首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The ontogeny of pepsinogen C-producing cells in rat fundic glands was studied by means of light and electron microscopy using an antiserum raised against a synthetic peptide based on rat pepsinogen C. To confirm the immunocytochemistry results, the expression of rat pepsinogen C messenger RNA (mRNA) in the fundic gland was also examined by in situ hybridization using a digoxigenin-labeled RNA probe. In adult rats, pepsinogen C was produced by chief cells, mucous neck cells, and intermediate mucopeptic cells. Pepsinogen C-producing cells appeared in embryos as early as 18.5 days’ gestation. The development of these cells could be classified into four stages: (1) 18.5 days’ gestation to 0.5 days after birth; (2) 0.5 days to 2 weeks after birth; (3) 3–4 weeks after birth; (4) 4–8 weeks after birth. In embryos and young animals, pepsinogen C-producing cells were mucopeptic cells. By 4 weeks after birth, mucous neck cells could be distinguished morphologically. The maturation stages of the chief cells could be traced by electron microscopy along the longitudinal axis of the rat fundic gland by double-staining with anti-pepsinogen C antibody and periodic acid-thiocarbohydrazide-silver proteinate. Positive reactions for pepsinogen C and pepsinogen C mRNA expression were detected in mucous neck cells. Therefore, we conclude that mucous neck cells are precursor cells of chief cells. Mucous neck cells, intermediate cells, and chief cells are in the same differentiating cell lineage.  相似文献   

2.
The localization of pepsinogens (PG A and PG C) was studied intracellularly in human gastric biopsies embedded in Lowicryl K4M, using affinity-purified antibodies and protein A-gold. The homogeneous secretory granules of the chief cells contained both PG A and PG C, as was proved by serial sections. Identical reaction was also seen in the core of the biphasic mucous neck cell granules, whereas the mantle did not label. The rough endoplasmic reticulum (RER) and Golgi complex of the chief cells and mucous neck cells contained ample label. Transitional cells identified by the presence of granules of both chief cells and mucous neck cells were recognized. This type of mucous neck cell is thought to transform into a chief cell. However, an increase of RER that could explain an increase of the pepsinogen production was not observed. A mixture of these granules was also found in cells morphologically characterized as young parietal cells, suggesting a common precursor for these three cell types. These observations make the transformation from mucous neck to chief cells questionable. Antral gland cells contained only PG C, as was shown in serial section, too.  相似文献   

3.
The localization of pepsinogens (PG A and PG C) was studied intracellularly in human gastric biopsies embedded in Lowicryl K4M, using affinity purified antibodies and protein A-gold. The homogeneous secretory granules of the chief cells contained both PG A and PG C, as was proved in serial sections. Identical reaction was seen in the core of the biphasic mocous neck cell granules, whereas the mantle did not label. Even the rough endoplasmic reticulum (RER) and Golgi complex of the chief- and mucous neck cells contained label. Transitional cells identified by the presence of granules of both chief- and mucous neck cells were seen. This type of mucous neck cell is thought to transform into a chief cell. However an increase of RER that could explain an increase of the pepsinogen production was not observed. A mixture of these granules were also found in morphologically characterized young parietal cells, suggesting a common precursor for these three cell-types. These observations makes the transformation from mucous neck- into chief cells questionable. In conclusion Lowicryl K4M appeared to be a significant improvement compared to the Epon 812. Its shows a better preservation of both cytoplasmic antigens and cellular fine structure. This improvement adds information on the transformation hypothesis. Lowicryl K4M enables us, firstly to distinguish PG A and C synthesizing RER in different types of cell and secondly to recognize immature cells with the characteristics of chief-, mucous neck-, and parietal cells in the fundic gland. Very likely these three cell-types all arise from a common precursor. It is questionable that in normal human gastric mucosa the mucous neck cells transform into chief cells.  相似文献   

4.
The glycoconjugates of the human fundic mucosa were characterized at the ultrastructural level by means of direct (Helix pomatia agglutinin-gold complex) and indirect lectin techniques (Concanavalin A and horseradish peroxidase-gold complex; wheat germ agglutinin and ovomucoid-gold complex). Surface mucous cells and mucous neck cells secreted O-glycoproteins with N-acetylgalactosamine and N-acetylglucosamine residues at the non reducing terminus of the saccharidic chain. The secretory granules of the mucous neck cells showed condensed areas slightly reactive to ConA. The results obtained in the chief cells suggest that these cells secrete N-glycoproteins rich in mannose and/or glucose residues. "Transitional cells", presenting both morphological characteristics and lectin binding pattern intermediate to the mucous neck and chief cells have been observed. The surface of the intracellular canaliculi of the parietal cell was labelled by HPA, WGA and ConA. In the neck region of the gastric glands, immature parietal cells containing abundant mucous granules reactive to HPA, WGA and ConA were observed. The present results further corroborate the existence of a common cell precursor for surface mucous, mucous neck and parietal cells. In a further step, mucous neck cells gradually differentiate into chief cells the transitional cells being an intermediate stage.  相似文献   

5.
New techniques are proposed for differentiating each type of gastric epithelial cell in the same tissue section. The techniques combine the following stains: paradoxical concanavalin A staining (PCS) to identify mucous neck cells, periodic acid Schiff-concanavalin A staining to distinguish mucous neck cells from surface mucous cells, and a modified Bowie's stain to demonstrate zymogen granules of chief cells. Feulgen hydrolysis preceding the Bowie stain was found to remove most of the nonspecific coloration encountered with the original Bowie method. The results obtained by the new sequences were as follows: Feulgen hydrolysis-PCS-Bowie staining: mucous neck cells stained brown and chief cell zymogen granules deep blue. The other mucin-secreting cells remained unstained; Feulgen hydrolysis-PAS-concanavalin A-Bowie staining: mucous neck cells stained brown, zymogen granules stained deep blue to purplish blue and surface mucous cells stained purplish red.  相似文献   

6.
New techniques are proposed for differentiating each type of gastric epithelial cell in the same tissue section. The techniques combine the following stains: A) paradoxical concanavalin A staining (PCS) to identify mucous neck cells, B) periodic acid Schiff-concana-valin A staining to distinguish mucous neck cells from surface mucous cells, and C) a modified Bowie's stain to demonstrate zymogen granules of chief cells. Feulgen hydrolysis preceding the Bowie stain was found to remove most of the nonspecific coloration encountered with the original Bowie method. The results obtained by the new sequences were as follows: 1) Feulgen hydroIysis-PCS-Bowie staining: mucous neck cells stained brown and chief cell zymogen granules deep blue. The other mucin-secreting cells remained unstained; 2) Feulgen hydrolysis-PAS-concanavalin A-Bowic staining: mucous neck cells stained brown, zymogen granules stained deep blue to purplish blue and surface mucous cells stained purplish red.  相似文献   

7.
Summary Development and maturation of pepsinogen 1-producing cells were studied in the gastric fundic mucosa of the mouse by means of light- and electron-microscopic immunocytochemistry using rabbit anti-rat pepsinogen 1-serum. In the adult mouse, secretory granules in mucous neck cells, transitional mucous neck/chief cells and chief cells are immunolabeled. The numerical density of gold particles on zymogen granules is not significantly altered among different stages of maturation of chief cells. In addition, rough endoplasmic reticulum and Golgi complex of these cell types show a weak labeling. In mice from day 16 of gestation to postnatal day 14 mucous neck cells and chief cells cannot be distinguished, but only one type of pepsinogen 1-producing cell, called primitive chief cell, is identified in the fundic gland. The intensity of immunoreactivity of secretory granules in primitive chief cells is uniform within an individual cell but varies greatly among different cells. The majority of primitive chief cells contains weakly labeled granules regardless of the maturation stage of cells or of animals. On postnatal day 21, mucous neck, transitional and chief cells are distinguishable, and secretory granules in these cells are intensely immunolabeled as in the adult. These results suggest that pepsinogen 1-production rapidly increases with differentiation of mucouse neck and chief cells.  相似文献   

8.
Anatomical, histological, and ultrastructural studies of the European beaver stomach revealed several unique morphological features. The prominent attribute of its gross morphology was the cardiogastric gland (CGG), located near the oesophageal entrance. Light microscopy showed that the CGG was formed by invaginations of the mucosa into the submucosa, which contained densely packed proper gastric glands comprised primarily of parietal and chief cells. Mucous neck cells represented <0.1% of cells in the CGG gastric glands and 22–32% of cells in the proper gastric glands of the mucosa lining the stomach lumen. These data suggest that chief cells in the CGG develop from undifferentiated cells that migrate through the gastric gland neck rather than from mucous neck cells. Classical chief cell formation (i.e., arising from mucous neck cells) occurred in the mucosa lining the stomach lumen, however. The muscularis around the CGG consisted primarily of skeletal muscle tissue. The cardiac region was rudimentary while the fundus/corpus and pyloric regions were equally developed. Another unusual feature of the beaver stomach was the presence of specific mucus with a thickness up to 950 µm (in frozen, unfixed sections) that coated the mucosa. Our observations suggest that the formation of this mucus is complex and includes the secretory granule accumulation in the cytoplasm of pit cells, the granule aggregation inside cells, and the incorporation of degenerating cells into the mucus.  相似文献   

9.
Summary The glycoconjugates of the human fundic mucosa were characterized at the ultrastructural level by means of direct (Helix pomatia agglutinin-gold complex) and indirect lectin techniques (Concanavalin A and horseradish peroxidase-gold complex; wheat germ agglutinin and ovomucoid-gold complex). Surface mucous cells and mucous neck cells secreted O-glycoproteins with N-acetylgalactosamine and N-acetylglucosamine residues at the non reducing terminus of the saccharidic chain. The secretory granules of the mucous neck cells showed condensed areas slightly reactive to ConA. The results obtained in the chief cells suggest that these cells secrete N-glycoproteins rich in mannose and/or glucose residues. Transitional cells, presenting both morphological characteristics and lectin binding pattern intermediate to the mucous neck and chief cells have been observed. The surface of the intracellular canaliculi of the parietal cell was labelled by HPA, WGA and ConA. In the neck region of the gastric glands, immature parietal cells containing abundant mucous granules reactive to HPA, WGA and ConA were observed. The present results further corroborate the existence of a common cell precursor for surface mucous, mucous neck and parietal cells. In a further step, mucous neck cells gradually differentiate into chief cells the transitional cells being an intermediate stage.  相似文献   

10.
The stimulation of gastric acid secretion from parietal cells involves both intracellular calcium and cAMP signaling. To understand the effect of increased cAMP on parietal cell function, we engineered transgenic mice expressing cholera toxin (Ctox), an irreversible stimulator of adenylate cyclase. The parietal cell-specific H(+),K(+)-ATPase beta-subunit promoter was used to drive expression of the cholera toxin A1 subunit (CtoxA1). Transgenic lines were established and tested for Ctox expression, acid content, plasma gastrin, tissue morphology, and cellular composition of the gastric mucosa. Four lines were generated, with Ctox-7 expressing approximately 50-fold higher Ctox than the other lines. Enhanced cAMP signaling in parietal cells was confirmed by observation of hyperphosphorylation of the protein kinase A-regulated proteins LASP-1 and CREB. Basal acid content was elevated and circulating gastrin was reduced in Ctox transgenic lines. Analysis of gastric morphology revealed a progressive cellular transformation in Ctox-7. Expanded patches of mucous neck cells were observed as early as 3 mo of age, and by 15 mo, extensive mucous cell metaplasia was observed in parallel with almost complete loss of parietal and chief cells. Detection of anti-parietal cell antibodies, inflammatory cell infiltrates, and increased expression of the Th1 cytokine IFN-gamma in Ctox-7 mice suggested that autoimmune destruction of the tissue caused atrophic gastritis. Thus constitutively high parietal cell cAMP results in high acid secretion and a compensatory reduction in circulating gastrin. High Ctox in parietal cells can also induce progressive changes in the cellular architecture of the gastric glands, corresponding to the development of anti-parietal cell antibodies and autoimmune gastritis.  相似文献   

11.
In the mammalian gastrointestinal tract, the cell fate decisions that specify the development of multiple, diverse lineages are governed in large part by interactions of stem and early lineage progenitor cells with their microenvironment, or niche. Here, we show that the gastric parietal cell (PC) is a key cellular component of the previously undescribed niche for the gastric epithelial neck cell, the progenitor of the digestive enzyme secreting zymogenic (chief) cell (ZC). Genetic ablation of PCs led to failed patterning of the entire zymogenic lineage: progenitors showed premature expression of differentiated cell markers, and fully differentiated ZCs failed to develop. We developed a separate mouse model in which PCs localized not only to the progenitor niche, but also ectopically to the gastric unit base, which is normally occupied by terminally differentiated ZCs. Surprisingly, these mislocalized PCs did not maintain adjacent zymogenic lineage cells in the progenitor state, demonstrating that PCs, though necessary, are not sufficient to define the progenitor niche. We induced this PC mislocalization by knocking out the cytoskeleton-regulating gene Cd2ap in Mist1−/− mice, which led to aberrant E-cadherin localization in ZCs, irregular ZC-ZC junctions, and disruption of the ZC monolayer by PCs. Thus, the characteristic histology of the gastric unit, with PCs in the middle and ZCs in the base, may depend on establishment of an ordered adherens junction network in ZCs as they migrate into the base.  相似文献   

12.
Summary Ten hamsters received repeated injections of 3H-thymidine for 4 days and were allowed to survive for 7, 28, 42 and 100 days. Changes in spatial distribution of the labelled cells and in labelling indices of each cell line in the gastric glands were studied at various days after 3H-thymidine injections, and the fate of the mucous neck cell, the replacement of the chief cell and the mode of cell migration were discussed.After 4 days of repeated injections of 3H-thymidine, the labelled parietal cells and the mucous neck cells were concentrated at the neck area. Starting from the neck area, they migrated an average of 3 micra downwards per day. By 42 days, they reached the middle level of the glands, where the labelled mucous neck cells decreased but the labelled chief cells increased in number. The differentiation of the chief cell then appears to take place at the middle level of the glands through transformation of the migratory mucous neck cells. After 4 days of the labelling, about 1.8% of the chief cells located in the lower part of the glands was found to undergo in situ replication. This indicates that the renewal of this cell type is partly assured by its own mitotic activity.The foveolar cell — the future surface epithelium — seems to migrate upwards along the long axis of the glandular tubule in the pipe line system, which means first produced, first migrates. After migrating out from the neck area, the parietal cell and the mucous neck cell (the future chief cell) take an average of 200 days to reach the lower end of the glands. In the process of migration, however, the cells produced contemporaneously at the neck area became scatteringly spread from the neck towards the bottom of the gland. The time required for the newly-formed cells to reach the lower end of the gland varied between 100 and 300 days. In the gastric glands the cells first produced at the neck area do not first reach the lower end of the glands. This mode of random migration is referred to as the stochastic flow system. As one of the probable factors which disturb the pipe line flow of downward cell migration, cellular movements perpendicular to the long axis of the glandular tubule were suggested to occur at random at an any level of the gastric glands.Supported by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan  相似文献   

13.
Gastric cancer in humans arises in the setting of oxyntic atrophy (parietal cell loss) and attendant hyperplastic and metaplastic lineage changes within the gastric mucosa. Helicobacter infection in mice and humans leads to spasmolytic polypeptide-expressing metaplasia (SPEM). In a number of mouse models, SPEM arises after oxyntic atrophy. In mice treated with the parietal cell toxic protonophore DMP-777, SPEM appears to arise from the transdifferentiation of chief cells. These results support the concept that intrinsic mucosal influences regulate and modulate the appearance of gastric metaplasia even in the absence of significant inflammation, whereas chronic inflammation is required for the further neoplastic transition.  相似文献   

14.
Apelin cells in the rat stomach   总被引:4,自引:0,他引:4  
Apelin is a recently discovered peptide that is the endogenous ligand for the APJ receptor. Apelin is produced in the central nervous system, heart, lung, mammary gland and gastrointestinal (GI) tract. The aim of this study was to identify by immunohistochemistry (IHC) cell types in the rat stomach that produce apelin peptide. IHC revealed abundant apelin-positive cells, primarily in the neck and upper base regions of the gastric glands in the mucosal epithelium. Apelin is not detected in the muscle layer. Apelin-positive cells were identified as mucous neck, parietal cells, and chief cells. Apelin is also identified in gastric epithelial cells that produce chromogranin A (CGA), a marker of enteroendocrine cells. The findings that apelin is expressed in gastric exocrine and endocrine cells agrees with and extends other data showing that apelin peptide is measurable in the gut lumen and in the systemic circulation by immunoassay.  相似文献   

15.
The development and maturation of fundic glands of Wistar rats were studied using Griffonia simplicifolia agglutinin-II (GSA-II) histochemistry at the light microscopic and electron microscopic levels. In adult rats, mucous neck cells and cells intermediate between mucous neck cells and chief cells were specifically labeled with GSA-II, whereas other fundic gland cells were virtually negative. Ontogenetic studies revealed that GSA-II positive cells appeared at the bottom of the gland by 21 days of gestation. With differentiation and aging, the elongation of the fundic gland continued, and the labeling intensity of the mucous neck cells increased by 3 weeks after birth. Cells intermediate between mucous neck cells and chief cells were discernible from 3 days after birth. Typical mucous neck cells appeared at 3 weeks after birth, when their labeling intensity with colloidal gold (CG) particles approximated that of adults. On the other hand, the reactive cell population gradually moved from the bottom toward the middle portion of the gland. Finally, the reactive cells were localized at the neck portion of the fundic gland. These results suggest that GSA-II is a valuable marker for studying mucous neck cells and both their precursor cells and their derivatives.  相似文献   

16.
IQGAPs, GTPase-activating proteins with an IQ motif, are thought to regulate many actin cytoskeleton-based activities through interactions with Cdc42 and Rac. Recently, Cdc42 was implicated in regulation of gastric parietal cell HCl secretion, and IQGAP2 was immunolocalized with Cdc42 to F-actin-rich intracellular canalicular membranes of isolated gastric parietal cells in primary culture. Here we sought to define distribution and localization of IQGAP1 and IQGAP2 in major oxyntic (acid-secreting) gastric mucosal cell types and to determine whether secretory agonists modulate these proteins. Differential staining protocols were used to identify different cell populations (parietal, chief, surface/pit, and mucous neck cells) in semi-intact glands isolated from rabbit gastric mucosae and to characterize these same cells after dispersion and fractionation on isopycnic density gradients with simultaneous staining for F-actin, H+-K+-ATPase, and GSII lectin-binding sites. There was a pronounced increase in intracellular F-actin staining in dispersed chief cells, apparently from internalization of F-actin-rich apical membranes that normally abut the gland lumen. Therefore, other membrane-associated proteins might also be redistributed by disruption of cell-cell contacts. Western blot analyses were used to quantitate relative concentrations of IQGAPs in defined mucosal cell fractions, and gastric glands were used for in situ localizations. We detected uniform levels of IQGAP2 expression in oxyntic mucosal cells with predominant targeting to regions of cell-cell contact and nuclei of all cell types. IQGAP2 was not detected in parietal cell intracellular canaliculi. IQGAP1 expression was variable and targeted predominantly to the cortex of chief and mucous neck cells. Parietal cells expressed little or no IQGAP1 vs. other mucosal cell types. Phosphoprotein affinity chromatography, isoelectric focusing, and phosphorylation site analyses indicated that both IQGAP1 and IQGAP2 are phosphoproteins potentially regulated by [Ca2+]i/PKC and cAMP signaling pathways, respectively. Stimulation of glands with carbachol, which elevates [Ca2+]i and activates PKC, induced apparent translocation of IQGAP1, but not IQGAP2, to apical poles of chief (zymogen) and mucous neck cells. This response was mimicked by PMA but not by ionomycin or by elevation of [cAMP]i with forskolin. Our observations support a novel, PKC-dependent role for IQGAP1 in regulated exocytosis and suggest that IQGAP2 may play a more general role in regulating cell-cell interactions and possibly migration within the gastric mucosa.  相似文献   

17.
Summary The structure of the frog gastric and esophageal mucosa was studied in the course of a complete hibernation period and compared with that in summer frogs (see preceding article).It appeared that especially chief cells and parietal cells are liable to cytoplasmic remodelling. Thus, in chief cells the rough endoplasmic reticulum (RER) undergoes disorganization, the number of free ribosomes increases and the Golgi system becomes transformed into a compact vesicular structure. The number of pepsinogen granules in chief cells of late winter frogs is only 20% of that in frogs studied at the onset of hibernation. The loss of pepsinogen granules is at least partly due to autophagy. In addition, lysosomes are involved in focal degradation of the cytoplasm, which may ultimately result in complete degeneration of some chief cells. The presence of zymogen granules containing fibrocyte-like cells in the tunica propria proved heterophagocytosis by these cells.In parietal cells, the area occupied by smooth endoplasmic reticulum becomes reduced. The basal cytoplasm of both chief cells and parietal cells contains numerous lipid droplets, which, in contrast to those in summer frogs, are continuous with RER cisternae. The juxtaposition of lipid droplets and mitochondria seen in summer frogs is eventually lost in hibernating animals.Apart from the appearance of supra-nuclear lipid droplets, the mucous cells of the surface epithelium show no striking alterations. However, in the glandular pits both surface mucous cells and mucous neck cells contain less mucous granules than in summer frogs.The results are discussed in connection with parallel biochemical work and available literature, and in the light of our previous studies on the exocrine pancreas in hibernating frogs.  相似文献   

18.
The main pathways of epithelial differentiation in the intestine, Paneth, mucous, endocrine and columnar cell lineages are well recognized. However, in abnormal circumstances, for example in mucosal ulceration, a cell lineage with features distinct from these emerges, which has often been dismissed in the past as ''pyloric'' metaplasia, because of its morphological resemblance to the pyloric mucosa in the stomach. However, we can conclude that this cell lineage has a defined phenotype unique in gastrointestinal epithelia, has a histogenesis that resembles that of Brunner''s glands, but acquires a proliferative organization similar to that of the gastric gland. It expresses several peptides of particular interest, including epidermal growth factor, the trefoil peptides TFF1, TFF2, TFF3, lysozyme and PSTI. The presence of this lineage also appears to cause altered gene expression in adjacent indigenous cell lineages. We propose that this cell lineage is induced in gastrointestinal stem cells as a result of chronic mucosal ulceration, and plays an important part in ulcer healing; it should therefore be added to the repertoire of gastrointestinal stem cells.  相似文献   

19.
Dopamine (DA) plays a critical role in the protection of gastric mucosa and is mediated through corresponding receptors. However, the details of the expression of DA receptors (D1-D5) in the gastric mucosa are lacking. The present study investigated the expression and cellular localization of DA receptors in rat gastric mucosa by means of real-time PCR and immunofluorescent techniques. The results indicated that the mRNA expressions of all five subtypes of DA receptors were found in the gastric mucosa, among which the D2 level was the highest. The immunopositive cells of D1-D3 and D5 were primarily localized to the basilar gland of the epithelial layer in gastric corpus, but D4 immunoreactivity (IR) was only observed in the enteric nerve plexus. The D1, D2, and D5 IR were found in pepsin C-IR cells except D3. No IR of any DA receptor was detected in the H(+)/K(+)-ATPase- or mucin 6-IR cells. In conclusion, for the first time, this study demonstrates the predominant distribution of DA receptors in the chief cells, not the parietal and mucous neck cells, in rat gastric mucosa, thus suggesting that DA may not directly regulate the function of parietal cells or mucous neck cells, but it may modulate the function of chief cells through the D1, D2, and D5 receptors.  相似文献   

20.
The presence of gastricsin in bovine abomasal juice has been reported previously, but its exact site of origin has not yet been established. Specific polyclonal antibodies were used in the peroxidase-antiperoxidase method or the protein A/gold technique to label cells producing progastricsin. This immunocytolocalization was correlated with that of pepsinogen and prochymosin using specific polyclonal antibodies against those zymogens. The present study clearly established that progastricsin was located exclusively in chief, mucous neck, transitional mucous neck/chief, foveolar epithelial and surface epithelial cells of the calf fundic mucosa. Furthermore, progastricsin was found to be colocalized with pepsinogen and prochymosin in the same secretory granules of these cells. Progastricsin was not observed in parietal, gastric endocrine and undifferentiated neck cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号