首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Claustres PU PH  MD  PhD 《Andrologie》2001,11(4):195-203
Over the last decade, the genetic basis for CBAVD has been identified by its association with CFTR gene mutations, and CBAVD is now generally considered to be a mild or incomplete form of CF. In this review, the author summarizes the main results of compilation of CFTR gene analysis conducted in French laboratories for 3,923 patients with CF and 800 males with CABVD. The degree of clinical expression can be affected by several variables, including the molecular mechanisms by which the various CFTR mutations impair or disrupt the function of the CFTR chloride channel. Phenotypic expression of CFTR mutational genotypes varies from severe, progressive pulmonary disease with pancreatic insufficiency (CF-PI), to mild pulmonary disease with pancreatic sufficiency (PS) or singleorgan forms of “CFTR-opathies”. In CF, a total of 310 different CFTR mutations accounting for 94% of 7,846 CF alleles have generated almost 500 different genotypes, comprising 2 severe mutations in 88% of cases (CF-PI), one severe mutation in trans to a mild mutation in 11% (CF-PS), and 2 mild mutations in 1% of identified genotypes. In CBAVD, 137 mutations scattered over the whole gene were identified in 60% of 1,600 CBAVD alleles during the study. Among the 150 characterized mutational CFTR genotypes, compound heterozygosity was the rule, and the most frequent CBAVD combinations were ΔF508/5T (35%), ΔF508/other mutation (30%, including ΔF508/R117H-7T: 5,6%), and 5T/other mutation (17%). No combination of two severe mutations was found in CBAVD (0%); by contrast with the CF population, 88% of genotypes identified in CBAVD comprised a severe mutation in trans to a mild mutation, and 12% consisted of 2 mild mutations. A total of 22 genotypes were shared by both CF and CBAVD. The role of the 5T allele as a splicing variant with variable, incomplete disease penetrance in CBAVD is reviewed. Other haplotype backgrounds, such as the TG12 sequence and the M470V polymorphism, may influence CFTR splicing and/or function. This study confirms the high molecular heterogeneity of CFTR mutations in CBAVD and emphasizes the importance of extensive CFTR analysis in these patients. Longterm follow-up studies of CBAVD patients are necessary in order to predict the phenotypic consequences of numerous CFTR mutational genotypes.  相似文献   

2.
We have analyzed 97 CF unrelated Mexican families for mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Our initial screening for 12 selected CFTR mutations led to mutation detection in 56.66% of the tested chromosomes. In patients with at least one unknown mutation after preliminary screening, an extensive analysis of the CFTR gene by single stranded conformation polymorphism (SSCP) or by multiplex heteroduplex (mHET) analysis was performed. A total of 34 different mutations representing 74.58% of the CF chromosomes were identified, including five novel CFTR mutations: W1098C, P750L, 846delT, 4160insGGGG and 297-1G-->A. The level of detection of the CF mutations in Mexico is still lower than that observed in other populations with a relatively low frequency of the deltaF508 mutation, mainly from southern Europe. The CFTR gene analysis described here clearly demonstrated the high heterogeneity of our CF population, which could be explained by the complex ethnic composition of the Mexican population, in particular by the strong impact of the genetic pool from southern European countries.  相似文献   

3.
High incidence of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is associated with congenital bilateral absence of the vas deferens (CBAVD) and is considered as the genital form of cystic fibrosis (CF). The CFTR gene may also be involved in the etiology of male infertility in cases other than CBAVD. The present study was conducted to identify the spectrum and frequency of CFTR gene mutations in infertile Indian males with non-CBAVD obstructive azoospermia (n = 60) and spermatogenic failure (n = 150). Conspicuously higher frequency of heterozygote F508del mutation was detected in infertile males with non-CBAVD obstructive azoospermia (11.6%) and spermatogenic failure (7.3%). Homozygous IVS(8)-5T allele frequency was also significantly higher in both groups in comparison to those in normal healthy individuals. Two mutations in exon 25 viz., R1358I and K1351R were identified as novel mutations in patients with non-CBAVD obstructive azoospermia. Mutation R1358I was predicted as probably damaging CFTR mutation. This is the first report from the Indian population, emphasizing increased frequency of CFTR gene mutations in male infertility other than CBAVD. Thus, it is suggested that screening of CFTR gene mutations may be required in infertile Indian males with other forms of infertility apart from CBAVD and willing for assisted reproduction technology.  相似文献   

4.
Mutational analysis of the cystic fibrosis transmembrane regulator (CFTR) gene was performed in 98 unrelated CF chromosomes from 49 Lithuanian CF patients through a combined approach in which the p.F508del mutation was first screened by allele-specific PCR while CFTR mutations in nonp.F508del chromosomes have been screened for by denaturing gradient gel electrophoresis analysis. A CFTR mutation was characterized in 62.2% of CF chromosomes, two of which (2.0%) have been previously shown to carry a large gene deletion CFTRdele2,3(21 kb). The most frequent Lithuanian CF mutation is p.F508del (52.0%). Seven CFTR mutations, p.N1303K (2.0%), p.R75Q (1.0%), p.G314R (1.0%), p.R553X (4.2%), p.W1282X (1.0%), and g.3944delGT (1.0%), accounted for 10.1% of Lithuanian CF chromosomes. It was not possible to characterize 35.8% of the CF Lithuanian chromosomes. Analysis of intron 8 (TG)mTn and M470V polymorphic loci did not permit the characterization of the CFTR dysfunction underlying the CF phenotype in the patients for which no CFTR mutation was identified. Thus, screening of the eight CFTR mutations identified in this study and of the large deletion CFTRdele2,3(21 kb) allows the implementation of an early molecular or confirmatory CF diagnosis for 65% of Lithuanian CF chromosomes.  相似文献   

5.
N Morral  V Nunes  T Casals  X Estivill 《Genomics》1991,10(3):692-698
The gene responsible for cystic fibrosis (CF) has recently been identified, and a three-nucleotide deletion (delta F508 mutation) that results in the loss of a phenylalanine residue in the first putative ATP-binding domain of the predicted protein (CF transmembrane conductance regulator, CFTR) has been found to be the major CF mutation. Although several other mutations have been identified in the CFTR gene, most of them are very rare, making their application to genetic diagnosis difficult. While characterizing the genomic region encompassing the CF locus, we have identified three CA/GT blocks that flank exon 9 of the CF gene. One of the CA/GT blocks exhibits a highly informative variable number of dinucleotide repeats (VNDR) polymorphism. This intragenic VNDR microsatellite should, by itself, provide full information for genetic analysis in approximately 80% of CF families and will help elucidate the associations between DNA polymorphism haplotypes and specific gene mutations. Haplotype analyses of CF chromosomes with and without the delta F508 mutation suggest that the different alleles are generated by slipped-strand mispairing within the dinucleotide repeat during DNA replication, rather than by unequal crossingover within a recombination hot spot.  相似文献   

6.
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CFTR gene. Among males with CF, 95% are infertile due to congenital absence of the vas deferens. We investigated the role of family history of infertility among CF subjects and characterized mutations in them. Among 50 CF subjects, four had a family history of infertility. A homozygous c.1521_1523delCTT mutation was detected in one, two had a compound heterozygous genotype (c.1521_1523delCTT/c.3717 + 10 kbC>T), and c.1521_1523delCTT mutation was identified on one allele of fourth CF subject. Genetic analysis of each infertile family members of CF subjects revealed the c.1521_1523delCTT mutation on one allele; however, no mutation could be identified on other allele. Haplotype analysis of the infertile family members showed that at least one of the alleles shared the same haplotype as that of the index case. It is suggested that the CFTR gene is implicated in the infertile members of the CF families. Failure to detect mutations on the other allele by SSCP analysis demands direct gene sequencing to detect mutations in the intronic or promoter region.  相似文献   

7.
ABSTRACT: BACKGROUND: Cystic Fibrosis (CF) is a monogenic disease with complex expression because of the action of genetic and environmental factors. We investigated whether the ACE gene D/I polymorphism is associated with severity of CF. METHODS: A cross-sectional study was performed, from 2009 to 2011, at University of Campinas - UNICAMP. We analyzed 180 patients for the most frequent mutations in the CFTR gene, presence of the ACE gene D/I polymorphism and clinical characteristics of CF. RESULTS: There was an association of the D/D genotype with early initiation of clinical manifestations (OR: 1.519, CI: 1.074 to 2.146), bacterium Burkholderia cepacia colonization (OR: 3.309, CI: 1.476 to 6.256) and Bhalla score (BS) (p = 0.015). The association was observed in subgroups of patients which were defined by their CFTR mutation genotype (all patients; subgroup I: no mutation detected; subgroup II: one CFTR allele identified to mutation class I, II or III; subgroup III: both CFTR alleles identified to mutation class I, II and/or III). CONCLUSION: An association between the D allele in the ACE gene and the severity of CF was found in our study.  相似文献   

8.
Fetal bowel anomalies may reveal cystic fibrosis (CF) and the search for CF transmembrane conductance regulator (CFTR) gene mutations is part of the diagnostic investigations in such pregnancies, according to European recommendations. We report on our 18-year experience to document comprehensive CFTR genotypes and correlations with ultrasound patterns in a series of 694 cases of fetal bowel anomalies. CFTR gene analysis was performed in a multistep process, including search for frequent mutations in the parents and subsequent in-depth search for rare mutations, depending on the context. Ultrasound patterns were correlated with the genotypes. Cases were distinguished according to whether they had been referred directly to our laboratory or after an initial testing in another laboratory. A total of 30 CF fetuses and 8 cases compatible with CFTR-related disorders were identified. CFTR rearrangements were found in 5/30 CF fetuses. 21.2% of fetuses carrying a frequent mutation had a second rare mutation, indicative of CF. The frequency of CF among fetuses with no frequent mutation was 0.43%. Correlation with ultrasound patterns revealed a significant frequency of multiple bowel anomalies in CF fetuses. The results emphasize the need to search for rearrangements in the diagnosis strategy of fetal bowel anomalies. The diagnostic value of ultrasound patterns combining hyperechogenic bowel, loop dilatation and/or non-visualized gallbladder reveals a need to revise current strategies and to offer extensive CFTR gene testing when the triad is diagnosed, even when no frequent mutation is found in the first-step analysis.  相似文献   

9.
The aim of this study was to reveal the CFTR gene mutation status in the Croatian population as well as to establish the haplotypes associated with cystic fibrosis (CF) and those associated with specific gene mutations. A total of 48 unrelated CF patients from Croatia were examined. Among 96 tested alleles, we found nine different mutations: DeltaF508, 58.33%; G542X, 3.12%; N1303K, 2.08%; R1162X; 621 + 1G --> T; G85E; Y569C; E585X; and S466X, 1.04%. Analysis of three polymorphic loci revealed 15 different haplotypes. Two of them (21-23-13 and 21-17-13) occurred with a higher frequency (40% and 24%). Both of these haplotypes also carried a CFTR gene mutation (DeltaF508 or G542X) on 27 out of 32 chromosomes. Among 12 (of all together 29) CF alleles on which no mutations were found, we detected 10 different haplotypes. Because there are still no published data on the distribution of polymorphic loci in Croatia, nor haplotypes associated with mutations in the CFTR gene, our results greatly contribute to knowledge regarding the genetic background of CF in this region.  相似文献   

10.
Cystic fibrosis (CF) is one of the most common monogenic diseases affecting Caucasians and has an incidence of approximately 1:3,300 births. Currently recommended screening panels for mutations in the responsible gene (CF transmembrane regulator gene, CFTR) do not detect all disease-associated mutations. Our laboratory offers extensive sequencing of the CFTR (ABCC7) gene (including the promoter, all exons and splice junction sites, and regions of selected introns) as a clinical test to detect mutations which are not found with conventional screening. The objective of this report is to summarize the findings of extensive CFTR sequencing from our first 157 consecutive patient samples. In most patients with classic CF symptoms (18/24, 75%), extensive CFTR sequencing confirmed the diagnosis by finding two disease-associated mutations. In contrast, only 5 of 75 (7%) patients with atypical CF had been identified with two CFTR mutations. A diagnosis of CF was confirmed in 10 of 17 (58%) newborns with either positive sweat chloride readings or positive immunoreactive trypsinogen (IRT) screen results. We ascertained ten novel sequence variants that are potentially disease-associated: two deletions (c.1641AG>T, c.2949_2853delTACTC), seven missense mutations (p.S158T, p.G451V, p.K481E, p.C491S, p.H949L, p.T1036N, p.F1099L), and one complex allele ([p.356_A357del; p.358I]). We ascertained three other apparently novel complex alleles. Finally, several patients were found to carry partial CFTR gene deletions. In summary, extensive CFTR gene sequencing can detect rare mutations which are not found with other screening and diagnostic tests, and can thus establish a definitive diagnosis in symptomatic patients with previously negative results. This enables carrier detection and prenatal diagnosis in additional family members.  相似文献   

11.
Cystic fibrosis (CF) is caused by CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations. We ascertained five patients with a novel complex CFTR allele, with two mutations, H939R and H949L, inherited in cis in the same exon of CFTR gene, and one different mutation per patient inherited in trans in a wide population of 289 Caucasian CF subjects from South Italy. The genotype-phenotype relationship in patients bearing this complex allele was investigated. The two associated mutations were related to classical severe CF phenotypes.  相似文献   

12.
In a systematic screening for mutations in the gene encoding the cystic fibrosis transmembrane regulator among Danish cystic fibrosis (CF) patients, we identified a mutation in exon 3 (394delTT); this mutation was found to be relatively common in Denmark. We therefore screened for 394delTT in Sweden and Norway, where it turned out to be the second most frequent mutation, accounting for 4% of all CF mutations. It also occurs with a high frequency in Finland, but has not been found in larger surveys of mutations in the CFTR gene. Thus, 394delTT seems to be a specific Nordic CF mutation.  相似文献   

13.
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR serves as a cAMP-stimulated chloride channel in a wide range of epithelial tissues and its dysfunction is a hallmark of CF. Over 1400 mutations in the CFTR gene are known, but functional data exist only for a minority of the mutant channels. The aim of the present study was to functionally characterize a novel CFTR mutation identified in a patient with atypical CF. Full length sequencing of the patient's CFTR gene revealed a homozygous C to T transition at nucleotide position 331 (CCT>TCT), which results in a P67S amino acid substitution. Mutant and wild-type CFTR were heterologously expressed in Xenopus laevis oocytes. CFTR whole-cell currents were studied using the two-electrode voltage-clamp technique. Channel surface expression was assessed by a chemiluminescence assay. Expression of P67S-CFTR resulted in functional CFTR chloride channels. However, the CFTR chloride conductance observed in oocytes expressing the mutant channel averaged only 24% of that in oocytes expressing wild-type CFTR. Similarly, surface expression of the mutant channel was reduced. In contrast, the mutation did not alter the anion selectivity of the channel, and Western blot analysis indicated a similar protein expression level of mutant and wild-type CFTR. Our findings indicate that the P67S mutation reduces CFTR chloride channel function by reducing channel surface expression. The mild disease phenotype of the patient indicates that the residual function of the mutant channel is sufficient to prevent the development of severe CF symptoms.  相似文献   

14.
AIMS: To obtain more insight into the variability of the CFTR mutations found in immigrant cystic fibrosis (CF) patients who are living in Europe now, and to estimate the test sensitivity of different frequently used methods of DNA analysis to detect CF carriers or patients among these Turkish or North African immigrants. METHODS: A survey among 373 European CF centers asking which CFTR mutations had been found in Turkish and North African CF patients. RESULTS: 31 and 26 different mutations were reported in Turkish and North African patients, identifying 64.2% (113/176) and 87.4% (118/135) alleles, respectively (p < 0.001). The mean sensitivity (detection rate) of three most common CFTR mutation panels to detect these mutations differed between Turkish and North African people, 44.9% (79/176) versus 69.6% (94/135) (p < 0.001), and can be increased to 57.4% (101/176) and 79.3% (107/135) (p < 0.001), respectively, by expanding these panels with 13 mutations which have been found on two or more alleles. CONCLUSION: 35.8% and 12.6%, respectively, of CF alleles in Turkish and North African patients living in Europe now had not been identified. Among these populations, the test sensitivity of common CFTR mutation panels is insufficient for use in screening programs in Europe, even after expansion with frequent Turkish and North African mutations. This raises questions about whether and how to implement CF carrier and neonatal screening in a multiethnic society.  相似文献   

15.
The analysis of polymorphic markers within or closely linked to the cystic fibrosis transmembrane regulator (CFTR) gene is useful as a molecular tool for carrier detection of known and unknown mutations. To establish the association between mutations in the CFTR gene in western Mexican cystic fibrosis (CF) patients, the distribution of XV2c/KM19 haplotypes was analyzed by PCR and restriction enzyme digestion in 384 chromosomes from 74 CF patients, their unaffected parents, and normal subjects. The haplotype analysis revealed that haplotype B was present in 71.9% of CF chromosomes compared to 0% of non-CF chromosomes. The F508del and G542X mutations were strongly associated with haplotype B (96.7% and 100% of chromosomes, respectively). The haplotype distribution of the CF chromosomes carrying other CFTR mutations had a more heterogeneous background. Our results show that haplotype B is associated with CFTR mutations. Therefore, haplotype analysis is a suitable alternate strategy for screening CF patients with a heterogeneous clinical picture from populations with a high molecular heterogeneity where carrier detection programs are not available. In addition, it may be a helpful diagnostic tool for genetic counseling and carrier detection in the relatives of CF patients and in couples who are planning to have children.  相似文献   

16.
More than 900 mutations and more than 200 different polymorphisms have now been reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Ten years after the cloning of the CFTR gene, the complete scanning of the 27 exons to identify known and novel mutations remains challenging. Rapid accurate identification of mutated alleles is important for prenatal diagnosis, for cascade screening in families at risk of cystic fibrosis (CF) and for understanding the correlation between genotype and phenotype. In this study, we report the successful use of denaturing ion-pair reverse-phase high performance liquid chromatography (D-HPLC) to analyse rapidly the complete coding sequence of the CFTR gene. With 27 pairs of polymerase chain reaction primers, we optimised the temperature conditions required for the analysis of each amplicon and validated thetest conditions on samples from a panel of 1552 CF patients who came from France and other European countries and who had mutations and polymorphisms located in the various melting domains of the gene. D-HPLC identified 415 mutated alleles previously characterised by denaturing gradient gel electrophoresis and DNA sequencing, plus 74 novel mutations reported here.This new technique for screening DNA for sequence variation was extremely accurate (it identified 100% of the CFTR alleles tested so far) and rapid (the complete CFTR gene could be analysed in less than a week). Our approach should reduce the number of untyped CF alleles in populations and thus decrease the residual risk in couples at risk of CF. This technique may be important not only for CF,but also for many other genes with a high frequency of point mutations at a variety of sites.  相似文献   

17.
In order to determine the spectrum of cystic fibrosis (CF) mutations in the Turkish population, a complete coding region of the cystic fibrosis transmembrane conductance regulator (CFTR) gene including exon-intron boundaries, on 122 unrelated CF chromosomes from 73 Turkish CF families was analysed by denaturing gradient gel electrophoresis and multiplex heteroduplex analysis on MDE gel matrix. In addition to 15 previously reported mutations and 12 polymorphisms, three novel mutations, namely 3172delAC, P1013L and M1028I, were detected. ΔF508 was found to be present on 18.8% of CF chromosomes. The second most common mutation was 1677delTA, with a frequency of 7.3%, followed by G542X and 2183AA→G mutations, with frequencies of 4.9%. These four most common mutations in Turkish CF population account for approximately 36% of mutations. This study could only detect 52.5% of disease-causing mutations in this population; 47.5% of CF alleles remain to be identified, reflecting the high molecular heterogeneity of the Turkish population. Received: 16 June 1997 / Accepted: 18 September 1997  相似文献   

18.
Summary In order to facilitate the screening for the less common mutations in the cystic fibrosis (CF) gene viz., the CF transmembrane conductance regulator gene (CFTR), marker haplotypes were determined for German nonCF (N) and CF chromosomes by polymerase chain reaction analysis of four polymorphisms upstream of the CF gene (XV-2c, KM.19, MP6-D9, J44) and six intragenic polymorphisms (GATT, TUB9, M470V, T854T, TUB18, TUB20) that span the CFTR gene from exon 6 through exon 21. Novel informative sequence variants of CFTR were detected in front of exons 10 (1525-61 A or G), 19 (3601-65 C or A), and 21 (4006-200 A or G). The CF locus exhibits strong long-range marker-marker linkage disequilibrium with breakpoints of recombination between XV-2c and KM.19, and between exons 10 and 19 of CFTR. Marker alleles of GATT-TUB9 and TUB18-TUB20 were found to be in absolute linkage disequilibrium. Four major haplotypes encompass more than 90% of German N and CF chromosomes. Fifteen CFTR mutations detected on 421 out of 500 CF chromosomes were each identified on one of these four predominant 7-marker haplotypes. Whereas all analysed F508 chromosomes carried the same KM.19-D9-J44-GATT-TUB9-M470V-T854T haplotype, another frequent mutation in Germany, R553X, was identified on two different major haplotypes. Hence, a priori haplotyping cannot exclude a particular CF mutation, but in combination with population genetic data, enables mutations to be ranked by decreasing probability.  相似文献   

19.
20.
Cystic fibrosis (CF) is the most common severe inherited disorder that affects children in Caucasian populations. The aim of this study was to define the spatial and temporal distribution of CF and its mutations in Brittany (western France) where the frequency of the disease is high. We retrospectively registered all CF patients born in Brittany since 1960 by cross-checking various data sources (e.g. medical care centres, genetics laboratories, hospital archives). Councils were contacted so that the place of residence of patients at birth could be determined. Moreover, the spectrum of CF transmembrane conductance regulator (CFTR) mutations and their spatial distribution across Brittany were determined. A total of 520 patients was registered in this study. The incidence of CF was assessed according to administrative (department, district) and diocesan divisions of Brittany and its evolution analysed over four decades. The incidence of CF was 1/2630, with a west/east gradient that was confirmed over time (Finistère: 1/2071 vs Ille-et-Vilaine: 1/3286). At present, the incidence of CF is decreasing, mainly as a result of prenatal diagnosis. An excellent mutation detection rate of 99.7% was obtained. Western Brittany presented a specific spectrum of mutations: 1078delT (9.4% of mutated alleles in the diocese of Cornouaille), G551D (7.7% in the diocese of Léon), 4005+1G-->A (2.9% in Cornouaille) and W846X (1.5% in western Brittany). On the other hand, the eastern region showed a spectrum more similar to the overall picture in France as a whole. This study enabled a precise measurement of the incidence of CF in Brittany to be obtained. The high frequency of the CFTR mutated alleles may result from founder effects and genetic drifts. Moreover, the study brings together the regional specificities of the CFTR gene and highlights disparities that exist in this part of France, both in incidence and in mutation distribution. These are attributable to different degrees of isolation and of population movements between the eastern and western parts of the region. Given that this is the first time that such a detailed study of the CFTR gene has been performed on a large population, this heightened knowledge of the epidemiology of CF in Brittany should provide a basis for the improvement of diagnostic strategies and refinement of genetic counselling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号