Hsp90 was shown to serve as a module recruiting Akt to phosphorylate the serine 1179/1177 (bovine/human) residue of eNOS. Akt is activated by the phosphorylation of 3-phosphoinositide-dependent kinase 1 (PDK1). Whether PDK1 is involved in the actions of Hsp90 on eNOS phosphorylation and function remains unknown. To address this issue, we treated bovine eNOS stably transfected human embryonic kidney 293 cells with Hsp90 inhibitors and determined the alterations of phospho-eNOS, Akt, and PDK1. Both geldanamycin and radicicol, two structurally different Hsp90 inhibitors, selectively reduced serine 1179-phosphorylated eNOS, leading to decreased enzyme activity. In Hsp90-inhibited cells, eNOS-associated phospho-Akt was decreased, but the total amount of Akt associated with eNOS remained the same. Further studies showed that Hsp90 inhibition dramatically depleted intracellular PDK1. Proteasome but not caspase blockade prevented the loss of PDK1 caused by Hsp90 inhibition. Silencing the PDK1 gene by small interfering RNA was sufficient to induce reduction of phospho-Akt and consequent loss of serine 1179-phosphorylated eNOS. Moreover, overexpression of PDK1, but not Akt, reversed Hsp90 inhibition-induced loss of eNOS serine 1179 phosphorylation and salvaged enzymatic activity. Thus, in addition to functioning as a module to recruit Akt to eNOS, Hsp90 also critically stabilized PDK1 by preventing it from proteasomal degradation. Inhibition of Hsp90 function resulted in PDK1 depletion and thus triggered a cascade of Akt deactivation, loss of eNOS serine 1179 phosphorylation, and decrease of enzyme function.  相似文献   

8.
Phosphatidylinositol 3-kinase (PI3-kinase) activates protein kinase B (also known as Akt), which phosphorylates and activates a cyclic nucleotide phosphodiesterase 3B. Increases in cyclic nucleotide concentrations inhibit agonist-induced contraction of vascular smooth muscle. Thus we hypothesized that the PI3-kinase/Akt pathway may regulate vascular smooth muscle tone. In unstimulated, intact bovine carotid artery smooth muscle, the basal phosphorylation of Akt was higher than that in cultured smooth muscle cells. The phosphorylation of Akt decreases in a time-dependent manner when incubated with the PI3-kinase inhibitor, LY-294002. Agonist (serotonin)-, phorbol ester (phorbol 12,13-dibutyrate; PDBu)-, and depolarization (KCl)-induced contractions of vascular smooth muscles were all inhibited in a dose-dependent fashion by LY-294002. However, LY-294002 did not inhibit serotonin- or PDBu-induced increases in myosin light chain phosphorylation or total O(2) consumption, suggesting that inhibition of contraction was not mediated by reversal or inhibition of the pathways that lead to smooth muscle activation and contraction. Treatment of vascular smooth muscle with LY-294002 increased the activity of cAMP-dependent protein kinase and increased the phosphorylation of the cAMP-dependent protein kinase substrate heat shock protein 20 (HSP20). These data suggest that activation of the PI3-kinase/Akt pathway in unstimulated smooth muscle may modulate vascular smooth muscle tone (allow agonist-induced contraction) through inhibition of the cyclic nucleotide/HSP20 pathway and suggest that cyclic nucleotide-dependent inhibition of contraction is dissociated from the myosin light chain contractile regulatory pathways.  相似文献   

9.
Heat shock protein 27 controls apoptosis by regulating Akt activation   总被引:16,自引:0,他引:16  
Activation of the serine-threonine kinase Akt by cytokines, chemokines, and bacterial products delays constitutive neutrophil apoptosis, resulting in a prolonged inflammatory response. We showed previously that Akt exists in a signaling complex with p38 MAPK, MAPK-activated protein kinase-2 (MAPKAPK-2), and heat shock protein-27 (Hsp27); and Hsp27 dissociates from the complex upon neutrophil activation. To better understand the regulation of this signaling module, the hypothesis that Akt phosphorylation of Hsp27 regulates its interaction with Akt was tested. The present study shows that Akt phosphorylated Hsp27 on Ser-82 in vitro and in intact cells, and phosphorylation of Hsp27 resulted in its dissociation from Akt. Additionally, the interaction between Hsp27 and Akt was necessary for activation of Akt in intact neutrophils. Constitutive neutrophil apoptosis was accelerated by sequestration of Hsp27 from Akt, and this enhanced rate of apoptosis was reversed by introduction of constitutively active recombinant Akt. Our results define a new mechanism by which Hsp27 regulates apoptosis, through control of Akt activity.  相似文献   

10.
11.
In the pulmonary artery isolated from 1-week hypoxia-induced pulmonary hypertensive rats, endothelial NO production stimulated by carbachol was decreased significantly in in situ visualization using diaminofluorescein-2 diacetate and also in cGMP content. This change was followed by the decrease in carbachol-induced endothelium-dependent relaxation. Protein expression of endothelial NO synthase (eNOS) and its regulatory proteins, caveolin-1 and heat shock protein 90, did not change in the hypoxic pulmonary artery, indicating that chronic hypoxia impairs eNOS activity at posttranslational level. In the hypoxic pulmonary artery, the increase in intracellular Ca(2+) level stimulated by carbachol but not by ionomycin was reduced. We next focused on changes in Ca(2+) sensitivity of the eNOS activation system. A morphological study revealed atrophy of endothelial cells and a peripheral condensation of eNOS in hypoxic endothelial cells preserving co-localization between eNOS and Golgi or plasma membranes. However, eNOS was tightly coupled with caveolin-1, and was dissociated from heat shock protein 90 or calmodulin in the hypoxic pulmonary artery in either the presence or absence of carbachol. Furthermore, eNOS Ser(1177) phosphorylation in both conditions significantly decreased without affecting Akt phosphorylation in the hypoxic artery. In conclusion, chronic hypoxia impairs endothelial Ca(2+) metabolism and normal coupling between eNOS and caveolin-1 resulted in eNOS inactivity.  相似文献   

12.
We previously reported that p38 mitogen-activated protein (MAP) kinase takes a part in arginine vasopressin (AVP)-induced heat shock protein 27 (HSP27) phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the phosphorylation of HSP27 in these cells. AVP time-dependently induced the phosphorylation of PI3K and Akt. Akt inhibitor, 1l-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, partially suppressed the phosphorylation of HSP27. The AVP-induced HSP27 phosphorylation was attenuated by LY294002, a PI3K inhibitor. The combination of Akt inhibitor and SB203580, a p38 MAP kinase inhibitor, completely suppressed the AVP-induced phosphorylation of HSP27. Furthermore, LY294002 or Akt inhibitor did not affect the AVP-induced phosphorylation of p38 MAP kinase and SB203580 did not affect the phosphorylation of PI3K or Akt. These results suggest that PI3K/Akt plays a part in the AVP-induced phosphorylation of HSP27, maybe independently of p38 MAP kinase, in aortic smooth muscle A10 cells.  相似文献   

13.
We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria.  相似文献   

14.
15.
Hamartin and tuberin interact directly to regulate cell growth negatively. In this study, far-western blotting revealed that hamartin binds directly Heat shock protein 70 (Hsp70), even in the absence of tuberin. While the hamartin-tuberin complex acts as a sensor for a variety of types of stress, it is unclear how the complex is regulated under stress conditions. We found that the hamartin-Hsp70 interaction is stabilized during heat shock. On the other hand, tuberin underwent degradation through phosphorylation in an Akt-dependent manner. Furthermore, we found that when Hsp70 expression was inhibited by N-formyl-3,4-methylenedioxy-benzylidene-γ-butyrolactam (KNK437), Akt phosphorylation on site Ser308 diminished and tuberin was not phosphorylated at Thr1462 during heat shock. We conclude that both hamartin and Hsp70 increase in response to heat shock, whereas tuberin is phosphorylated and thereafter degraded via the PI3K/Akt pathway. Through this pathway, hamartin-Hsp70 plays a crucial role as a scaffolding protein that transfers the Akt signal to tuberin.  相似文献   

16.
Heat shock of mammalian cells causes protein damage and activates a number of signaling pathways. Some of these pathways enhance the ability of cells to survive heat shock, e.g., induction of molecular chaperones [heat shock protein (HSP) HSP72 and HSP27], activation of the protein kinases extracellular signal-regulated kinase and Akt, and phosphorylation of HSP27. On the other hand, heat shock can activate a stress kinase, c-Jun NH2-terminal kinase, thus triggering both apoptotic and nonapoptotic cell death programs. Recent data indicate that kinases activated by heat shock can regulate synthesis and functioning of the molecular chaperones, and these chaperones modulate activity of the cell death and survival pathways. Therefore, the overall balance of the pathways and their interplay determine whether a cell exposed to heat shock will die or survive and become stress tolerant.  相似文献   

17.
A heat stress causes a rapid inhibition of splicing. Exogenous expression of Hsp27 did not prevent that inhibition but enhanced the recovery of splicing afterward. Another small heat shock protein, alphaB-crystallin, had no effect. Hsp27, but not alphaB-crystallin, also hastened rephosphorylation of SRp38-dephosphorylated a potent inhibitor of splicing-after a heat shock, although it did not prevent dephosphorylation by a heat shock. The effect of Hsp27 on rephosphorylation of SRp38 required phosphorylatable Hsp27. A Hsp90 client protein was required for the effect of Hsp27 on recovery of spicing and on rephosphorylation of SRp38. Raising the Hsp70 level by either a pre-heat shock or by exogenous expression had no effect on either dephosphorylation of SRp38 during heat shock or rephosphorylation after heat shock. The phosphatase inhibitor calyculin A prevented dephosphorylation of SRp38 during a heat shock and caused complete rephosphorylation of SRp38 after a heat shock, indicating that cells recovering from a heat shock are not deficient in kinase activity. Together our data show that the activity of Hsp27 in restoring splicing is not due to a general thermoprotective effect of Hsp27, but that Hsp27 is an active participant in the (de)phosphorylation cascade controlling the activity of the splicing regulator SRp38.  相似文献   

18.
Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activity, and Akt binding to regulatory proteins (heat shock protein 90, Appl1, protein phosphatase 2A)]; 2) Akt substrate of 160-kDa (AS160) phosphorylation on key phosphorylation sites; and 3) atypical PKC (aPKC) activity. Isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from AL or CR (6 mo duration) 9-mo-old male F344BN rats were incubated with 0, 1.2, or 30 nM insulin and 2-deoxy-[(3)H]glucose. Some CR effects were independent of insulin dose or muscle type: CR caused activation of Akt (Thr(308) and Ser(473)) and GU in both muscles at both insulin doses without CR effects on IRS1-PI3K, Akt-PP2A, or Akt-Appl1. Several muscle- and insulin dose-specific CR effects were revealed. Akt-HSP90 binding was increased in the epitrochlearis; AS160 phosphorylation (Ser(588) and Thr(642)) was greater for CR epitrochlearis at 1.2 nM insulin; and IR phosphorylation and aPKC activity were greater for CR in both muscles with 30 nM insulin. On the basis of these data, our working hypothesis for improved insulin-stimulated GU with CR is as follows: 1) elevated Akt phosphorylation is fundamental, regardless of muscle or insulin dose; 2) altered Akt binding to regulatory proteins (HSP90 and unidentified Akt partners) is involved in the effects of CR on Akt phosphorylation; 3) Akt effects on GU depend on muscle- and insulin dose-specific elevation in phosphorylation of Akt substrates, including, but not limited to, AS160; and 4) greater IR phosphorylation and aPKC activity may contribute at higher insulin doses.  相似文献   

19.
Small heat shock proteins (sHsps) show a very rapid stress- and mitogen-dependent phosphorylation by MAPKAP kinase 2. Based on this observation, phosphorylation of sHsps was thought to play a key role in mediating thermoresistance immediately after heat shock, before the increased synthesis of heat shock proteins becomes relevant. We have analysed the phosphorylation dependence of the chaperone and thermoresistance-mediating properties of the small heat shock protein Hsp25. Surprisingly, overexpression of Hsp25 mutants, which are not phosphorylated in the transfected cells, confers the same thermoresistant phenotype as overexpression of wild type Hsp25, which is either mono- or bis-phosphorylated at serine residues 15 and 86 within the cells. Furthermore, in vitro phosphorylated Hsp25 shows the same oligomerization properties and the same chaperone activity as the nonphosphorylated protein. No differences between phosphorylated and nonphosphorylated Hsp25 are detected in preventing thermal aggregation of unfolding proteins and assisting refolding of denatured proteins. The results suggest that chaperone properties of the small heat shock proteins contribute to the increased cellular thermoresistance in a phosphorylation-independent manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号