首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pyridoxal isonicotinoyl hydrazone (PIH) and many of its analogs are effective iron chelators in vivo and in vitro, and are of interest for the treatment of secondary iron overload. Because previous work has implicated the Fe(3+)-chelator complexes as a determinant of toxicity, the role of iron-based oxidative stress in the toxicity of PIH analogs was assessed. The Fe(3+) complexes of PIH analogs were reduced by K562 cells and the physiological reductant, ascorbate. Depletion of the antioxidant, glutathione, sensitized Jurkat T lymphocytes to the toxicity of PIH analogs and their Fe(3+) complexes, and toxicity of the chelators increased with oxygen tension. Fe(3+) complexes of pyridoxal benzoyl hydrazone (PBH) and salicyloyl isonicotinoyl hydrazone (SIH) caused lipid peroxidation and toxicity in K562 cells loaded with eicosapentenoic acid (EPA), a readily oxidized fatty acid, whereas Fe(PIH)(2) did not. The lipophilic antioxidant, vitamin E, completely prevented both the toxicity and lipid peroxidation caused by Fe(PBH)(2) in EPA-loaded cells, indicating a causal relationship between oxidative stress and toxicity. PBH also caused concomitant lipid peroxidation and toxicity in EPA-loaded cells, both of which were reversed as its concentration increased. In contrast, PIH was inactive, while SIH was equally toxic toward control and EPA-loaded cells, without causing lipid peroxidation, indicating a much smaller contribution of oxidative stress to the mechanism of toxicity of these analogs. In summary, PIH analogs and their Fe(3+) complexes are redox active in the intracellular environment. The contribution of oxidative stress to the overall mechanism of toxicity varies across the series.  相似文献   

2.
The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as beta-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against *OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for *OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of *OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on *OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  相似文献   

3.
The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as β-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  相似文献   

4.
The orally effective iron chelator, pyridoxal isonicotinoyl hydrazone (PIH), and five analogues, pyridoxal benzoyl hydrazone (PBH), pyridoxal p-methoxybenzoyl hydrazone ((PpMBH), pyridoxal m-fluorobenzoyl hydrazone (PmFBH), 3-hydroxy- isonicotinaldehyde isonicotinoyl hydrazone (IIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) were synthesised and characterised and their acid dissociation constants measured by glass electrode potentiometry and UV—Vis spectrophotometry. Analysis of the data showed that at physiological pH all of the ligands are predominantly (av. 80%) in the form of the neutral molecule, allowing passage through cell membranes and access to intracellular iron pools. The results are discussed in the context of the development of an orally effective iron chelator for clinical use.  相似文献   

5.
The aim of this study was to analyze the ECG time intervals in the course of the development of chronic anthracycline cardiomyopathy in rabbits. Furthermore, this approach was employed to study the effects of a model cardioprotective drug (dexrazoxane) and two novel iron chelating compounds--salicylaldehyde isonicotinoyl hydrazone (SIH) and pyridoxal 2-chlorobenzoyl hydrazone (o-108). Repeated daunorubicin administration induced a significant and progressive prolongation of the QRS complex commencing with the eighth week of administration. At the end of the study, we identified a significant correlation between QRS duration and the contractility index dP/dt(max) (r = -0.81; P<0.001) as well as with the plasma concentrations of cardiac troponin T (r = 0.78; P<0.001). In contrast, no alterations in ECG time intervals were revealed in the groups co-treated with either dexrazoxane or both novel cardioprotective drugs (SIH, o-108). Hence, in this study, the QRS duration is for the first time shown as a parameter suitable for the non-invasive evaluation of the anthracycline cardiotoxicity and cardioprotective effects of both well established and investigated drugs. Moreover, our results strongly suggest that novel iron chelators (SIH and o-108) merit further study as promising cardioprotective drugs against anthracycline cardiotoxicity.  相似文献   

6.
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, orally-active tridentate iron chelator providing both effective protection against various types of oxidative stress-induced cellular injury and anticancer action. However, the major limitation of SIH is represented by its labile hydrazone bond that makes it prone to plasma hydrolysis. Recently, nine new SIH analogues derived from aromatic ketones with improved hydrolytic stability were developed. Here we analyzed their antiproliferative potential in MCF-7 breast adenocarcinoma and HL-60 promyelocytic leukemia cell lines. Seven of the tested substances showed greater selectivity than the parent agent SIH towards the latter cancer cell lines compared to non-cancerous H9c2 cardiomyoblast-derived cells. The tested chelators induced a dose-dependent dissipation of the inner mitochondrial membrane potential, an induction of apoptosis as evidenced by Annexin V positivity or significant increases of activities of caspases 3, 7, 8 and 9 and cell cycle arrest. With the exception of nitro group-bearing NHAPI, the studies of iron complexes of the chelators confirmed the crucial role of iron in the mechanism of their antiproliferative action. Finally, all the assayed chelators inhibited the oxidation of ascorbate by iron ions indicating lack of redox activity of the chelator-iron complexes. In conclusion, this study identified several important design criteria for improvement of the antiproliferative selectivity of the aroylhydrazone iron chelators. Several of the novel compounds--in particular the ethylketone-derived HPPI, NHAPI and acetyl-substituted A2,4DHAPI--merit deeper investigation as promising potent and selective anticancer agents.  相似文献   

7.
Tryptophan hydroxylase requires Fe2+ for in vitro enzyme activity. In this study, the intracellular activity of tryptophan hydroxylase was assessed by applying 3-hydroxybenzylhydrazine (NSD-1015), an inhibitor of aromatic l-amino acid decarboxylase, to monolayer cultures of RBL2H3 cells, a serotonin producing mast cell line. The effect of manipulating intracellular 'free' iron levels on enzyme activity was analyzed by administration of iron chelators. Desferrioxamine (DFO) suppressed the intracellular enzyme activity. Salicylaldehyde isonicotinoyl hydrazone (SIH) also suppressed enzyme activity, but stimulated it when administered in the Fe-bound form. Hemin also stimulated enzyme activity, which progressively increased over several hours to more than sixfold the initial level. DFO and SIH inhibited the hemin stimulatory effect when administered simultaneously with hemin. Both suppression and stimulation with these chelators took place without a significant decrease or increase in the amount of enzyme. These results indicate that there was an inadequate supply of Fe2+ in the cells to support full activity of tryptophan hydroxylase.  相似文献   

8.
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto–enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with FeII, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Abbreviations DFO desferrioxamine - HPKIH di-2-pyridyl ketone isonicotinoyl hydrazone - HNIH 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone - HPCIH 2-pyridinecarbaldehyde isonicotinoyl hydrazone - HPIH pyridoxal isonicotinoyl hydrazone - L linear DNA - OC open circular DNA - SC supercoiled DNA  相似文献   

9.
A family of iron-chelating agents structurally related to pyridoxal isonicotinoyl hydrazone (PIH) has been assessed using equilibrium dialysis and spectrophotometric measurements, for their ability to mobilize ferritin iron in vitro. The iron-chelating drug Desferal was examined in the same test system. The results indicate that PIH and related compounds release significant amounts of ferritin iron in the test systems in question. Added nitrilotriacetate enhances iron release, whereas citrate has little effect. The results are discussed in the context of the development of improved iron chelators tor clinical use.  相似文献   

10.
John T Edward 《Biometals》1998,11(3):203-205
Pyridoxal isonicotinoyl hydrazone (PIH), salicylaldehydebenzoyl hydrazone (SBH), and their analogschelate iron(III) and show promise asorally effective drugs for treating diseases of iron overload. Theirbiological activity isrelated to their lipophilicity, as measured by their partition coefficients P betweenn-octanoland water. However, the method of calculating log P described in an article in this journal(Edwardet al. 1995; BioMetals, 8, 209-217) is faulty for compounds such as PIH, SBH andtheir analogs whichcontain adjacent hydrophilic groups. Consequently, the calculations reportedin the article, based on erro-neouslog P values of the chelating molecules, giveerroneous log P values of the iron(III) complexes. Thechelators most effective inmobilizing 59 Fe from reticulocytes have log P < 2.8, not log P < 0 and theiron(III)complexes of the most effective chelators have log P < 3.1, not log P < 0.  相似文献   

11.
Among 11 isoforms of the human cytochrome P450 enzymes metabolizing xenobiotics, CYP 1A1 and CYP 1A2 were major P450 species in the metabolism of the herbicides chlortoluron and atrazine in a yeast expression system. CYP1A2 was more active in the metabolism of both herbicides than CYP1A1. The fused enzymes of CYP1A1 and CYP1A2 with yeast NADPH-cytochrome P450 oxidoreductase were functionally active in the microsomal fraction of the yeast Saccharomyces cerevisiae and showed increased specific activity towards 7-ethoxyresorufin as compared to CYP1A1 and CYP1A2 alone. Then, both fused enzymes were each expressed in the microsomes of tobacco (Nicotiana tabacum cv. Samsun NN) plants. The transgenic plants expressing the CYP1A2 fusion enzyme had higher resistance to the herbicide chlortoluron than the plants expressing the CYP1A1 fusion enzyme did. The transgenic plants expressing the CYP1A2 fused enzyme metabolized chlortoluron to a larger extent to its non-phytotoxic metabolites through N-demethylation and ring-methyl hydroxylation as compared to the plants expressing the CYP1A1 fused enzyme. Thus, the possibility of increasing the herbicide resistance in the transgenic plants by the selection of P450 species and the fusion with P450 reductase is discussed.  相似文献   

12.
Anthracycline cardiotoxicity represents the most unfavorable side effect of these highly efficient anticancer drugs. Several biotransformation enzymes have been described to contribute to their cardiotoxicity. Besides the activities of CYP450 isoforms which lead to the generation of reactive oxygen species (ROS), the cytosolic reductases have attracted attention nowadays. The reductases known to metabolize anthracyclines to C13-hydroxyanthracyclines are carbonyl reductase (CR, 1.1.1.184) and the aldo-keto reductases (AKR1C2, 1.3.1.20; AKR1A1, 1.1.1.2). Their participation in the formation of the toxic C13-hydroxymetabolite has been investigated in rabbit using diagnostic inhibitors of CR and AKR1C2. The kinetics and the type of reductase inhibition exerted by the two inhibitors have been described and it was found that CR was the main daunorubicin reductase at both optimal and physiological pH with the kinetic parameters for daunorubicin reduction of Km = 17.01 +/- 1.98 microM and V(max) = 139.60 +/- 5.64 pcat/mg. The IC50 values for quercitrin and flufenamic acid were 5.45 +/- 1.37 microM and 3.68 +/- 1.58 microM, respectively. The inhibition was uncompetitive for both inhibitors and irreversible in the case of flufenamic acid.  相似文献   

13.
Administration of the antineoplastic doxorubicin to rodents causes depression of hepatic cytochrome P450 (CYP) dependent biotransformation, an effect that has been partially attributed to the ability of doxorubicin to stimulate microsomal lipid peroxidation. Since doxorubicin can be bioactivated by the CYP/NADPH-CYP reductase system to products that bind covalently to microsomal protein, we hypothesized that doxorubicin functions as a mechanism-based inactivator of hepatic microsomal CYPs and (or) NADPH-CYP reductase under conditions in which doxorubicin-stimulated NADPH-dependent lipid peroxidation is minimized. In vitro studies were conducted with hepatic microsomes isolated from untreated and phenobarbital-treated male rats. Unlike the positive control carbon tetrachloride, doxorubicin (10 microM) did not stimulate NADPH-dependent lipid peroxidation in microsomal incubations containing EDTA (1.5 mM). Doxorubicin did not cause NADPH-dependent loss of microsomal CYP, heme, or steroid hydroxylation activities selective for CYP2A, CYP2B, CYP2C11, and CYP3A. The positive control 1-aminobenzotriazole caused marked NADPH-dependent decreases in all of these parameters. Neither doxorubicin nor 1-aminobenzotriazole caused NADPH-dependent loss of NADPH-CYP reductase activity, and neither compound altered the immunoreactive protein levels of CYP2B, CYP2C11, CYP3A, and NADPH-CYP reductase. These results indicate that a pharmacologically relevant concentration of doxorubicin does not cause direct mechanism-based inactivation of hepatic microsomal CYPs or NADPH-CYP reductase, suggesting that the ability of doxorubicin to depress hepatic CYP-mediated biotransformation in vivo is due to lipid peroxidation mediated heme destruction, altered heme metabolism, and (or) decreased expression of selected CYP enzymes.  相似文献   

14.
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability). Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O), which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects.  相似文献   

15.
Pyridoxal isonicotinoyl hydrazone (PIH) analogues are effective iron chelators in vivo and in vitro, and may be of value for the treatment of secondary iron overload. The sensitivity of Jurkat cells to Fe-chelator complexes was enhanced several-fold by the depletion of the antioxidant glutathione, indicating the role of oxidative stress in their toxicity. K562 cells loaded with eicosapentaenoic acid, a fatty acid particularly susceptible to oxidation, were also more sensitive to the toxic effects of the Fe complexes, and toxicity was proportional to lipid peroxidation. Thus Fe-chelator complexes cause oxidative stress, which may be a major component of their toxicity. As was the case for their Fe complexes, the toxicity of PIH analogues was enhanced by glutathione depletion of Jurkat cells and eicosapentaenoic acid-loading of K562 cells. Thus the toxicity of the chelators themselves is also enhanced by compromised cellular redox status. In addition, the toxicity of the chelators was diminished by culturing Jurkat cells under hypoxic conditions, which may limit the production of the reactive oxygen species that initiate oxidative stress. A significant part of the toxicity of the chelators may be due to intracellular formation of Fe-chelator complexes, which oxidatively destroy the cell.  相似文献   

16.
Cytochrome P450 enzymes (CYP enzymes) catalyse the initial step in biotransformation of xenobiotics like polycyclic aromatic hydrocarbons (PAHs). The marine polychaete Nereis virens has a high capacity for biotransformation of PAHs. In the present study, the complete cDNA sequences of two novel CYP genes isolated from N. virens gut tissue are reported. One named CYP342A1, the first member of a new family and the other named CYP4BB1, the first member of a new subfamily. This is the first investigation of specific CYP enzymes from marine polychaetes in which catalytic activity has been determined. Both CYP enzymes had monooxygenase activity and catalysed hydroxylation of pyrene to 1-hydroxypyrene. Based on the present results it is likely that both CYP4BB1 and CYP342A1 are involved in xenobiotic biotransformation. Furthermore, site-directed mutagenesis of the conserved cysteine residue of the heme binding domain resulted in complete loss of monooxygenase activity of both CYP enzymes, indicating that this cysteine residue is indispensable for monooxygenase activity of invertebrate CYP enzymes, as has been well documented in vertebrates. Considering the important role of CYP enzymes in biotransformation of xenobiotics and the presence of N. virens in estuarine environments that accumulates organic xenobiotics, our results are important in understanding the molecular mechanism of biotransformation in marine polychaetes.  相似文献   

17.
2-Pyridinecarbaldehyde isonicotinoyl hydrazone (HPCIH) and di-2-pyridylketone isonicotinoyl hydrazone (HPKIH) are two Fe chelators with contrasting biological behavior. HPCIH is a well-tolerated Fe chelator with limited antiproliferative activity that has potential applications in the treatment of Fe-overload disease. In contrast, the structurally related HPKIH ligand possesses significant antiproliferative activity against cancer cells. The current work has focused on understanding the mechanisms of the Fe mobilization and antiproliferative activity of these hydrazone chelators by synthesizing new analogs (based on 2-acetylpyridine and 2-benzoylpyridine) that resemble both series and examining their Fe coordination and redox chemistry. The Fe mobilization activity of these compounds is strongly dependent on the hydrophobicity and solution isomeric form of the hydrazone (E or Z). Also, the antiproliferative activity of the hydrazone ligands was shown to be influenced by the redox properties of the Fe complexes. This indicated that toxic Fenton-derived free radicals are important for the antiproliferative activity for some hydrazone chelators. In fact, we show that any substitution of the H atom present at the imine C atom of the parent HPCIH analogs leads to an increase in antiproliferative efficacy owing to an increase in redox activity. These substituents may deactivate the imine R–C=N–Fe (R is Me, Ph, pyridyl) bond relative to when a H atom is present at this position preventing nucleophilic attack of hydroxide anion, leading to a reversible redox couple. This investigation describes novel structure–activity relationships of aroylhydrazone chelators that will be useful in designing new ligands or fine-tuning the activity of others. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The chelating agent pyridoxal isonicotinoyl hydrazone (PIH) has recently been shown to mobilize 59Fe from reticulocytes loaded with non-heme 59Fe. In this study, various chelating agents were tested for their ability to effect the mobilization of iron from reticulocytes by PIH. They fall into several groups. The largest group includes chelators such as citrate, ethylenediaminetetracetic acid and desferrioxamine, which fail to affect PIH-induced iron mobilization and do not mobilize iron per se. Either these chelators do not enter reticulocytes or they do not take up iron from PIH-Fe complexes. The second group includes chelators such as 2,2′-bipyridine, 1,10-phenanthroline, bathophenanthroline sulfonate and N,N′-ethylenebis(o-hydroxyphenylglycine) which inhibit PIH-induced iron mobilization from reticulocytes and, when added together with PIH, induce radioiron accumulation in an alcohol-soluble fraction of reticulocytes. It appears that these chelators enter the cell and compete with PIH for 59Fe(II), but having bound iron are unable to cross the cell membrane. Spectral analysis suggests that Fe(II) chelators such as 2,2′-bipyridine and 1,10-phenanthroline remove iron from Fe(II)PIH but are not able to do so from Fe(III)PIH. Then there are compounds such as 2,3-dihydroxybenzoic acid and catechol which potentiate PIH-induced iron mobilization although they are unable to mobilize iron from reticulocytes by themselves. Lastly, there is a group of miscellaneous compounds which include chelators that either potentiate the iron-mobilizing effect of PIH as well as mobilizing iron from reticulocytes by themselves (tropolone), or that reduce PIH-induced iron mobilization while themselves having an iron-mobilizing effect (N,N′-bis(2,3-dihydroxybenzoyl)-1,6-diaminohexane). In further experiments, heme was found to stimulate globin synthesis in reticulocytes, the heme synthesis of which was inhibited by PIH, suggesting that PIH is probably not toxic to the cells.  相似文献   

19.
The proximal tubule is a frequent target for nephrotoxic compounds due to it's ability to transport and accumulate xenobiotics and their metabolites, as well as by the presence of an organ-selective set of biotransformation enzymes. The aim of the present study was to characterize the activities of different biotransformation enzymes during primary culturing of rat proximal tubular cells (PT cells). Specific marker substrates for determining cytochrome P450 (CYP450) activity of primary cultured PT cells include 7-ethoxyresorufin (CYP1A1), caffeine (CYP1A), testosterone (CY2B/C, CYP3A), tolbutamide (CYP2C) and dextromethorphan (CYP2D1). Activities of the CYP450 isoenzymes decreased considerably during culture with the greatest loss in activity within 24 h of culture. In addition, expression of CYP450 apoprotein, including CYP1A, CYP2C, CYP2D, CYP2E and CYP4A, was detected in microsomes from freshly isolated PT cells by immunoblotting using specific antibodies. CYP2B and CYP3A apoprotein could not be detected. Activity of the phase II biotransformation enzymes GST, GGT, beta-lyase and UGT was determined with 1-chloro-2,4-dinitrobenzene, L-glutamic acid gamma-(7-amido-4-methyl-coumarin), S-(1,1,2,2-tetrafluoroethyl)-L-cysteine and 1-naphthol, respectively, as marker substrates. Activity of the phase II enzymes remained more stable and, in contrast to CYP450 activity, significant activity was still expressed after 1 week of PT cell culture. Thus, despite the obvious advantages of PT cells as an in-vitro model for studies of biotransformation mediated toxicity, the strong time dependency of especially phase I and, to a lesser extent, phase II biotransformation activities confers limitations to their application.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号