首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examines the coexistence of neurons in the same cardiovascular point of the pontomedulla that integrates urinary bladder (UB) motility, and pelvic nerve activity (PNA). Microinjection of monosodium L-glutamate (Glu) into the locus coeruleus (LC), the gigantocellular tegmental field (FTG), the rostral ventrolateral medulla (RVLM), and the dorsomedial medulla (DM) produced pressor responses, whereas injection into the lateral tegmental field (FTL), the nucleus of tractus solitarii (NTS), and the caudal ventrolateral medulla (CVLM) produced depressor responses. However, microinjection of Glu into the dorsomotor nucleus of the vagus (DMV) and the ambiguus nucleus (AN), where the vagus nerve originates, produced marked bradycardia. Many of these cardiovascular responses were accompanied by increased, or decreased parasympathetic PNA. In six animals, sympathetic renal nerve activity (RNA) and PNA also increased simultaneously during the pressor response. The present study also examines the connection between the DMV-AN and the sacral intermediolateral column (IML), where parasympathetic preganglionic neurons (PGNs) of the pelvic nerve located. Biotinylated dextran amine (BDA), an anterograde tracer, was iontophoretically injected into the DMV or AN. No labelled terminal or neuron was detected in the sacral IML, but labelled terminals were observed in the bilateral LC, and also in the bilateral sides of the FTG, FTL, RVLM, DM, and CVLM. These results suggest that neurons of the DMV and/or AN may indirectly regulate the sacral parasympathetic PGNs through the LC for supraspinal control of the pelvic nerve. Furthermore, these results also suggest the coexistence of multiple autonomic integrating mechanisms of different kinds within various cardiovascular areas of the pontomedulla.  相似文献   

2.
Li J 《Life sciences》2002,71(24):2833-2843
Contraction of skeletal muscle evokes increases in arterial blood pressure and heart rate. Some regions of the brainstem have been implicated for expression of the cardiovascular responses to muscle contraction. Previous studies have reported that static muscle contraction induced c-Fos protein in the nucleus of tractus solitarii (NTS), lateral reticular nucleus (LRN), lateral tegmental field (FTL), subretrofacial nucleus (SRF), A1 region and periaqueductal gray (PAG) of the brainstem. Furthermore, neuronal NADPH-diaphorase (NADPH-d), which is considered as a marker of neuronal nitric oxide synthase (nNOS), has been localized in those same regions. In this study, static muscle contraction was induced by electrical stimulation of the L7 and S1 ventral roots in anaesthetized cats. Distribution of c-Fos protein within neurons containing nNOS was evaluated by double labeling methods in order to determine if nNOS containing neurons in the brainstem were activated during muscle contraction. The results indicate that c-Fos protein colocalized with NADPH-d positive staining within the neurons of the SRF and PAG, but not within the NTS neurons. Distinct number of neurons with c-Fos protein was in close proximity to NADPH-d positive staining in the NTS, SRF, and PAG. Coexisting of c-Fos protein and NADPH-d positive staining was not observed in the LRN, FTL and A1 region. These findings demonstrate that nNOS containing neurons were activated by muscle contraction in the selective regions of the brainstem, and nNOS positive staining had close anatomic contacts with the neurons activated by contraction. This result provides neuroanatomic evidence suggesting that nitric oxide modulates the cardiovascular responses to muscle contraction within the NTS, SRF and PAG of the brainstem.  相似文献   

3.
To determine the distribution of reticulospinal (RS) neurons in the chicken, WGA-HRP was injected into the cervical or lumbosacral enlargement either unilaterally or bilaterally. The brainstem reticular nuclei sent largely descending fibers to both the spinal enlargements. The mesencephalon (medial and lateral mesencephalic reticular formation) and the rostral pons (nucleus reticularis [n.r.] pontis oralis) project mainly to the cervical enlargement. RS neurons were mainly distributed from the pontomedullary junction to the rostral medulla including n. r. pontis caudalis and pars gigantocellularis, n. r. gigantocellularis, n. r. parvocellularis, n. r. paragigantocellularis, and n. r. subtrigeminalis. It is suggested that the majority of these neurons send axons at least as far as the lumbosacral enlargement. In the lower medulla, RS neurons were distributed in the dorsal and ventral parts of the central nucleus of the medulla.  相似文献   

4.
研究用荧光金(FG)逆行追踪与免疫荧光组化染色相结合的双标技术对大鼠脑干向延髓网状背侧亚核(SRD)的5┐羟色胺(5┐HT)能、P物质(SP)能和亮氨酸┐脑啡肽(L┐ENK)能投射进行了观察。将FG注入SRD后,FG逆标神经元主要见于中脑导水管周围灰质、脑干中缝核簇(中缝背核、中缝正中核、中缝桥核、中缝大核、中缝隐核和中缝苍白核)、巨细胞网状核α部、延髓网状结构的内侧部和外侧部、延髓外侧网状核、三叉神经脊束核尾侧亚核和孤束核。5┐羟色胺(5┐HT)样、P物质(SP)样和亮氨酸脑啡肽(L┐ENK)样阳性神经元主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部;此外,SP样和L┐ENK样阳性神经元还见于臂旁核、背外侧被盖核和孤束核。FG逆标并呈5┐HT样、SP样或L┐ENK样阳性的双标神经元也主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,尤其是位于延髓中缝核团内的双标神经元数量较多。本研究的结果说明SRD内的5┐HT样、SP样和L┐ENK样阳性终末主要来自中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,向SRD发出5┐HT能、SP能和L┐ENK能投射的上述核团对SRD发挥“弥漫性伤害抑  相似文献   

5.
The distribution of somatostatinlike immunoreactive (SLI) perikarya, axons, and terminals was mapped in subcortical areas of the brain of the little brown bat, Myotis lucifugus, using light microscopic immunocytochemistry. A preponderance of immunoreactivity was localized in reticular, limbic, and hypothalamic areas including: 1) in the forebrain: the bed nucleus of the stria terminalis; lateral preoptic, dorsal, anterior, lateral and posterior hypothalamic areas; amygdaloid, periventricular, arcuate, supraoptic, suprachiasmatic, ventromedial, dorsomedial, paraventricular, lateral and medial mammillary, and lateral septal nuclei; the nucleus of the diagonal band of Broca and nucleus accumbens septi; 2) in the midbrain: the periaqueductal gray, interpeduncular, dorsal and ventral tegmental, pretectal, and Edinger-Westphal nuclei; and 3) in the hindbrain: the superior central and parabrachial nuclei, nucleus incertus, locus coeruleus, and nucleus reticularis gigantocellularis. Other areas containing SLI included the striatum (caudate nucleus and putamen), zona incerta, infundibulum, supramammillary and premammillary nuclei, medial and dorsal lateral geniculate nuclei, entopeduncular nucleus, lateral habenular nucleus, central medial thalamic nucleus, central tegmental field, linear and dorsal raphe nuclei, nucleus of Darkschewitsch, superior and inferior colliculi, nucleus ruber, substantia nigra, mesencephalic nucleus of V, inferior olivary nucleus, inferior central nucleus, nucleus prepositus, and deep cerebellar nuclei. While these results were similar in some respects to those previously reported in rodents, they also provided interesting contrasts.  相似文献   

6.
The cellular origin of the brainstem projections to the oculomotor nucleus in the rabbit has been investigated by using free (HRP) and lectin-conjugated horseradish peroxidase (WGA-HRP). Following injections of these tracers into the somatic oculomotor nucleus (OMC), retrogradely labeled cells have been observed in numerous brainstem structures. In particular, bilateral labeling has been found in the four main subdivisions of the vestibular complex, predominantly in the superior and medial vestibular nuclei and the interstitial nucleus of Cajal, while ipsilateral labeling was found in the rostral interstitial nucleus of the medial longitudinal fascicle (Ri-MLF), the Darkschewitsch and the praepositus nuclei. Neurons labeled only contralaterally have been identified in the following structures: mesencephalic reticular formation dorsolateral to the red nucleus, abducens internuclear neurons, group Y, several areas of the lateral and medial regions of the pontine and medullary reticular formation, ventral region of the lateral cerebellar nucleus and caudal anterior interpositus nucleus. This study provides also information regarding differential projections of some centers to rostral and caudal portions of the OMC. Thus, the rostral one-third appears to receive predominant afferents from the superior and medial vestibular nuclei, while the caudal two-thirds receive afferents from all the four vestibular nuclei. Finally, the group Y sends afferents to the middle and caudal, but not to the rostral OMC.  相似文献   

7.
Using autoradiographic method and 125I-Tyro rat CGRP as a ligand, receptor binding sites were demonstrated in the rat central nervous system. Saturation studies and Scatchard analysis of CGRP-binding to slide mounted tissue sections containing primarily cerebellum showed a single class of receptors with a dissociation constant of 0.96 nM and a Bmax of 76.4 fmol/mg protein. 125I-Tyro rat CGRP binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the telencephalon (medial prefrontal, insular and outer layers of the temporal cortex, nucleus accumbens, fundus striatum, central and inferior lateral amygdaloid nuclei, most caudal caudate putamen, organum vasculosum laminae terminalis, subfornical organ), the diencephalon (anterior hypothalamic, suprachiasmatic, arcuate, paraventricular, dorsomedial, periventricular, reuniens, rhomboid, lateral thalamic pretectalis and habenula nuclei, zona incerta), in the mesencephalon (superficial layers of the superior colliculus, central nucleus of the geniculate body, inferior colliculus, nucleus of the fifth nerve, locus coeruleus, nucleus of the mesencephalic tract, the dorsal tegmental nucleus, superior olive), in the molecular layer of the cerebellum, in the medulla oblongata (inferior olive, nucleus tractus solitarii, nucleus commissuralis, nuclei of the tenth and twelfth nerves, the prepositus hypoglossal and the gracilis nuclei, dorsomedial part of the spinal trigeminal tract), in the dorsal gray matter of the spinal cord (laminae I-VI) and the confines of the central canal. Moderate receptor densities were found in the septal area, the "head" of the anterior caudate nucleus, medial amygdaloid and bed nucleus of the stria terminalis, the pyramidal layers of the hippocampus and dentate gyri, medial preoptic area, ventromedial nucleus, lateral hypothalamic and ventrolateral thalamic area, central gray, reticular part of the substantia nigra, parvocellular reticular nucleus. Purkinje cell layer of the cerebellum, nucleus of the spinal trigeminal tract and gracile fasciculus of the spinal cord. The discrete distribution of CGRP-like binding sites in a variety of sensory systems of the brain and spinal cord as well as in thalamic and hypothalamic areas suggests a widespread involvement of CGRP in a variety of brain functions.  相似文献   

8.
The data on the glycinergic transmission in the rostral brainstem are both few and controversial. The present report provides evidence for a possible glycinergic transmission in Sprague-Dawley rats, based on observations of immunocytochemical labeling for gephyrin, a 93 kDa protein and a component of the functional glycine receptor. A monoclonal antibody against gephyrin was used, and the reaction product was visualized by means of avidin-biotin-peroxidase procedure. The reaction product in midbrain and rostral pons was found in neuronal perikarya and in proximal dendrites but in some cases the most distal dendritic branches were also labeled. The neuropil usually displayed a moderate staining with finely granulated reaction product. The most significant immunocytochemical signal was mainly encountered in large and medium-sized neuronal populations of the motor cranial nerve nuclei (III, IV, V), in the reticular formation (laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus, deep mesencephalic nucleus), in the red nucleus, in the intermediate and deep gray strata of the superior colliculus. Only in the substantia nigra and the inferior colliculus the parvocellular cell populations were mainly labeled. The present data suggest a significant inhibitory glycinergic neurotransmission in the rostral brainstem, probably mediated by interneurons.  相似文献   

9.
The aim of the present study was to examine the relationship between the lateral tegmental field (FTL), a cardioinhibitory area, with other cardioinhibitory areas, i.e., the ambiguus nucleus (NA) and the dorsal motor nucleus of vagus (DMV) and the caudal ventrolateral medulla (CVLM), a vasopressor inhibitory area. In 55 cats anesthetized with chloralose (40 mg/kg) and urethane (400 mg/kg), the cardiovascular responses of heart rate (HR), systemic arterial blood pressure (SAP) and vertebral nerve activity (VNA) were recorded. The FTL, NA, DMV and CVLM were identified first by stimulation (rectangular pulses in 80 Hz, 0.5 ms, 50-100 microA) and then confirmed by microinjection of sodium glutamate (Glu, 0.25M, 70 nl). In studying the influence of NA, DMV, or CVLM lesion on the Gluinduced responses in FTL, kainic acid (KA, 24 mM, 100 nl) was microinjected into the NA, DMV or CVLM. FTL stimulation produced an average decrease of HR by 55%. After KA lesioning of the ipsilateral NA or the DMV, the decreased HR induced by FTL was significantly diminished. After subsequent lesion of the contralateral DMV or NA, the bradycardia of FTL was abolished. The reduction of resting HR was more intense after lesioning the NA than DMV and with the left side more than that of the right side. These studies suggest that the cardioinhibitory responses of FTL are mediated through both NA and DMV with predominance of the former, while the hypotensive effect of FTL is mediated through CVLM. The precise pathway responsible for the FTL-induced bradycardia and hypotension is to be determined.  相似文献   

10.
We have tested the hypothesis that neurons of both the ventral reticular nucleus and the adjacent parts of the lateral tegmental field (LTF) may be important for the production of motor programs associated with cough, expiration and aspiration reflexes. Our studies were conducted on non-decerebrate, spontaneously breathing cats under pentobarbitone anesthesia. Dysfunction of the medullary LTF region above the obex, produced by uni- or bilateral injections of kainic acid (a neurotoxin), regularly abolished the cough reflex evoked by mechanical stimulation of both the tracheobronchial and laryngeal regions and in most cases also the expiration reflex induced from the glottal area. However, some electrical activity still occurred in the neurogram of the recurrent laryngeal nerve during probing the laryngeal and glottal regions. Interestingly, the aspiration reflex elicited from the nasopharynx regularly persisted, although with lower intensity after the LTF lesion. Nevertheless, successive midcollicular decerebration performed in four cats also abolished the aspiration reflex. These experiments demonstrate the importance of medullary LTF neurons for the normal occurrence of cough and expiration reflexes. One possible explanation for the elimination of these expulsive processes is that the blockade of the LTF neurons may remove an important source of a facilitatory input to the brainstem circuitries that mediate cough and expiration reflexes. In addition, the potential importance of the mesencephalic reticular formation for the occurrence of the aspiration reflex and the role of the LTF in modulating both the eupnoeic breathing and the blood pressure are also discussed.  相似文献   

11.
A stimulation of the gigantocellular tegmental field (FTG) in the medulla oblongata often increases systemic arterial blood pressure (SAP) and decreases heart rate (HR). We investigated if the cardioinhibitory/depressor areas, including the nucleus ambiguus (NA), the dorsal motor nucleus of vagus (DMV) and the caudal ventrolateral medulla (CVLM), underlied the functional expression of FTG neurons in regulating cardiovascular responses. In 73 chloralose-urethane anesthetized cats, the HR, SAP and vertebral nerve activity (VNA) were recorded. Neurons in the FTG, NA, DMV and CVLM were stimulated by microinjection of sodium glutamate (25 mM Glu, 70 nl). To study if the NA, DMV, and CVLM relayed the cardioinhibitory messages from the FTG, 24 mM kainic acid (KA, 100 nl) was used as an excitotoxic agent to lesion neurons in the NA, DMV or CVLM. We found that the cardioinhibition induced by FTG stimulation was significantly reduced by KA lesioning of the ipsilateral NA or DMV. Subsequently, a bilateral KA lesion of NA or DMV abolished the cardioinhibitory responses of FTG. Compared to the consequence of KA lesion of the DMV, only a smaller bradycardia was induced by FTG stimulation after KA lesion of the NA. The pressor response induced by Glu stimulation of the FTG was reduced by the KA lesion of the CVLM. Such an effect was dominant ipsilaterally. Our findings suggested that both NA and DMV mediated the cardioinhibitory responses of FTG. The pressor message from the FTG neurons might be partly working via a disinhibitory mechanism through the depressor neurons located in the CVLM.  相似文献   

12.
After microinjections of horseradish peroxidase into the central tegmental area of the midbrain and centrum medianum thalami in cats, labeled neurons were found in the nucleus of the tractus solitarius, gracile and cuneate nuclei, spinal nuclei of the trigeminal nerve, the external nucleus and nucleus of the brachium of the inferior colliculus, the medial pretectal region, nucleus of the posterior commissure and stratum intermediale of the superior colliculus, and reticular structures of the medulla and pons. Comparison of the location of the sources of ascending afferent projections in the central tegmental area of the midbrain and centrum medianum thalami showed that the reticular formation receives mainly visceral projections through the nucleus of the tractus solitarius, whereas the centrum medianum thalami is innervated mainly by the system of sensory somatic nuclei.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 172–178, March–April, 1982.  相似文献   

13.
The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.  相似文献   

14.
The afferent connections to the abducent nucleus in the cat were studied by means of retrograde transport of WGA-HRP after implantations of the tracer in crystalline form. Retrogradely labelled cells were found bilaterally in the medial and descending vestibular nuclei, mainly in their ventral and medial portions, in the rostral part of the ipsilateral gigantocellular reticular nucleus, in the medial part of the contralateral caudal pontine reticular nucleus and bilaterally in the oculomotor nucleus, mainly in its dorsolateral division. Some labelled cells were also found bilaterally in the mesencephalic reticular formation, the periaqueductal grey and the nucleus of the trapezoid body.  相似文献   

15.
Hypothalamic sites wherein P4, through progestin receptor, (Pgr; commonly abbreviated PR), maximizes the expression of female sexual behaviors and gonadotropin surge release have been studied intensively. However, little is known regarding PR expression in brainstem regions likely to regulate changes in autonomic functions observed when P4 levels are elevated (i.e. pregnancy). Using in situ hybridization, we found PR mRNA-containing cells widely distributed throughout the brainstem of ovariectomized, estradiol-treated Sprague-Dawley rats, with high expression in regions including the medial vestibular nucleus, nucleus of the solitary tract, substantia nigra (compact part), ventral tegmental area, hypoglossal nucleus, locus coeruleus, Purkinje cell layer of the cerebellum and inferior olivary complex. We also detected moderate to high levels of PR gene expression in several regions, such as the trapezoid nucleus, facial nucleus, periaqueductal gray regions, and rostral ventrolateral medulla. These results demonstrate that PR expression is widespread in the brainstem and identify nuclei wherein P4 may act to influence a number of physiological functions during pregnancy.  相似文献   

16.
In order to determine the cholinoceptive brainstem structures critical for PS generation, we investigated the effect on PS induction of the injection of a small dose and volume (0.4 microgram/0.2 microliter) of the cholinergic agonist carbachol in the following caudal brainstem structures: 1) the caudal mesencephalic reticular formation, especially the nucleus pedunculopontinus pars compacta or X area; 2) the mediodorsal pontine tegmentum, in particular the nuclei locus coeruleus (LC), locus coeruleus alpha (LC alpha), peri-locus coeruleus alpha (peri-LC alpha) and laterodorsalis tegmenti (Ldt); 3) the pontine; and 4) bulbar gigantocellular (FTG) and magnocellular tegmental fields (FTM). We found that the only brainstem area from which a high amount of PS was induced by carbachol applications with short latencies, less than 5 minutes, is the mediodorsal pontine tegumentum, namely the LC alpha and peri-LC alpha, where ChAT-and TH- immunoreactive neurons are intermingled. Injections in an area immediately ventral to the peri-LC alpha induced physiological states resembling PS but lacking certain electrophysiological (PS-like) and behavioral components of PS (dissociated states I and II). The weak PS induction following carbachol administration in the anteromedial part of the FTG was due to the spread of the drug toward the efficient site since the latencies to PS onset were in the range of 20 to 60 minutes. No effects on PS generation were obtained after carbachol microinjections in the LC and the laterocaudal part of the FTG, while carbachol injections in the X area or in the bulbar FTG or FTM resulted in the increase of waking and the decrease of PS. In addition to these effects on PS induction, we also found that carbachol induced: 1) stereotyped PGO-like bursts when injected in the ventral part of the FTG and the rostral part of the FTM, 2) postural atonia with very short latencies, less than two minutes, when injected in the LC alpha and peri-LC alpha; and 3) hippocampal theta waves of 3-5 Hz persisting during light slow wave sleep (S1) when injected in and around the LC alpha and peri-LC alpha and in some points of the mediocaudal part of the FTG. These results support the hypothesis that PS is generated by highly localized neuronal populations and suggest that the mediodorsal pontine tegmentum (namely the nuclei LC alpha and peri-LC alpha) may represent a cholinoceptive PS generator.  相似文献   

17.
用辣根过氧化物酶法研究了中华大蟾蜍峡核的顶盖外投射。结果指出:(1)中脑脚盖前背核、中脑深核和表层峡网核投向双侧峡核,对侧投射经过Veli交叉;(2)这些脚盖核投向整个峡核,其间没有区域对应关系,讨论了这些投射的可能功能意义。  相似文献   

18.
Our purpose was to evaluate the hypothesis that neurons in the lateral tegmental field of the medulla comprise a pattern generator for neurogenesis of gasping. Stimulations in this area produced changes characteristic of pattern generators in other systems. These included shifts in gasping rhythm and refractory periods for eliciting gasps; the latter varied inversely with spontaneous gasping frequency. These responses were recorded from activities of phrenic and hypoglossal nerves of decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated cats. Gasping followed freezing the brain stem between pons and medulla. In addition to lateral tegmental loci, gasps were elicited by stimulating areas extending lateral to the nucleus ambiguus and medial to the contralateral medulla. These areas are envisaged to contain axons to or from the pattern generator of lateral tegmental field. Finally, stimulations in sites approximating nucleus tractus solitarius and nucleus ambiguus delayed spontaneous gasps and terminated ongoing gasps. Current required to terminate gasps fell during neural inspiration. Our data are consistent with the lateral tegmental field of medulla comprising a central pattern generator for gasping and pacemaker elements being a component of this pattern generator.  相似文献   

19.
20.
K M Knigge  D T Piekut 《Peptides》1985,6(1):97-101
The distribution of CRF and tyrosine hydroxylase (TH)-immunoreactive neurons was examined in the brainstem of the chicken. Very dense populations of both CRF and TH-immunoreactive (-ir) perikarya are co-extensive in separate neuronal systems throughout a large field of the rostral brainstem, encompassing locus ceruleus, the mesencephalic reticular formation, parabrachial nucleus, and the dorsal and ventral tegmental areas. They are present also in nucleus tractus solitarius, and sparsely in the ventral and lateral areas of the medulla. This co-distribution suggests that the effects of CRF upon central autonomic activity may be mediated via brainstem catecholamine systems. CRF-ir neurons alone are present also in midline nuclei, including n. centralis superior, n.annularis, n.linearis caudalis, and the raphe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号