首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of fish species in the North Branch of the Moose River (Lake Rondaxe to headwaters of Big Moose Lake) was determined by intensive netting and electrofishing surveys of lakes and streams in the watershed during 1982–83. A chronology of changes in fish species occurrence in the drainage system was reconstructed from earlier published surveys conducted in 1882 and 1931 and unpublished survey data obtained by the NYSDEC during the period 1948–1975. Native species present in 1882 were also collected in 1931. Smallmouth bass (Micropterus dolomieu) were introduced in the early 1900's and were present in collections made in 1931. Major changes in the fish community have taken place since 1931. The smallmouth bass and many of the native species found in the earlier surveys were either absent or restricted in occurrence to downstream sites (eg. L. Rondaxe and Moss L. sub-drainage) in 1982. Non-native species introduced after 1931 (yellow perch,Perca flavescens; central mudminnow,Umbra limi; banded killifish,Fundulus diaphanus) are currently widely distributed throughout the drainage system. In particular, the yellow perch is now a dominant species in the larger lakes of the basin. Comparisons of survival rates for caged fish transferred from high to low pH sites in the Big Moose drainage system demonstrated relatively greater acid tolerane of non-native species (yellow perch, mudminnow, killifish) than native cyprinids. Watershed acidity gradients (pH and aluminum concentrations) and relative physiological acid tolerance are major determinants of currently observed fish species distribution patterns in the North Branch of the Moose River. Differences in age and size structure of fish populations inhabiting acidic and non-acidic lakes of the drainage system were apparent, but difficult to interpret without additional information onpopulation size and potential density dependent parameters such as age specific growth and survival rates. Differential hatching success was observed for yellow perch eggs reciprocally transferred between acid (Big Moose) and neutral (Moss L.) lakes. Eggs transferred from Moss L. to Big Moose L. exhibited poor hatching success as a result of alterations in egg membrane structure that inhibited normal egg expansion and the hatching process. This effect was not evident in eggs from the same parents reared in Moss Lake nor in eggs from the Big Moose parents reared in both lakes. These experimental observations suggested possible genetic adaptation to acid stress by the yellow perch population inhabiting Big Moose Lake.  相似文献   

2.
An integrated analysis of a terrestrial-aquatic ecosystem, the North Branch of the Moose River in the Adirondack region of New York, was conducted. This basin contains a large number of interconnected surface waters that exhibit marked gradients in pH and acid neutralizing capacity (ANC). As a result, the basin has been the focus of research activity, including the Regional Integrated Lake-Watershed Acidification Study (RILWAS). The objective of the current analysis was to use the North Branch of the Moose River as a case study to:
  1. Evaluate processes regulating the acid-base chemistry of surface waters.
  2. To assess the effects of surface water acidification on fish populations.
The observations of this study were consistent with the model of surface water acidification developed during the Integrated Lake-Watershed Acidification Study (ILWAS). The processes depicted in the original ILWAS simulation model were adequate to describe the acid-base chemistry of surface waters in the North Branch of the Moose River. However, the reduction of SO 4 2? in lake sediments, a process not represented in the original model, proved to be a significant source of acid neutralizing capacity (ANC) for some of these waters. As a result, reduction processes were added to the model. Analysis of in-situ bioassay and survey data indicate that acid-sensitive fish species have disappeared from the more acidic areas of the basin over the last half century. Paleoecological analyses indicate that pH has decreased from the high 5's to about 5 in Big Moose Lake during this period. ILWAS model simulations indicate that the pH of Big Moose Lake would increase by at least 0.1 to 0.5 pH units (depending on the season) in response to a 50% reduction in total atmospheric S deposition. Considerable variability in processes regulating acid/base chemistry was evident in the North Branch of the Moose River. Therefore, regional assessments of past or possible future effects of acidic deposition require widespread application of ILWAS theory within the Adirondack region and other potentially acid-sensitive areas.  相似文献   

3.
Depth distributions and inventories of137Cs (mCi km2) were determined in sediment from several fresh water lakes in the New York State Adirondack Preserve. Included were Big Moose and Darts Lakes, part of the North Branch of the Moose River system, as well as North, Sagamore, South, and Woods Lakes and the seepage pond, Tamarack Lake. Comparisons were made between the137Cs inventories in these lakes and large inpoundments in the Adirondacks (Hinkley, Great Sacandaga, Stillwater and Cranberry Lake Reservoirs) and other large impoundments and lakes located in various regions of the U.S., especially Cayuga Lake, Ithaca, NY.None of the Adirondack Lakes had137Cs distributions with depth in sediment that closely resembled the deposition pattern of weapons testing as a function of time. All of the natural lakes and small impoundments, including the seepage pond, were found to have significantly lower inventories of137Cs than expected; while the large reservoirs were generally enhanced in137Cs. We suggest that more than one mechanism may be responsible for the low sediment inventories: for the majority of lakes, flushing of137Cs out of the lakes during periods of thermal stratification and ice thaw; and for the seepage pond, remobilization of137Cs into the water column due to biological recycling.  相似文献   

4.
A growth chronology index was used to determine whether changes in ecosystem structure and function in lakes could be associated with fish growth histories. Growth chronologies were compared for white suckers, Catostomus commersoni, from Little Moose (oligotrophic), Oneida (eutrophic), and Cayuga (mesotrophic) lakes (New York) from opercular bone growth increments, and for lake trout, Salvelinus namaycush, from Little Moose Lake using otolith growth. The longevity of these species allowed the development of chronologies from 17 to 33 years in length using only contemporary collections. We used these chronologies to examine whether fish growth histories could be used as an index for ecosystem-scale changes. Specifically, we examined whether zebra mussel, Dreissena polymorpha, invasion in Oneida and Cayuga lakes in the early 1990s, and treatment of sewage effluent from dwellings around Little Moose Lake beginning during the late 1980s could be detected in white sucker and lake trout growth chronologies. White sucker growth in Oneida and Cayuga Lakes did not differ before and after zebra mussel invasions. Neither white sucker nor lake trout growth chronologies from Little Moose Lake reflect changes in growth expected with reduced productivity levels associated with improved sewage treatment. Growth chronologies of these two species did not detect the ecosystem-scale changes that occurred in the study lakes.  相似文献   

5.
Surface water acidification is potentially a problem in regions with low ionic strength drainage waters. Atmospheric deposition of sulfuric acid has generally been implicated as the causative agent of this problem, although other sources of acidity may contribute. The Adirondack region of New York State is an area with acid-sensitive surface waters and an abundance of acidic lakes. The intent of this study was to evaluate the processes regulating the acid/base chemistry of a series of lakes draining a large heterogeneous watershed in the Adirondack region of New York.The study site, the North Branch of the Moose River, is heterogeneous in its soil and geological characteristics. This variability was reflected through differences in water chemistry that occurred within the basin. The northern headwaters generally drain subcatchments with shallow, acidic soils. The resulting water chemistry was acidic (equivalence of acidic anions exceeded equivalence of basic cations) with high concentrations of Al and dissolved organic carbon (DOC). As this water migrated through a large lake (Big Moose Lake) with a moderate hydrologic retention time (0.5 yr), considerable loss of DOC was evident.As acidic water was transported through the drainage area, it mixed with waters that were enriched in concentrations of basic cations from the eastern subbasins. As a result, there was a successive increase in the acid neutralizing capacity (ANC) and a decrease in Al concentrations as water migrated from the northern reaches to the outlet of the watershed.In addition to these general trends, short-term changes in water chemistry were evident. During low flow summer periods concentrations of basic cations were elevated, while concentrations of SO 4 2– and NO 3 were relatively low. These conditions resulted in less acidic waters (higher ANC) with relatively low concentrations of Al. During high flow winter/spring conditions, elevated concentrations of SO 4 2– and NO 3 were evident, while concentrations of basic cations were reduced resulting in low pH (low ANC) waters with high concentrations of Al.Variability in the processes regulating the pH buffering of waters was apparent through these short-term changes in water chemistry. In the northern subbasin short-term fluctuations in ANC were minimal because of the buffering of Al under low pH conditions. Seasonal changes in the ANC were more pronounced in the eastern subbasin because of the predominance of inorganic carbon buffering in the circumneutral pH waters.Lakes in the west-central Adirondacks have characteristically short hydraulic residence times and elevated nitric acid inputs. As a result these waters may be more susceptible to surface water acidification than other acid-sensitive lake districts in eastern North America. Given the apparent interregional differences, extrapolation of chemical trends in the Adirondacks to other areas may be tenuous.  相似文献   

6.
The chemistry of lakes and streams within the North Branch of the Moose River is strongly correlated with the nature and distrubution of geologic materials in the watershed. The dominance of thin glacial till and granitic gneiss bedrock in the region north and east of Big Moose Lake results in a geologically sensitive terrain that is characterized by surface water with low alkalinity and chemical compositions only slightly modified from ambient precipitation. In contrast, extensive deposits of thick glacial till and stratified drift in the lower part of the system (e.g. Moss-Cascade valley) allow for much infiltration of precipitation to the groundwater system where weathering reactions increase alkalinity and significantly alter water chemistry.The hypothesis that surficial geology controls the chemistry of surface waters in the Adirondacks holds true for 70 percent of the Moose River watershed. Exceptions include the Windfall Pond subcatchment which is predominantly covered by thin till, yet has a high surface water alkalinity due to the presence of carbonate-bearing bedrock. The rapid reaction rates of carbonate minerals allow for complete acid neutralization to occur despite the short residence time of water moving through the system. Another important source of alkalinity in at least one of the subcatchments is sulfate reduction. This process appears to be most important in systems containing extensive peat deposits.An analysis of only those subcatchments controlled by the thickness of surficial sediments indicates that under current atmospheric loadings watersheds containing less than 3 percent thick surficial sediments will be acidic while those with up to 12 percent will be extremely sensitive to acidification and only those with over 50 percent will have a low sensitivity.  相似文献   

7.
Long-lived lakes are often sites of spectacular endemic radiations. During the Oligocene to recent history of the Paratethys, large, long-lived (more than a million years) lakes with endemic faunas formed three times, in three different basins: the first in the Pannonian basin, the second in the Euxinian (Black Sea) basin, and the third in the Caspian basin. Because the Euxinian lake inherited much of the fauna of Lake Pannon, the three lakes together hosted two endemic radiations of molluscs. The most long-lived lake in the region was Lake Pannon, which persisted approximately seven million years from the late Middle Miocene to the Early Pliocene. Lake Pannon was formed by isolation from the sea. Changes in hydrological regime and/or water chemistry in addition to the relative lowstand which accompanied (or caused) the isolation almost completely exterminated the restricted marine fauna of the basin. A few highly euryhaline and marginal marine cardiids, dreissenids, and hydrobiids survived this environmental change. As in other fossil and extant long-lived lakes, the originally low-diversity fauna radiated into a high number of related endemic species (‘species flocks’) and genera in the expanding and ecologically vacated lake. Many originally freshwater taxa (unionids, sphaeriids, viviparids, valvatids, melanopsids, lymnaeids, planorbids) entered the lake as well, and some of them also gave rise to endemic clades. Evolution in both relict and freshwater immigrant groups led to the appearance of highly unusual shell shapes. Many lineages exhibit gradual morphological changes over one to several million years. More than 900 endemic mollusc species have been described from Lake Pannon, although this number includes junior synonyms, invalid species names, and highly similar chronospecies. Applying a conservative taxonomy, all these species belong to four bivalve and eight gastropod families. The high degree of endemism, however, is reflected by proposals of some authors to establish as many as five new families based on Lake Pannon endemics.  相似文献   

8.
U. T. Hammer 《Hydrobiologia》1971,37(3-4):473-507
Summary Physical aspects including geography, geology, climate, soils, vegetation and lake morphometry of the upper Qu'Appelle River basin have been summarized. The importance of multiple use of this area has been stressed.The lakes were studied during the 1959–1969 period. Only Katepwa Lake showed temperature stratification for any length of time. Ice cover persisted for about five months each year. Buffalo Pound Lake had the lowest mean Secchi disc transparency (0.9 m) while Katepwa Lake had the highest (2.1 m). Light transmissibility tended to be lowest during May and September when wind velocities were highest. The 1 % level of light extinction was usually between 1 and 3 meters depth. The yellow portion of the spectrum penetrated the furthest.Buffalo Pound Lake was the least saline (600–700 mg/l TDS) while Last Mountain Lake was most saline (2000–2400 mg/l TDS). Input from Lake Diefenbaker and heavy spring runoffs effected major decreases in all lakes by May 1969. All lakes except Last Mountain were considerably more saline than during the 1937–1941 period. Variations in anions and cations within and between lakes vary with the total dissolved solids. As salinity increases magnesium, sulphate and chloride increase faster proportionally than other ions. The order of concentration of major cations is Na > Mg > Ca > K while the major anions' order of concentration is SO4 > CO3.HCO3 > Cl.Soluble phosphate levels tend to be lowest in Buffalo Pound Lake. Levels increased sharply in Pasqua Lake below sewage outfalls from Moose jaw and Regina. Subsequently levels decreased in each successive downstream lake. Concentrations increased during the period of study. It was estimated that 594 metric tons of orthophosphate were contributed in domestic sewage in 1966. In addition land drainage contributes considerable amounts of phosphate during spring runoff.Nitrogen-bearing compounds vary in similar patterns as soluble phosphate but with smaller fluctuations. Domestic sewage and land drainage contribute significant amounts but of greater importance may be in situ biological fixation.All lakes were basic with usual pH of 8.4–9.0.From a chemical point of view these lakes are distinctly eutrophic.
Zusammenfassung An fünf Seen des Ober Qu'Appelle Fluszgebietes, Saskatchewan, sind seit 1959 die jahreszeitlichen Veränderungen des Planktons und auch wichtige chemische und physikalische Milieufaktoren studiert worden. In diesem Teil werden die physiographischen Faktoren diskutiert.Dauernde Temperaturschichtung kommt nur im Katepwa See vor. Die 1% Lichtstärke war meistens zwischen 1 und 3 m Tiefe gelegen.Der Salzgehalt der Ober Qu'Appelle Seen liegt zwischen 600 mg/l (Buffalo Pound See) and 2400 mg/1 (Last Mountain See). Die Kationen ordnen sich in der Reihenfolge Na > Mg > Ca > K, die Anionen: SO4 > CO3.HCO3 > Cl. Der pH bleibt meistens zwischen 8.4 and 9.0.Die Phosphatkonzentration ist sehr hoch. Abwasserverunreinigung, verursacht durch die Städte Regina und Moose jaw, ist bedeutsam für Phosphatgehalt in allen Seen auszer Buffalo Pound See. Die Stickstoffkonzentration ist ebenfalls hoch aber schwankt nicht soviel wie das Phosphat.Vom chemischen Standpunkt ausgesehen sind diese Seen sehr eutrophiert.
  相似文献   

9.
干旱区湖泊是区域水资源系统的重要组成部分,不仅在维系区域生态系统平衡上发挥重要支撑作用,而且也对区域气候变化和人类活动具有重要的指示意义。基于Google Earth Engine(GEE)遥感云计算平台,以Landsat 5/7/8卫星遥感影像为主要数据源,分析了1986—2019年新疆维吾尔自治区湖泊数量以及面积变化的时空特征,并从气候要素变化、人类活动干扰等方面初步探讨了新疆湖泊变化的主要原因。结果表明:1986—2019年间,气温升高使得冰川积雪融水增加,新疆湖泊整体上呈现出扩张趋势。然而受人类活动的干扰程度以及地形海拔等因素,这种趋势存在显著的空间差异。全球变暖背景下,由于受到丰富稳定的雪冰融水的补给,受人为干扰较小的青藏高原北部地区湖泊呈现显著扩张。相反由于环天山地区强烈的人类活动以及冰川加速退缩影响,该区域湖泊面积持续高位波动状态。  相似文献   

10.
《水生昆虫》2012,34(2):157-172
Outflows from two atmospherically acidified lakes in the Bohemian Forest were studied in 2005 and 2007. While Lake ?ertovo has been strongly acidified (~pH 4.6), Lake Laka was only slightly acidified in the past and is recovering now (~pH 5.2). The water chemistry and macrozoobenthos composition were analysed along longitudinal gradients of both lake outflows to determine the present status of their streams. A certain progression in stream chemistry to more neutral conditions was observed along the longitudinal gradients of both streams. However, a possible recovery of macrozoobenthos was evident only in the Lake Laka outflow, mainly via an increasing number of Ephemeroptera and Trichoptera taxa, and an increasing number of Gammarus fossarum, both along the longitudinal gradient and during the period of study. In contrast, no considerable changes were observed in the macrozoobenthos composition of the Lake ?ertovo outflow, presumably because its chemistry was harmful for acidosensitive taxa such as Ephemeroptera and Trichoptera. Plecoptera and Chironomidae were the most numerous groups in this stream. The biological recovery of both streams will depend on further chemical improvement in their catchments as well as on the dispersal ability of benthic organisms.  相似文献   

11.
Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern of a LDRV deep lake, Lake Palmas. A bathymetric survey carried out in 2011 and the analysis of hydrographic and wind data with a geographic information system allowed the calculation of several metrics of lake morphometry. The vertical profiling of physical and chemical variables in the water column during the wet/warm and dry/mild cold seasons of 2011 to 2013 has furnished a better understanding of the influence of the lake morphometry on its structure and function. The overdeepened basin has a subrectangular elongated shape and is aligned in a NW-SE direction in an alluvial valley with a maximum depth (Zmax) of 50.7m, a volume of 2.2×108 m3 (0.22km3) and a mean depth (Zmv) of 21.4m. These metrics suggest Lake Palmas as the deepest natural lake in Brazil. Water column profiling has indicated strong physical and chemical stratification during the wet/warm season, with a hypoxic/anoxic layer occupying one-half of the lake volume. The warm monomictic pattern of Lake Palmas, which is in an accordance to deep tropical lakes, is determined by water column mixing during the dry and mild cold season, especially under the influence of a high effective fetch associated with the incidence of cold fronts. Lake Palmas has a very long theoretical retention time, with a mean of 19.4 years. The changes observed in the hydrological flows of the tributary rivers may disturb the ecological resilience of Lake Palmas.  相似文献   

12.
The presence of aerobic anoxygenic phototrophs (AAPs) has been repeatedly reported from various marine environments, but their distribution in freshwater lakes was neglected until recently. We investigated the phylogenetic composition of AAP communities in 10 lakes in Northeastern Germany with different trophic status including oligotrophic Lake Stechlin and humic matter rich Lake Grosse Fuchskuhle. The AAP community was composed by members of Alpha- and Betaproteobacteria, but their contribution varied largely among the studied lakes. Our results show that AAP community composition in the studied lakes was affected mostly by pH and humic matter content. While alkaline lakes were mostly composed of Betaproteobacteria, the acidic and humic matter rich south-west (SW) basin of Lake Grosse Fuchskule was dominated (87%) by Alphaproteobacteria. The most frequent group within Betaproteobacteria was a cluster of pufM genes which was phylogenetically related to Rhodoferax representing 38.5% of all retrieved sequences. Alphaproteobacteria-related sequences had a broader phylogenetic diversity including six different taxa dominated by Sphingomonas- and Rhodobacter-like bacteria in lakes with alkaline to neutral pH. In the acidic and humic matter-rich SW basin of Lake Grosse Fuchskuhle, however, Methylobacterium-related sequences dominated the AAP community. We suggest that the variable AAP community structure might reflect the potential of these bacteria to cope with the contrasting conditions in freshwater environments.  相似文献   

13.
Lakes are important in the global and regional carbon cycle, and lake sediments potentially store substantial quantities of organic carbon. The middle and lower reaches of the Yangtze River basin (MLYB) are some of the largest agricultural areas in China with an extremely high density of lakes and rivers. The lakes in the region have undergone dramatic changes over the past several decades. In this study, six cores from five lakes (the macrophyte-dominated: Shijiuhu Lake and Honghu Lake; the algae-dominated: Chaohu Lake, Taihu Lake, and Nanyihu Lake) in the MLYB were collected from 2002 A.D. to 2008 A.D. Mass accumulation rates (MARs) of sediment derived from 210Pb and 137Cs along with total organic carbon content (TOC) were used to determine organic carbon accumulation rates (OC ARs) over the last 100 years. The TOC in the five lakes exhibited a significant increase since the mid or late 20th century, which was consistent with the increase in the lake water trophic status due to nutrient input. The average organic carbon accumulation rates for the Taihu Lake, Nanyihu Lake, Chaohu Lake, Shijiuhu Lake, and Honghu Lake were calculated to be 16.6, 28.9, 9.8, 25.4, and 113.2 g C m?2 year?1, respectively, over the past 100 years. Based on the average OC AR of 32.1 g C m?2 year?1 from the five lakes, carbon burial in lake sediments may be as much as 6.8 × 1013 g C in the MLYB over the past 100 years.  相似文献   

14.
Effects of elevated turbidity on shallow lake fish communities   总被引:1,自引:0,他引:1  
Synopsis We compared the fish communities of two shallow lakes in the lower Waikato River basin, North Island, New Zealand, to determine the effects of elevated suspended solids (SS) and collapse of submerged macrophytes. Lake Waahi was turbid (20–40 g m-3 SS) and devoid of submerged macrophytes whereas Lake Whangape was clearer (5 g m-3 SS) and dominated by submerged macrophytes. The lakes had similar fish species richness and had nine major species in common; representing eight families including Anguillidae, Retropinnidae, Galaxiidae, Eleotridae, Mugilidae, Ictaluridae, Poeciliidae, and Cyprinidae (two species). The only major fish that was absent from Lake Waahi was a lacustrine form of the common smelt, Retropinna retropinna, which disappeared after the lake became turbid in the late 1970s. CPUE, condition, and size of most species in Lake Waahi were similar to, or greater than, those in Lake Whangape. Lake Whangape clearly exceeded Lake Waahi only for CPUE of two species. Within Lake Whangape two species displayed significantly greater condition, and one species greater size, in a turbid arm of the lake than in the main basin. Apart from lacustrine Retropinna retropinna, the fish in these lakes appear well adapted to cope with, or to avoid, the direct toxic effects of suspended and settleable solids on sensitive early developmental stages. In Lake Waahi loss of cover and food provided by submerged macrophytes appears to have been compensated for by increased turbidity and an associated increase in the biomass of the mysid, Tenagomysis chiltoni (a major prey item).  相似文献   

15.
The Waitaki River system in the South Island of New Zealand includes three large glacially-formed headwater lakes, Tekapo, Pukaki and Ohau, which drain into the manmade Lake Benmore. Phytoplankton periodicity was followed from December 1975 to January 1980 as part of a study investigating possible changes in these lakes as a consequence of hydroelectric development. The phytoplankton was highly dominated by diatoms, e.g., Diatoma elongatum, Cyclotella stelligera, Asterionella formosa, and Synedra acus, but in lakes Ohau and Benmore populations of green algae occasionally developed. In all four lakes seasonal phytoplankton periodicity was observed with maximum biomass in spring and summer. In Lake Tekapo, the first lake in the chain, maximum biomass did not exceed 300 mg m–3, but in the very turbid Lake Pukaki the maximum summer biomass ranged between 300 and 800 mg m–3. In Lake Ohau, the least turbid lake, maximum biomass was around 1 000 mg m–3. In the newly created Lake Benmore periodicity was less evident and summer maxima reached over 1 500 mg m–3. The phytoplankton periodicity in these lakes is greatly influenced by seasonal patterns of turbidity from inflowing glacial silt.  相似文献   

16.
In contrast to other lakes studied in Cape Breton Highlands National Park (Nova Scotia, Canada), our paleolimnological results indicated that Glasgow Lake has been impacted by acidic deposition starting in the early 1900s. Based on analysis of diatom assemblages, the lake experienced a decrease in diatom-inferred lakewater pH from a pre-industrial pH of ~5.8 to a current pH of 5.3 (2000–2002 measured mean pH = 5.0) as well as a decrease in diatom-inferred Gran-alkalinity. In this study, diatom-based paleolimnological techniques were used in conjunction with a dynamic biogeochemical model (MAGIC) to assess both the timing and extent of the acidification trend, as well as determine a probable explanation as to why this lake, and none of the other 15 Cape Breton Highlands lakes studied for paleolimnology thus far, acidified under a peak non-marine sulphate deposition load of 43.6 mmolc m−2 year−1 in the mid-1970s. Steady-state models estimate that Glasgow Lake had the lowest buffering capacity of six study lakes and estimated critical sulphate loading of <1 mmolc m−2 year−1. MAGIC also estimated a loss of charge balance alkalinity from a pre-1850 value of 38 μmolc l−1 to a low of 12 μmolc l−1. While no evidence of biological recovery has been recorded, MAGIC estimates an increase in charge balance alkalinity to 27 μmolc l−1 in 2002 in response to decreased SO2 emissions. Of the five other lakes that were modelled, all showed trends towards more acidic states and subsequent increases in charge balance alkalinity; however, the empirical paleo-diatom approach applied to these lakes showed no evidence of acidification. Thus, Glasgow Lake has the lowest buffering capacity among the Cape Breton Highland study lakes and serves as a sentinel of potential acidification trends and recovery in this region. Handling editor: J. Saros  相似文献   

17.
The following stages in the formation of sediments in Lake Baikal have been distinguished. In the Middle Miocene lacustrine deposits accumulated in the southern depression. In Early and Middle Pliocene, as well as in Early-Middle Pleistocene the bottom of the southern and middle Baikal depressions was occupied by large lakes, but the northern basin was mainly dry with a system of small lakes, streams and rivers. This accounts for the great facies variety and the genetic heterogeneity of sediments in the northern depression. At the end of Middle and in the Late Pleistocene an abrupt warping of the depression took place, and a shore-line similar to the present one was formed. Sands in the upper part of the sediments are considered to be the product of intensive erosion which probably occurred in the pluvial epoch in the Late Pleistocene period.  相似文献   

18.
Diatom assemblages in sediments from two subalpine lakes in the Uinta Mountains, Utah, show asynchronous changes that are related to both anthropogenic and natural inputs of dust. These lakes are downwind of sources of atmospheric inputs originating from mining, industrial, urban, agricultural and natural sources that are distributed within tens to hundreds of kilometers west and south of the Uinta Mountains. Sediment cores were retrieved from Marshall and Hidden lakes to determine the impacts of atmospheric pollution, especially metals. Paleolimnological techniques, including elemental analyses and 210Pb and 239+240Pu dating, indicate that both lakes began receiving eolian inputs from anthropogenic sources in the late 1800s with the greatest increases occurring after the early 1900s. Over the last century, sediments in Marshall Lake, which is closer to the Wasatch Front and receives more precipitation than Hidden Lake, received twice the concentrations of metals and phosphorus as Hidden Lake. Comparison of diatom and elemental data reveals coeval changes in geochemistry and diatom assemblages at Marshall Lake, but not at Hidden Lake; however, a major shift in diatom assemblages occurs at Hidden Lake in the seventeenth century. The change in diatoms at Marshall Lake is marked by the near disappearance of Cyclotella stelligera and C. pseudostelligera and an increase in benthic, metal-tolerant diatoms. This change is similar to changes in other lakes that have been attributed to metal pollution. The marked change in diatom assemblages at Hidden Lake indicates a shift in lake-water pH from somewhat acidic to circumneutral. We hypothesize that this change in pH is related to drought-induced changes in input of carbonate-rich desert dust.  相似文献   

19.
Big Moose L. has become significantly more acidic since the 1950s, based on paleolimnological analyses of sediment cores. Reconstruction of past lakewater pH using diatom assemblage data indicates that from prior to 1800 to ca. 1950, lakewater pH was about 5.8. After the mid-1950s, the inferred pH decreased steadily and relatively quickly to about 4.6. Alkalinity reconstructions indicate a decrease of about 30 eq · l-1 during the same period. There was a major shift in diatom assemblage composition, including a nearly total loss of euplanktonic taxa. Chrysophyte scale assemblages and chironomid (midge larvae remains also changed in a pattern indicating decreasing lakewater pH starting in the 1950s. Accumulation rates of total Ca, exchangeable and oxide Al, and other metals suggest recent lake-watershed acidification. Cores were dated using210Pb, pollen, and charcoal. Indicators of watershed change (deposition rates of Ti, Si, Al) do not suggest any major erosional events resulting from fires or logging. Accumulation rates of materials associated with combustion of fossil fuels (polycyclic aromatic hydrocarbons, coal and oil soot particles, some trace metals, and sulfur) are low until the late 1800s-early 1900s and increase relatively rapidly until the 1920s–1930s. Peak rates occurred between the late 1940s and about 1970, when rates declined.The recent decrease in pH of Big Moose L. cannot be accounted for by natural acidification or processes associated with watershed disturbance. The magnitude, rate and timing of the recent pH and alkalinity decreases, and their relationship to indicators of coal and oil combustion, indicate that the most reasonable explanation for the recent acidification is increased atmospheric deposition of strong acids derived from combustion of fossil fuels.  相似文献   

20.
Lake Urmia (or Ormiyeh) is one of the largest hypersaline lakes in the world and the habitat of a unique bisexual Artemia species (A. urmiana). Despite this, and several other values of the lake, little literature on it has been published. The present paper is an attempt to provide a brief review on various aspects of the lake. Urmia Lake, located in northwestern Iran, is an oligotrophic lake of thalassohaline origin with a total surface area between 4750 and 6100 km2 and a maximum depth of 16 m at an altitude of 1250 m. The lake is divided into north and south parts separated by a causeway in which a 1500-m gap provides little exchange of water between the two parts. Due to drought and increased demands for agricultural water in the lake's basin, the salinity of the lake has risen to more than 300 g/L during recent years, and large areas of the lake bed have been desiccated. Therefore, management and conservation of this incomparable ecosystem should be considered to improve the current condition by fisheries research institutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号